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Abstract: As higher performance is demanded in 5G networks, energy consumption in wireless
networks increases along with the advances of various technologies, so enhancing energy efficiency
also becomes an important goal to implement 5G wireless networks. In this paper, we study the
energy efficiency maximization problem focused on finding a suitable set of turned-on small cell
access points (APs). Finding the suitable on/off states of APs is challenging since the APs can be
deployed by users while centralized network planning is not always possible. Therefore, when APs
in small cells are randomly deployed and thus redundant in many cases, a mechanism of dynamic AP
turning-on/off is required. We propose a device-assisted framework that exploits feedback messages
from the user equipment (UE). To solve the problem, we apply an optimization method using belief
propagation (BP) on a factor graph. Then, we propose a family of online algorithms inspired by BP,
called DANCE, that requires low computational complexity. We perform numerical simulations,
and the extensive simulations confirm that BP enhances energy efficiency significantly. Furthermore,
simple, but practical DANCE exhibits close performance to BP and also better performance than other
popular existing methods. Specifically, in a small-sized network, BP enhances energy efficiency 129%.
Furthermore, in ultra-dense networks, DANCE algorithms successfully achieve orders of magnitude
higher energy efficiency than that of the baseline.

Keywords: cellular networks; small cell; energy efficiency; belief propagation; optimization

1. Introduction

To cope with the mobile traffic explosion, upcoming 5G focuses on the gigabit-scale peak data rate
with higher capacity. Deploying hyper-dense small cell networks is a strong candidate to enhance the
capacity up to 100-times [1]. While dense small cells can meet the capacity requirement, total power
consumption on the network increases in proportion to the number of small cell base stations (BS) [2].
In addition, we should consider that network infrastructures take 3% of the world’s electrical energy
consumption, and BSs consume about 80% of the energy consumption of mobile network operators
(MNOs) [3,4]. In light of these illustrations, it is indispensable to enhance energy efficiency. Thus,
many efforts are continued in the standards of 3GPP and the research projects of EARTH, Green Touch,
5GrEEn, etc. [5]. In the perspective of 5G, the authors of [6] recently suggested a design framework
considering both energy efficiency (EE) and spectral efficiency (SE), called EE-SE co-design.

In the literature, many on-going research works investigate green BS operations to enhance energy
efficiency. In [7], the authors proposed a BS turning-off algorithm using the optimal cell coverage that
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minimizes BS area power consumption. The authors in [8] proposed a cell zooming technique, such that
the BS turning-off operation reduces the power consumption, and other turned-on BSs increase their
coverage. In [9–11], the on/off methods based on flow-level dynamics are presented. The authors in [9]
solved the problem encompassing dynamic BS operation and the related problem of user association.
Related to [9], the authors in [10] presented the distributed threshold-based BS off algorithm based on
an overlay network using Delaunay triangulation. The authors in [11] proposed the energy-efficient
user association method by using a population game approach. In [12–14], stochastic geometry is used.
The authors in [12] proposed macro BS turning-off strategies in homogeneous and heterogeneous
networks and showed that the deployment of small cells can increase energy efficiency, but the energy
efficiency gain is saturated when small cell density is increased. In a two-tier heterogeneous network,
the authors in [13] proposed the repulsive cell activation scheme that activates small cells according
to user density and offloading macro BS traffic. A deployment strategy considering the density and
transmission power of BSs is proposed in [14]. The authors in [15] considered a separation architecture
substituting the conventional macro BS into a coverage-providing BS and multiple small cells in order
to increase energy efficiency. The authors derived the optimal intensity of small cells for the optimal
deployment. In [16], the energy-saving problem is investigated while considering multiple sleep base
station modes. Furthermore, a survey in [17] presents various existing green cellular techniques to
show that energy saving can be achieved by turning on or off BSs.

In this paper, we study a small cell BS on/off operation to enhance energy efficiency. Our
approach is applicable to various types of small cells, e.g., pico BS, femto BS or even Wi-Fi BS.
Hereafter, we use the terminology access point (AP) instead of BS to emphasize the small cell BS.
Since we assume that users can directly deploy small cell APs, intractable randomness is engendered.
In the densely-deployed small cell networks, the AP on/off operation brings changes to the network
environment. While flow-level analysis considers the time-averaged information [9–11], we mainly
focus on the state information of APs because a more frequent and dynamic AP on/off operation
is expected. Thus, to know the state, devices’ channel measurement is crucial. These assumptions
motivate us to take a new approach for the dynamic AP on/off operation using user equipment (UE)
feedbacks. Our approach basically exploits belief propagation (BP) to solve an optimization problem
on a factor graph. This paper extends the results of its conference version [18]. The main difference is
that we further consider the case of ultra-dense networks and investigate the impact of the proposed
algorithms under the extremely dense scenario. For example, we consider the case of 100 APs with
50 UEs for dense network, as well as 10,000 APs with 1000 UEs for ultra-dense networks. In doing
this, we have modified the conventional BP algorithm to the approximated BP and also verify that the
proposed online algorithms of DANCE perform well even under extreme densification. Furthermore,
in Section 4.3, we provide an operational procedure and a framework to practically implement the
online algorithms of DANCE.

The main contributions of this paper are summarized as follows. We apply the BP optimization
framework to the AP on/off operation. To target the small cell environment, a model exploiting
UE feedbacks is proposed. Then, by constructing a factor graph representing APs and UEs, the
optimization problem is solved by the BP optimization framework. Since BP is an offline algorithm,
however, we also propose algorithms that can run in an online manner where these algorithms
are named DANCE (Device-Assisted Networking for Cellular grEening) that is a collection of low
complexity algorithms inspired by BP. As the complexity of the BP approach can increase with the
number of BSs and UEs, DANCE algorithms can be used in dense networks. Then, we evaluate
our algorithms by performing numerical simulations. Our extensive simulation results show that
BP and DANCE increase energy efficiency significantly. For instance, in a small-sized network, BP
increases energy efficiency 129% compared to the baseline where all APs are always on. Furthermore,
in ultra-dense networks, DANCE algorithms increase energy efficiency from 25-times up to 44-times
compared to the baseline in the case of ultra-dense networks.
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The remainder of this paper is organized as follows. In Section 2, the assumptions of the system
model and the problem formulation are presented. Section 3 is devoted to the graphical modeling
of our framework using the BP algorithm. In Section 4, we propose a family of online algorithms.
In Section 5, the performances of the proposed algorithms are demonstrated with extensive simulations.
Finally, we conclude the paper in Section 6.

2. System Model

2.1. Assumptions

We assume that small cells can be deployed by users or an MNO; thus, the deployment can
be unplanned, and small cells are randomly deployed, resulting in a dense and possibly redundant
deployment. It is plausible that if the APs are placed in a home, they can use the Internet as the
backhaul to communicate with the macro base station. We assume that APs are deployed in the
coverage of a macro BS. For example, in NTTDOCOMO’s phantom cell concept [19], the control plane
and user plane are separated in different frequency bands in which high capacity and good mobility
can be supported. We assume that the control plane and the user plane are provided by the macro
BS and small APs, respectively. We introduce an entity located in the macro BS called the small cell
controller (SCC). From [2], the AP on/off operation can be classified into two cases: the core network
(CN) controlling and UE controlling. By taking advantage of CN and UE controlling, we propose
a device-assisted framework shown in Figure 1. In the device-assisted framework, UEs measure
beacon signals that APs broadcast and send feedback to the SCC. Then, the SCC determines the set of
turned-on APs by exploiting the feedback.

Macrocell
Base Station

Small Cell

Small Cell 
AP UE

SCC SCC

Small Cell

① Measurement

② Feedback

③ AP On/Off Command

Macro Base Station

AP

Figure 1. System model of the green small cell operation assisted by devices.

To enhance energy efficiency, turning off APs is an effective solution when APs are densely
deployed. While saving energy, however, it is important to maintain the acceptable level of quality of
service, which is mainly determined by the data rate. Interestingly, turning off APs can also increase
the data rate when APs are densely deployed because interference among APs can be mitigated by
properly selecting the set of turned-off APs. In Section 6, we show that a higher or similar average
data rate is achieved by using our algorithms compared to the baseline.

We assume that the set of APs J is located in the macro base station coverage, and the set of UE
I is in the coverage provided by APs, where j ∈ J is the index of AP and i ∈ I is the index of UE.
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Definition 1 (AP on/off state indication vector). When xj stands for the turned-on or off state of AP j ∈ J ,
the AP on/off state indication vector x = {x1, · · · , xj, · · · , xJ} is defined by:

xj =

{
1, if AP j is turned on,
0, otherwise

(1)

where J is the number of APs in the setJ . Note that the AP state indication vector shows a possible state
of each AP. Once the SCC determines the set of turned-on APs, the vector indicates whether each AP is
turned on or not. Then, we define the power consumption of the APs. While the power consumption
of the APs can be affected by the utilization or load levels of APs, the power consumption of APs can
be approximated as a constant value since we consider small-sized APs that consume much smaller
power compared to the conventional macro BSs. Moreover, considering that the power consumption of
small cell BSs is mostly from the fixed power consumption and, thus, transmission power consumption
is marginal, the total power consumption can be assumed to be constant; for example, according to
the data sheet of a Wi-Fi AP that has a similar hardware size of a small cell AP, the Cisco Aironet
1140 Series [20] consumes 12.95 W, while its transmission power varies from 0.78 mW to 100 mW, which
is less than 1% of the total power consumption. Thus, the approximately constant power consumption
can be seen as a plausible assumption. Therefore, if an AP is turned on, it consumes the operational
power Pj,Op that includes the transmission power Pj,Tx dissipated into the air. Thus, the operational
power vector of AP j ∈ J is POp(x) = {P1,Op(x1), · · · , Pj,Op(xj), · · · , PJ,Op(xJ)} where:

Pj,Op(xj) =

{
Pj,Op, if xj = 1,

0, otherwise,

and the transmission power vector of AP j becomes PTx(x) = {P1,Tx(x1), · · · , Pj,Tx(xj), · · · ,
PJ,Tx(xJ)} where:

Pj,Tx(xj) =

{
Pj,Tx, if xj = 1,

0, otherwise.

We define the association matrix S = [si,j] ∈ RI×J that shows the user association between APs
and UEs given by:

si,j =

{
1, if UE i is connected to AP j,
0, otherwise.

2.2. Problem Formulation

When UE i is associated with AP j, the signal-to-interference ratio (SINR) between UE i and AP j
is given by:

SINRi,j(x) =
gi,jPj,Tx(xj)

N0 + ∑j′∈J \{j}

(
gi,j′ Pj′ ,Tx(xj′)

)
where gi,j is the channel gain between UE i and AP j, and N0 is the noise power. Then, the maximum
spectral efficiency of UE i served by AP j is log2(1 + SINRi,j(x)). We assume that when an AP j has
multiple associated UEs, the associated UEs are scheduled in a temporally fair way or equally when
sharing the frequency channel; thus, the data rate of UE i is given by:

Ri(x) =
log2

(
1 + SINRi,j(x)

)
Sj

(2)
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where Sj = ∑I
i′=1 si′ ,j. Energy consumption of APs can be calculated by summing the operational

power of turned-on APs. Thus, the total power consumption of the network becomes ∑J
j=1(Pj,Op · 1(Sj))

where an indicator function is 1(Sj) :=

{
1 if Sj > 0,
0 if Sj = 0.

Our objective function is the energy efficiency F(x), also called the global function given by:

F(x) = ∑I
i=1 Ri(x)

∑J
j=1 Pj,Op · 1(Sj)

.

Then, we define the local energy efficiency fi(x), also called the local function, which is given by
fi(x) = Ri(x)

∑J
j=1 Pj,Op ·1(Sj)

. From the definition, the local function is a part of the global function that UE i

yields; thus, the global function is given by:

F(x) =
I

∑
i=1

fi(x).

Our problem is to find on/off state vector x that maximizes the global function F(x). Thus, our
optimization problem is:

max
x,S

F(x) (3)

s.t xj ∈ {0, 1}, ∀j ∈ J (4)
I

∑
i=1

∑
j∈{j′ |x′j=0}

si,j = 0, (5)

J

∑
j=1

si,j = 1, ∀i ∈ I . (6)

The first constraint of (4) is from determining a set of turned-on APs. The second constraint of (5)
means that turned-off APs should not be associated with any UEs. The third constraint of (6) shows
that all UEs should be associated with only one APs. To tackle the problem given in (3) to (6), we
need to determine the set of turned-on APs, as well as the UE-AP association. While maximizing the
energy efficiency in (3), some users may experience low quality of service (QoS). Therefore, although
the requirement about QoS is not explicitly expressed in the constraints of the optimization problem,
minimum QoS thresholds can be set in our algorithms to ensure a minimum level of QoS, as we discuss
in Section 4. Note that one can solve the optimization problem for the given traffic information, but by
solving the proposed problem repeatedly, it can be also possible to adaptively manage the on/off states
of APs if network traffic is changed over time. Thus, we focus on solving the above problem where
the notion of time is excluded. The problem is known as NP-hard, implying that it is hard to find an
optimal solution in polynomial time [9]. Thus, to solve the optimization problem, an exhaustive search
should be done.

In the case of small APs, APs are usually randomly deployed, which makes the BS coordination
for time/frequency orthogonal transmission very challenging. This is why we focus on the simple
ON/OFF operation to improve the energy efficiency of (ultra-)dense wireless networks. Note that our
problem is still very challenging because the complexity of the problem is NP-hard, and in ultra-dense
networks, the computational complexity increases exponentially in the number of APs. In the next
section, we apply BP to our framework and find a solution that is close to the optimal performance.
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3. Belief Propagation

We adapt BP to solve our optimization problem expecting that a simple, but practical algorithm
can provide an approximated solution of our problem. BP originally proposed by Pearl [21] is a
message-passing algorithm widely used in inference problems. BP has successfully been demonstrated
in many applications, such as error-correcting codes or artificial intelligence. By using BP, the marginals
of a joint probability distribution can be calculated with iterations of message passing on graphical
models including Bayesian networks and Markov random fields. We specifically focus on running
BP on a factor graph, which also can be readily converted into other forms of graphical models, like
Bayesian networks. For details, please refer to [22], which shows a general overview of BP, and [23–25],
which provide explanations about BP on a factor graph. The optimization method using BP was used
by the authors of [26]. The authors applied BP to inter-cell interference coordination in a femtocell
network to solve the problems approximately.

By using the elements of the AP on/off state indication vector, we define a set of discrete random
variables X = {X1, · · · , Xj, · · · , XJ}. Then, Xj, ∀j ∈ J , can be seen as a Bernoulli random variable
denoting the turned-on or turned-off state. The realizations of the random variable Xj is denoted
by xj ∈ {0, 1} as in (1). Let us use the abbreviated notation x = {x1, · · · , xj, · · · , xJ} denoting
{X1 = x1, · · · , Xj = xj, · · · , XJ = xJ}. By using these definitions above, the joint probability
distribution p(X1 = x1, · · · , Xj = xj, · · · , XJ = xJ) is expressed in a shorter form p(x).

To define the joint probability distribution p(x), the concept of Boltzmann’s law in thermal
equilibrium from statistical mechanics is used. Our framework can be seen as a system that is assumed
to have J particles, and a state of each particle is denoted by xj. By substituting the negative of free
energy part of Boltzmann’s law into our global function, p(x) is defined as:

p(x) =
1
z

exp
(

1
τ

F(x)
)

(7)

=
1
z

exp

(
1
τ

I

∑
i=1

fi(x)

)
.

where z is a normalization constant and τ denotes the temperature. Also, by changing the exponential
of sum to product of exponentials, p(x) can be shown as

p(x) =
1
z

I

∏
i=1

exp
(

1
τ

fi(x)
)

. (8)

when BP is applied to the non-physical system, the temperature can be seen as a constant parameter
appropriately chosen.

3.1. Factor Graph

Observing (7) and (8), we see that (7) including the global function F(x) is factorized into the
product of the local functions fi(x). Thus, (8) can be shown in a factor graph. A factor graph G = (V, E)
is a bipartite graph with vertices V and edges E. Vertices, i.e., nodes of the graph, correspond to APs
and UEs. There are two kinds of nodes: the variable nodes and the factor nodes. The variable nodes
representing APs, shown as circle in the graph, are referred to Xj, j ∈ J . The factor nodes denoting
UEs, shown as the square in the graph of Figure 2, are referred to exp( 1

τ fi(x)), where the local function
is included. Edges mean the channels between APs and UEs. To solve our optimization problem, we
exploit the constructed factor graph in BP message passing.
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Figure 2. Example of a factor graph consisting of variable nodes, AP j, ∀j ∈ J , and factor nodes, UE i,
∀i ∈ I .

3.2. Belief Propagation Optimization Algorithm

Following the results of [27], when 1
τ → ∞, p(x) concentrates around the maxima of F(x), and

then, we have:
lim

1
τ→∞

x̄ = argmax
x

F(x) (9)

where x̄ = {x̄1, · · · , x̄j, · · · , x̄J}, and x̄j = E[Xj] means the marginal expectation of the random variable
Xj. In principal, standard BP can be seen as a process to calculate the estimated marginal probability
distribution with respect to the random variable Xj. Thus, when the marginal probability distribution
of p(x) is estimated, an approximated solution of the optimization problem can be found.

Definition 2 (Belief). The belief bj(xj) is the estimated marginal probability distribution of p(x) with respect
to Xj.

Thus, we leverage the BP algorithm to find bj(xj). On the constructed factor graph, belief messages
are passed through the edges between APs and UEs. After the belief message is repeatedly passed
between APs and UEs, the set of turned-on APs is determined according to the estimated marginal
probability distribution. It is well known that when a factor graph is acyclic, bj(xj) converges to the
true marginal probability distribution of p(x) with respect to Xj [26]. However, as shown in Figure 2,
the constructed factor graph usually has cycles, e.g., AP 2, UE 3, AP j, UE i, and AP 2. In this case,
BP yields an approximated result; thus, we compare our simulation results with the optimal value
obtained from the exhaustive search in Section 5.

Now, we present the algorithm below.

1. Initialization. At time t = 0, messages bj→i(t, xj) for ∀j ∈ J and ∀i ∈ I are set to have an
arbitrary distribution. For instance, we use the uniform distribution, such as:

bj→i(t, xj) ∼ U(0, 1). (10)

2. UE update. After the initialization, UE i ∈ I generates and sends the belief messages to its
neighboring APs j ∈ N (i) where N (i) denotes the neighbor APs of UE i. At t > 0, the message
update is defined by:

bi→j(t, xj) = E
[

exp(
1
τ

fi(X))|xj

]
. (11)

Therefore, when the expectation (11) is calculated over independent xj′ , ∀j′ ∈ N (i), the message
update can be presented by

bi→j(t, xj) = ∑
x∈{x|xj}

(
exp(

1
τ

fi(x)) ∏
j′∈N (i)\{j}

bj′→i(t, xj′)

)
(12)
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where for given Xj = xj. Furthermore, in (12) exp( 1
τ fi(x)) is calculated for given Xj = xj.

Since (12) has both a sum and a product, BP is called the sum-product algorithm. Equation (12) is
the product of the factor with belief messages from AP j′ ∈ N (i), j′ 6= j, to UE i, marginalized
over all random variables, except xj. To calculate fi(x), at t = 1, we assume that Sj = 1,∀j ∈ J. At
t ≥ 2, Sj, ∀j ∈ J, is initialized to one and incremented by the number of associated UEs where
each UE is associated with AP j = argmaxj′ bi→j′(t, xj′ = 1).

3. AP update. AP j ∈ J generates and sends the belief messages to all neighboring UE i ∈ N (j),
where N (j) denotes the neighbor UEs of AP j. The message is defined by:

bj→i(t + 1, xj) =
1
z′ ∏

i′∈N (j)\{i}
bi′→j(t, xj) (13)

where z′ is the normalizing constant making ∑xj∈{0,1} bj→i(t + 1, xj) = 1. The belief message (13)
is the product of the belief messages from UE i′ ∈ N (j) \ {i}, all neighboring factor nodes,
except i. Then, the steps ‘UE update’ and ‘AP update’ are repeated until the number of iteration
is satisfied.

4. Decision-making. After finishing the iteration procedure, the estimated marginal probability
distribution with respect to Xj is finalized as:

bj(xj) =
1
z′′ ∏

i∈N (j)
bi→j(t, xj) (14)

where z′′ is the normalizing constant to make bj(xj) as a probabilistic distribution.

Then, as a final step, to describe our association rule S, we define an integer-valued function Φj(·)
that determines the position of the j-th element when the elements of the input vector are sorted
in increasing order. Then, we deliberately use the following rank-based association rule of UE i
given by:

j∗(i) = argmax
j

[
Φj
({

SINRi,j(x)
})

+ η Φj
({

pj(xj)
})]

(15)

where xj = 1, ∀j ∈ J, and η is a weighting parameter considering the tradeoff between the
channel condition and the estimated marginal probability from BP. The intuition of (15) is as
follows. If each UE is associated with AP j solely considering energy efficiency, then most UEs
are associated with a few APs having a higher value of pj(xj). High pj(xj) may indicate that
there is a global consensus that energy efficiency can be increased when the BS j is turned on.
However, connecting too many UEs to one AP can degrade the data rate, which may decrease
energy efficiency. In this sense, user association cannot be determined solely relying on pj(xj).
Thus, we exploit SINRi,j to determine the user association, so each UE can decide its association
along with the global perspective of pj(xj) and also personal perspective SINRi,j to preserve its
service quality.

Our user association rule can be seen as an extension of the convention user association rule that is
based on SINR. For example, if η = 0, each UE is associated with the AP that provides the highest
SINR among APs in N (i), which is the conventional user association rule. On the other hand, if
η → ∞, the UE is associated with the AP j whose pj(xj) is the greatest. It could be possible that
SCC determines η to maximize energy efficiency by using adaptive learning methods. After user
association is done for all UEs, the APs with no UEs are turned off.

While the BP framework is readily well defined on many graphical models, the drawback of BP
framework is its complexity, which is given by O(2N (i)) from the view point of the UE. Hence, the
complexity of the BP could be a barrier to large-scale ultra-dense networks of APs and UEs. Thus, we
next propose online algorithms for dense cellular networks in the next section.
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4. Online Algorithm: DANCE

We propose a family of online algorithms that are inspired by the BP framework. In BP, the node
having a high certainty of belief can influence the final estimated marginal probability distribution.
To mimic this behavior, DANCE considers priority to the AP or UE whose impact can be great. Since
the ultra-dense network (UDN) environment is considered where APs are densely deployed, DANCE
is designed to operate with low computational complexity.

4.1. Feedback from UE

We assume that UEs can send feedback messages as shown in Figure 1. In the SCC, the collected
feedback messages constitute the feedback matrixA = [ai,j] ∈ RI×J . The feedback message can contain
merely the connectivity information when using only one bit or can have more detailed information
of connectivity, such as the maximum achievable data rate or appropriate adaptive modulation and
coding (AMC) when using multiple bits. Thus, A has two variations: a matrix A(1) is when one-bit
feedback is used, and A(N) is when N-bit feedback is used. An element of a matrix, a(1)i,j ∈ A

(1) or

a(N)
i,j ∈ A

(N), means that the feedback message from UE i to AP j is either one-bit or N-bit. If a one-bit

message is used, a(1)i,j ∈ {0, 1} represents only the connectivity. It is assumed that connectivity exists if

SINRi,j(x) is greater than some threshold. If an N-bit message is used, a(N)
i,j represents the achievable

data rate or the quantized level of AMC. Examples of the UE feedbacks are illustrated in Table 1.
We assume that the achievable data rate can be represented by using multiple N bits. In our study,
N-bit message implies the achievable data rate. A study about the number of bits considering the
tradeoff between performance and feedback overhead is beyond the scope of this paper and remains as
a future work. However, when comparing to the BP algorithm where the repeated message exchanging
is required, the DANCE algorithms only require one-time feedback messages, which significantly
suppresses overall signaling overhead.

Table 1. Examples of matrices A(1),A(N) and S.

1-bit Feedback (A(1)) N-bit Feedback (A(N)) Association Matrix (S)

A(1) =


0 0 1 · · · 0
0 1 1 · · · 0
1 1 0 · · · 0
...

...
...

. . .
...

0 0 1 · · · 1

 A(N) =


0 0 3 · · · 0
0 2 4 · · · 0
3 5 0 · · · 0
...

...
...

. . .
...

0 0 2 · · · 2

 S =


0 0 1 · · · 0
0 0 1 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



4.2. DANCE Algorithms

DANCE solves the same problem given in (3) to (6). By using matrix-based algorithms, DANCE
determines the turned-on/off APs and the user association together. Once the target AP is chosen,
then the association is automatically decided on the matrix A, so that the result of user association is
shown on the matrix S . DANCE includes three algorithms: AP-first, UE-first and the proximity-ON
(Prox-ON) algorithm.

In DANCE algorithms, two main algorithms, AP-first and UE-first, are designed to choose
the most influential AP or UE, respectively. Depending on the type of feedback, both AP-first
and UE-first have several variations: AP-N/AP-1 and UE-N/UE-1, where the number implies the
length of the feedback bits. Following the categorization, AP-first and UE-first are described in
Algorithms 1 and 2, respectively.
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Algorithm 1 AP-first

1: Initialize si,j = 0, ∀i ∈ I, ∀j ∈ J.
2: while A 6= ∅
3: j∗ = argmaxj ∑i ai,j.
4: for all i ∈ I
5: if ai,j∗ > 0, then si,j∗ = 1,
6: else si,j∗ = 0.
7: end for
8: Eliminate the column j∗ of A.
9: Eliminate i′ rows of A where i′ ∈ {i|ai,j∗ > 0}.
10: end while

Algorithm 2 UE-first

1: Initialize si,j = 0, ∀i ∈ I, ∀j ∈ J.
2: while A 6= ∅
3: i∗ = argmini ∑j ai,j.
4: j∗ = argmaxj ∑i ai,j where ∀j ∈ {j′|ai∗ ,j′ > 0}.
5: for all i ∈ I
6: if ai,j∗ > 0, then si,j∗ = 1,
7: else si,j∗ = 0.
8: end for
9: Eliminate the column j∗ of A.
10: Eliminate i′ rows of A where i′ ∈ {i|ai,j∗ > 0}.
11: end while

The algorithm works as follows. AP-first algorithms, AP-1 or AP-N, firstly choose an AP on the
matrix A as previously mentioned. AP-1 algorithm chooses the AP that has the greatest number of
association-possible UEs. The AP-N algorithm otherwise chooses the AP that has the greatest sum of
the maximum achievable data rate or the AMC of each UE depending on whether ai,j stands for the
data rate or AMC levels. Then, the chosen AP is turned on, and all UEs having connectivity with the
chosen AP are associated with the chosen AP. This is repeated until all UEs are associated.

As a counterpart, UE-first algorithms, UE-1 and UE-N, consider UEs foremost. For example,
in the UE-1 algorithm, we firstly find the UE having the smallest number of association-possible APs,
i.e., potentially the worst case UE is considered first. Then, among the APs that can connect to the
chosen UE, we select the AP j∗ = argmaxj ∑i ai,j where ∀j ∈ {j′|ai∗ ,j′ > 0} in order to minimize the
number of turned-on APs. Note that UE-first is a generalization of [28] where only a single bit feedback
was assumed.

The other is the proximity-ON algorithm. In this algorithm, each UE associates with the AP that
provides the highest SINR, while non-selected APs are turned off. It can be seen as a basic heuristic
algorithm in order to determine the set of the turned-off APs. Therefore, among DANCE algorithms,
the results of the proximity-ON algorithm can provide baselines to measure performance gains of
AP-first and UE-first, respectively.

4.3. Practical Implementation

The message passing procedures for both the turning off and on operation in DANCE are
illustrated in Figure 3. As mentioned in Section 2, each AP periodically wakes up and broadcasts a
beacon signal, and each UE senses the APs’ beacon signals. Information gathered at each UE is sent to
SCC. Then, SCC runs one of the DANCE algorithms in order to make a decision for each AP’s on/off
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status by using the feedback information from UEs. Then, SCC broadcasts the final decision to all APs,
and APs follow the direction of SCC.
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Figure 3. Green small cell operation and procedure using the DANCE algorithm.

5. Numerical Results

In this section, we verify the proposed algorithms through extensive simulations. We first
carry out the simulation for a small number of APs and UEs and then extend it for a large-scale
ultra-dense network.

5.1. BP and DANCE Algorithms for a Small-Sized Network

We assume that nine APs and 20 UEs are randomly distributed in a hexagonal cell area with
a 100-m radius. The AP and UE locations are determined by following a uniform distribution [2].
From the Alcatel-Lucent device (Model 9361 home cell v2), the transmission power of the AP is
13 dBm, and the operational power of the AP is 9 W. According to the IEEE 802.16 m Evaluation
Methodology Document (EMD), we use the winner model assuming the non-line-of-sight (NLOS) case
and propagation through light walls with a 2.1-GHz carrier frequency. The total bandwidth is 20 MHz,
and the power spectral density of thermal noise is −174 dBm/Hz. Our numerical simulations are
performed by taking snap shots about possible AP/UE dense deployment scenarios. This approach
is also popular; see [12,29,30]. One may want to perform network-level simulations to observe
packet-level behaviors, such as packet loss, related with network protocols. In this paper, however, we
focus on physical-layer performance metrics, such as data rate and power consumption, to compute
energy efficiency, which are in our objective function in (3).

Figure 4 shows the average energy efficiency obtained through 200 iterations, and the results are
summarized in Table 2. For every iteration of the proposed BP algorithm, UE update and AP update
are repeated five times where 1

τ = 1 and η = 5.5. The baseline is the case when all APs are turned
on. In addition, proximity-ON is a simple heuristic algorithm, and thus, it can provide performance
guidelines for other DANCE algorithms, such as AP-first and UE-first. Furthermore, we find the
optimal solution by using exhaustive search. Therefore, it can be possible to compare our algorithms’
results to the case that maximizes energy efficiency.

Table 2. The average energy efficiency improvement percentages of the proposed algorithms to
the baseline. Prox-ON, proximity-ON.

BP AP-N AP-1 UE-N UE-1 Prox-ON

129% 101% 100% 102% 98% 14%
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Figure 4. Comparison of the average energy efficiency among BP, DANCE and the baseline.

First, we compare the average energy efficiency among BP, DANCE and the baseline in Figure 4.
Table 2 represents the improvement of the average energy efficiency. Results show that BP and DANCE
increase energy efficiency significantly, e.g., by 129% compared to the baseline. As expected, BP
exhibits better energy efficiency than DANCE. However, the gap is not substantial, and considering
that DANCE is a low complexity algorithm, the performance of DANCE is noticeable. Overall, all four
cases of DANCE (AP-N, AP-1, UE-N, UE-1) achieve more or less 100% improved energy efficiency
and outperform proximity-ON and the baseline substantially. In Figure 5, we compare the average
power consumption and the average data rate, which are averaged over all iterations. Considering
that the nature of the problem is indeed a combinatorial optimization, we compare our algorithms
with an optimal solution by performing an exhaustive search. The result shows that the proposed
algorithms are near optimal, e.g., achieving 83% of the optimal performance. We observe that BP
and DANCE consume substantially less power than the average power consumption of the baseline.
However, as the trade-off of BP’s significant power reduction, it achieves a lower average data rate.
By contrast, DANCE achieves similar or even higher average data rate, which isclose to the optimal
energy efficiency case because the interference is mitigated by the AP off operation, and the set of
turned-on APs is well chosen to provide a high data rate.
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Figure 5. The average power consumption vs. the average data rate.

Energy efficiency, power consumption and data rate can vary with respect to η. As shown in
Figure 6a, energy efficiency is maximized when η = 5.5. In Figure 6b, average power consumption
decreases as η increases. Similarly, we observe from Figure 6c that the average data rate also decreases
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as η increases. This is because when η is high, the UE is associated with a small number of APs having
a high value of pj(xj). Then, only a small number of APs is turned on and provides connectivity for all
UEs, so the overall power consumption is decreased. However, since only a few APs operate, the data
rate becomes low. As a result, the desired high energy efficiency can be achieved at some proper
value of η. Note that in Figure 5, as η → 0, the BP moves from the current star-marked position (?)
where energy efficiency is maximized (η = 5.5) to the position of proximity-ON (�). That is because
proximity-ON is a special case of BP when η = 0. Thus, η is a network operator’s design parameter
considering energy efficiency, power consumption and the data rate.
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Figure 6. The average energy efficiency, power consumption and throughput with different values of η.
(a) Average energy efficiency; (b) average power consumption; (c) average data rate.

5.2. Expanding BP and DANCE Algorithms on UDN

From now on, we perform a large-scale simulation for UDN. Even though DANCE can be applied
without any modification, the BP algorithm proposed in Section 3 needs to overcome computational
complexity, and thus, we slightly modify the algorithm as follows. Instead of using a complete bipartite
graph, we construct an approximated factor graph in which each UE only considers the limited number
of neighboring APs. For instance, APs satisfying a(1)i,j = 1 or a(N)

i,j ≥ 1, which means UE i can access
AP j, are considered as neighbor APs of UE i. By doing so, each UE can have a smaller number of
neighbors N (i) than the factor graph in Figure 2. The simulation results show the performance of
the network in terms of the energy efficiency, UE data rate and average power consumption for the
different number of APs and UEs.

5.2.1. Dense Network

Figure 7 shows the results in the case of 50 UEs where the number of APs varies from two to 100
in the hexagonal area with a radius of 158 m, so that the density of UEs, i.e., the number of UEs per m2,
remains the same as the small-sized network in Section 5.1. As can be seen in Figure 7a, the energy
efficiency of BP and DANCE is highly improved compared with the baseline. The energy efficiency
of the baseline mainly decreases in the number of APs because power consumption is proportional
to the number of APs. However, BP and DANCE successfully restrict the number of turned-on APs
and consume lower power resulting in higher energy efficiency. For example, BP achieves five-times
and AP/UE N-bit achieves nine-times higher energy efficiency than that of the baseline for the case
of 100 APs. Note that, unlike the case of the small-sized network, AP/UE N-bit shows better energy
efficiency than BP because BP uses the approximated factor graph. Consequently, the energy efficiency
of BP increases in the practical number of APs, but has a peak around 10 APs and then decreases.
However, note that the data rate of BP is the highest until 20 APs. As easily expected, the energy
efficiency of proximity-ON is not very good, and that of the baseline is poor.
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Figure 7. Green small cell operation under dense networks.

Remark 1 (Comparison within DANCE). Recall that AP/UE N-bit and one-bit show almost the same
energy efficiency and data rate in a small-sized network in Figures 4 and 5. Now, we compare them again in a
dense network. As can be seen in Figure 7c, AP/UE N-bit, as well as AP/UE one-bit both exhibit low power
consumption, which is because a small number of APs are on; see Figure 7d. However, data rates are very
different; while AP/UE one-bit achieves the lowest data rate among DANCE, AP/UE N-bit shows a much
higher data rate, which is even comparable to those of BP, proximity-ON and the baseline. For example, the data
rate of UE N-bit is 64.8% higher than UE one-bit, and the data rate of AP N-bit is 103.2% higher than AP
one-bit in the case of 100 APs. Consequently, this makes AP/UE N-bit achieve higher energy efficiency than all
other algorithms. Furthermore, it is interesting to observe that AP/UE N-bit show steadily increasing energy
efficiency in the number of APs unlike other algorithms.

5.2.2. Ultra-Dense Network

Next, we further densify both the UEs and APs; there are 1000 UE in the same area, and we vary
the number of APs from 20 to 10,000, which is up to a 100-times densification. In Figure 8, the on/off
state of 1000 APs is illustrated when proximity-ON is used in the case of 1000 UEs. Figure 8 shows
the associations between UEs and APs. Each UE can be associated with an adequate AP, which is
determined by the proposed algorithms. The APs that do not have the associated UE are turned
off. Since we consider the ultra-dense deployment scenario, a UE can find the AP to be associated
with, and thus, no coverage hole exists. It should be noted that this densification is extreme and
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may not be practical because UE needs to send out feedback for each beacon signal from each AP.
Nevertheless, we investigate this case to to better understand the proposed algorithms and see how
much performance gain DANCE algorithms would achieve in the extreme case. In this case, it is
computationally infeasible to run BP because each UE has too many neighboring APs, even if the
approximated factor graph is used. Thus, we only consider the DANCE algorithms. Other parameters
are the same as in Section 5.1.
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Figure 8. An example of the ON/OFF states of 1000 APs when the UE-N algorithm is used in the case
of 1000 UEs. (a) Thirty nine APs turned on among 1000 APs; (b) user association between turned-ON
APs and UEs.

As can be seen in Figure 9, densification results in a higher data rate, but severe interference
plays a role as densification goes on, specifically for the case of the baseline. We observe that the
energy efficiency and data rate both grow rapidly in the low densification region, e.g., 100 APs or
less. The benefit of densification in this region is well illustrated; a small increase of AP density
brings the advantage of an increased data rate that outweighs the disadvantage of the increased power
consumption. In addition to the baseline, one can compare the proposed algorithms with another type
of baseline; since [28] corresponds to UE-1, one can see that UE-N can increase the energy efficiency up
to 62.5% over that of [28] in Figure 9a.

The energy efficiency gap between the baseline and proximity-ON implies that the AP on/off
operation should be enforced to enhance energy efficiency. The gap gradually enlarges when the
number of APs is more than 500, which implies that even the simplest DANCE algorithm, i.e.,
proximity-ON, can increase energy efficiency. Note that since all APs are turned on in the baseline,
high interference among APs degenerates the data rate when the number of APs approaches 5000.
This also yields very poor energy efficiency. However, even under extreme densification, the energy
efficiency of DANCE is highly improved in all regions. For example, in the case of 10,000 APs, UE N-bit
achieves 44-times higher energy efficiency than the baseline. Specifically, Figure 9c show that UE-N and
AP-N keep power consumption lower by orders of magnitude compared to the baseline. Nevertheless,
Figure 9a shows that AP/UE N-bit maintains high energy efficiency even when the number of APs is
more than 2000, i.e., the density of APs is very high, such as 0.0308 APs/m2. In this region, although
energy efficiency remains constant, the data rate of AP/UE N-bit keeps growing, implying the fraction
of turned-on APs is still very low. Thus, by turning off unnecessary APs, DANCE can reduce power
consumption and also achieves a high data rate thanks to effectively mitigated interference.
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Figure 9. Green small cell operation under ultra-dense networks.

Remark 2 (The impact of device assistance). Now, we discuss the impact of feedback on energy efficiency
in UDN. In Figure 9a, the energy efficiency of both N-bit and one-bit feedback sharply increases for 20 APs to
100 APs (low densification region). Then, the energy efficiency of N-bit feedback is almost maintained, whereas
the energy efficiency of one-bit feedback is decreased after 100 APs (high densification region). This implies that
the turning off operation itself is more important to enhance energy efficiency in low densification region; without
knowing detailed information, energy efficiency grows by only exploiting connectivity information embedded in
one-bit feedback. However, as densification goes on, energy efficiency of one-bit feedback shrinks and eventually
approaches that of proximity-ON. This indicates that we need more detailed information, including not only
connectivity, but also the achievable data rate that is dynamically changed in UDN.

Remark 3 (Ultra densification and DANCE). Deploying more APs generally provides a higher data rate;
however, more power consumption is required, resulting in low energy efficiency unless carefully managed.
Hence, in designing and deploying UDN, our study can suggest guidelines about the level of AP densification
considering operational purposes. As seen in Figure 9a, around 100 APs, which is equal to 0.0015 APs/m2, can
cover the area while maximizing energy efficiency. Nevertheless, in case a greater data rate is required even at
the cost of AP deployment and power consumption, DANCE, specifically AP/UE , can provide a higher data rate
while keeping energy efficiency also high. For example, by increasing APs up to 1000, the data rate becomes
twice, while the energy efficiency remains almost the same, which is possible because only a small portion of APs,
e.g., 10%, are effectively selected as ON by DANCE.
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6. Conclusions

In this paper, we have studied the mechanisms to enhance energy efficiency in the ultra-dense
small cell environment. We have formulated the energy efficiency optimization problem and solved
the problem by BP. To apply BP, we have constructed a factor graph, and BP has been used to derive
the estimated marginal probability. Then, according to our association rule, the set of turned-on APs
has been determined. Whereas BP is an offline algorithm, we also have proposed its online version
called DANCE, which is inspired by BP. Numerical simulations have confirmed that the proposed BP
algorithm significantly enhances energy efficiency, and DANCE requiring low complexity achieves a
close performance to BP. We also have applied BP and DANCE in UDN and showed that the proposed
algorithms can significantly increase energy efficiency. In UDN, BP and DANCE commonly have
increased energy efficiency, e.g., up to 44-times greater than that of the baseline, but also showed
different properties about the power consumption and data rate. With BP and DANCE, MNOs can
achieve high energy efficiency and/or data rate by selecting one of the algorithms considering the AP
and UE density and operational purposes.
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The following abbreviations are used in this manuscript:

AP access point
UE user equipment
BP belief propagation
BS base station
MNO mobile network operator
EE energy efficiency
SE spectral efficiency
DANCE Device Assisted Networking for Cellular grEening
SCC small cell controller
CN core network
QoS quality of service
SINR signal-to-interference ratio
UDN ultra dense network
AMC adaptive modulation and coding
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