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Abstract: This study is concerned with the magnetic force models of magnetic bearing in a flywheel
energy storage system (FESS). The magnetic bearing is of hybrid type, with axial passive magnetic
bearing (PMB) and radial hybrid magnetic bearing (HMB). For the PMB, a pair of ring-type Halbach
arrays of permanent magnets are arranged vertically to support the rotor weight. For the HMB, a set
of ring-type Halbach array is placed on the rotor side, which corresponds to coil sets on the stator
side. The HMB can produce both attraction and repulsion forces on the radial direction, depending
on the direction of the coil currents. It is found that the ring-type configuration and the differential
winding scheme for coil sets can yield linear magnetic force models for both PMB and HMB. Based
on the obtained magnetic force model, an integral sliding mode controller is designed for the stable
rotor levitation in the radial direction. The experimental results show that the rotor can be stabilized
to the bearing center, verifying the accuracy of the magnetic force models and effectiveness of the
levitation controller.
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1. Introduction

Energy issues have attracted global attention in recent years, especially since accidents occurred
in Fukushima, Japan, in 2011. It is an inevitable trend to adopt renewable energies in building a
sustainable, low-carbon energy supply system [1]. With the increasing percentage of renewable energy,
the energy storage system plays a key role in the energy supply chain. It can provide balancing to the
electricity grid that can yield more flexibility in a smart grid. In particular, it can provide a back-up to
intermittent renewable energy sources such as solar power and wind turbine. Energy storage system
also plays a significant role in emergency preparedness and in increasing overall grid resilience [2,3].

There exist many different types of energy storage systems. Compared to other energy storage
systems, the flywheel energy storage system (FESS) possesses many advantages, including power
density, charge/discharge response time, energy recovery efficiency, life cycle cost, and impact to
the environment [4]. The FESS stores the rotational energy in a massive rotating rotor (the flywheel).
The energy is maintained in the flywheel by keeping it at a constant speed. In the charge mode, the
input energy will increase the rotation speed to a higher level. In the discharge mode, electricity
is extracted from the system by the power electronics module to the load and the rotation speed
will decrease.

The design of the rotor is an important issue for FESS. Most designs adopt the shape of disk-like
flywheel that is made of high-strength carbon filaments [5,6]. Recently, a ring-type FESS was
proposed [7]. It adopted a thin-walled composite hoop as the rotor. Such design can allow reaching
higher rotor tangential speed. In addition, the ring-type rotor possesses larger mass moment of inertia
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for the same rotor mass. Note that rotation energy is proportional to the mass moment of inertia. As a
result, the specific energy and energy density of the FESS can be improved.

Note also that for a given rotor, the rotation energy is proportional to the square of the rotor speed.
Thus, another way of increasing the specific energy and energy density for the FESS is to increase the
maximum allowable rotation speed. In this regard, magnetic bearing is the key component in FESS
due to its non-contact nature for achieving high rotation speed. Because of the non-contact nature,
it possesses the advantages of no friction, less energy loss, low maintenance costs, long system life,
and environmental friendliness [8]. Moreover, the optimization on the bearing can be designed for
maximum magnetic force with a given current density [9,10], even the eddy currents induced due to
the changing currents will result in considerable magnitude decrease and phase lag of stiffness [11].

In general, there are three types of magnetic bearings: passive, active, and hybrid. Passive
magnetic bearing (PMB) has the advantage of no energy consumption, but cannot be used alone for
stable levitation. Stable levitation can be achieved by the active magnetic bearing (AMB) that uses the
electromagnets to actively control the magnetic forces. However, AMB has the disadvantage of higher
cost and energy consumption. Hybrid magnetic bearing (HMB) is an integration of PMB and AMB.
In other words, some degree-of-freedoms (DOF) of the rotor are levitated by PMB and the others are
levitated by AMB [12].

AMB is the most popular magnetic bearing for the application in FESS. The common design
of AMB uses four independent coils and generates forces in two perpendicular directions. For each
direction on X-Y plane, two opposite pairs of electric coils are used. A linearization of the quadratic
force–current relationship is achieved by applying differential driving currents with the constant bias
current [8]. However, AMBs are open-loop unstable systems, so that a feedback control algorithm, such
as the proportional-integral-derivative (PID) controller [13], linear–quadratic–Gaussian control [14],
and sliding mode control [15], is required to maintain the stability of the system. In an AMB-rotor
system, the unbalance compensation can suppress the rotor vibration and improve the rotary precision.
A method, which is based on the seeking unbalance mass position, was proposed for unbalance
compensation via AMB [16]. Moreover, the high energy consumption of AMB makes it detrimental to
the application of energy system.

In this study, the ring-type FESS proposed in [7] is followed. The FESS contains two sets of axial
PMB for the levitation of the rotor weight. In doing so, the energy consumption induced by levitating
the heavy rotor weight can be eliminated. The system also contains two sets of radial HMB to actively
control the rotor at the bearing center. In other words, the rotor is actively controlled by HMB in the
radial directions and passively supported by PMB in the axial direction [12]. Both the stator and rotor
of the axial PMB consist of permanent magnet rings arranged in the Halbach array. On the other hand,
while the rotor of the radial HMB is also equipped with permanent magnet rings arranged in the
Halbach array, the stator is inserted with eight sets of coils. A Halbach array is a special arrangement
of permanent magnets that augments the magnetic field on one side of the array while cancelling the
field to near zero on the other side [17]. The advantage of Halbach array arrangement is obvious since
the magnetic field used for levitation is maximized. A number of Halbach type magnetic rotors have
been developed for magnetic bearings and motors in the literature [18–20]. Although the basic design
of the system is adopted from [7], the detailed design is different. Contrary to [7], the HMBs in this
study are placed outside of PMBs (from top to bottom: HMB-PMB-PMB-HMB), which can produce
more control torque than the design in [7]. In addition, only one layer of coil is designed for the HMB
here. More importantly, the modeling and control issues, and hence the feasibility issues, were not
discussed in [7].

The objectives of this study are to establish the magnetic force models for both PMB and HMB in
the FESS, and to verify the results experimentally. It is emphasized that since the focus of the paper
is on the magnetic force modeling and static levitation of magnetic bearing, only the case without
rotation is considered. The most important issue in designing the FESS with Halbach array is the
establishment of magnetic force models for both PMB and HMB. Without the magnetic force model,
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several design parameters cannot be determined, such as the geometric sizes of the permanent magnets
in the magnetic bearings and the relative position of inner and outer Halbach arrays (which is called
offset). More importantly, accurate magnetic force model is the key for obtaining the accurate dynamic
model and for designing stable levitation controller. However, establishing accurate magnetic force
model is a nontrivial task since it involves many factors, such as magnet geometry, air gap, coil
currents, etc.

Although there have been many studies on the magnetic force model of PMB and HMB in the
literature [21–25], only few are dealing with PMB and HMB with Halbach array configuration [23–25].
To the best knowledge of the authors, almost no analytic magnetic force model for such system was
presented in the literature, especially for the ring-type structure. Most existing models are numerical
or in an integral form. Such models are not suitable for the controller design. In this study, we will
establish the magnetic force model as analytic algebraic functions of rotor position and coil currents,
which are necessary for the controller design.

In this study, to obtain the force model of the overall system, the force model of small magnetic
units will be considered first. The complete magnet ring will be approximated by integrating several
small magnetic units. Two types of magnetic units are considered: hybrid magnetic unit and passive
magnetic unit. The hybrid one consists of electric coil and Halbach array permanent magnet set. It
will be used to form HMB. On the other hand, the passive magnetic unit consists of a pair of Halbach
array permanent magnet sets with an offset. It will be used to form PMB. The offset of inner and
outer Halbach arrays will be chosen so that the PMB can generate the exact vertical magnetic force
to support the rotor weight. Hence, the offset can be determined when we have the magnetic force
model. The force model of small magnetic units will be established by experimental data. It will be
shown that with proper magnet design and coil winding scheme, the magnetic forces of both PMB
and HMB can be modeled as linear functions in the relevant variables. The obtained magnetic force
models will then be used to obtain the dynamic model of the overall system. It is very difficult, if
not impossible, to verify the magnetic force model by direct measurements of the complete HMB and
PMB rings due to the inherent instability of the magnetic bearing. In this paper, the force models are
verified indirectly. A stable levitation controller is designed based on the obtained models. The good
performance of the controller will verify the correctness of the magnetic force models. The results will
be verified experimentally.

The paper focuses on the modeling and control of magnetic bearings in the ring-type FESS.
The contributions of the paper include:

• A low energy consumption ring-type FESS is proved to be feasible. The ring-type flywheel
possesses higher moment of inertia and allows for higher energy storage.

• Magnetic force model of the ring-type HMB with Halbach array configuration is established.
• Magnetic force model of the ring-type PMB with Halbach array configuration is established.

It is emphasized that the magnetic force models presented here are analytical, although they are
obtained with the help of experimental data of small magnetic units. Such analytic models allow us to
design high performance (advanced and maybe sophisticated) controller. They can also be used for
subsequent dynamic analysis, and for the generalization of the prototype system to larger scale.

This paper is organized as follows. After the introduction, the magnetic force models of magnetic
bearings and governing dynamic equation of the overall system are described in Section 2. In Section 3,
a stabilizing controller for the HMB system is designed using the technique of integral sliding mode
control (ISMC). The experimental results are presented in Section 4. Finally, conclusions are drawn in
Section 5.
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2. System Modeling

2.1. Description of Flywheel Energy Storage System

Figure 1 is the ring-type FESS under study. The inner and outer diameters of the rotor ring
are, respectively, 112 mm and 240 mm, with height of 213 mm. The designed specifications of the
prototype FESS are: rated operation speed of 10,000 rpm, rated power of 500 W, stored energy of
98.31 kJ, volumetric energy density of 1.37 × 104 kJ/m3 and specific energy of 4.74 kJ/kg. The system
consists of axial PMB, radial HMB, and back-up ball bearings. Recall that this study focuses on the
magnetic force modeling and static levitation of magnetic bearing, and hence the motor is not included
here. The locations of PMB and HMB with Halbach array are also indicated in Figure 1. There are two
sets of radial HMB, one at the top and the other at the bottom of the FESS, for the active control of four
DOFs of the rotor. The schematic of the radial HMB is shown in Figure 2. On the rotor side of HMB,
there are three layers of permanent magnet rings arranged in a Halbach array, and the corresponding
actuator coils are mounted on the stator side of HMB. The rotor can be actively stabilized by the
attraction and repulsion forces provided by the HMB, depending on positive or negative currents.
Note that no vertical force will be generated with this configuration.
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Figure 2. The schematic of the radial hybrid magnetic bearing (HMB).

There are also two sets of PMB, located at upper and lower sides of the motor. The schematic of
the axial PMB is shown in Figure 3. On both sides of stator and rotor, there are four layers of permanent
magnet rings in Halbach array arrangement. With this configuration, both vertical and radial forces
can be generated. The only objective of the PMB is to support the rotor weight in the vertical direction.
Thus, a stable (but passive) vertical force is desired, and any radial force is undesirable. For the present
design configuration, it is impossible to generate the vertical force without generating the radial force
at the same time when the rotor is not at the bearing center. Therefore, the radial force of the PMB has
to be compensated by the HMB via active control.
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2.2. Hybrid Magnetic Bearing

In this section, the magnetic force model of HMB will be established. The magnetic force of
HMB depends on the coil current and air gap. To identify the relationship, extensive measurements
will be conducted. It is difficult to perform the measurements directly on the assembled FESS.
The measurements will be performed on a hybrid magnetic unit. Recall that each hybrid magnetic unit
consists of a set of electric coils and three layers of Halbach array permanent magnet blocks. Here, the
coil is of 350 turns with pole face area of 172.24 mm2, and no iron core in the coil. For the Halbach
array, each permanent magnet block is of 8 mm × 8 mm × 30 mm (a = 8 mm and b = 8 mm in Figure 2)
with different polarity, and the material is Neodymium magnet (Nd-Fe-B).

The magnetic force is measured by a load cell (LSB302 of Futek Advanced Sensor Technology Inc.,
Irvine, CA, USA) with measuring range of −100.0–100.0 N and resolution of 0.1 N. Figure 4 shows the
experimental set-up, where the horizontal position of the test table can be adjusted manually to change
the air gap. For each fixed air gap, the generated magnetic forces will be measured with a variety of
given coil currents. Because of no iron core, no vertical force can be generated and only the normal
force (i.e., the radial force is this study) is measured. The air gap is measured by a laser displacement
sensor (LK-G35, Keyence, Osaka, Japan). The measurement results are shown in Figure 5. Three air
gaps, 1.5 mm, 2.0 mm and 2.5 mm, with coil currents from −2.0 to 2.0 A are taken. The results indicate
that for each hybrid magnetic unit, the magnetic force is linearly proportional to the coil current. In
other words, we have:

fh ≈ kh(s) i (1)

where s is the air gap, i is the coil current, and kh is a function of the air gap. The subscript “h” is
referred to hybrid magnetic force. Note that positive fh denotes repulsion force and negative fh denotes
attraction force. In this study, the function kh is approximated by a 4th degree of polynomial in the air
gap. In other words, there are five coefficients for the function, which can be obtained by least-square
curve fitting. The root mean squared error of the fitted curve is 0.13 N, and the corresponding R2 value
is 0.9997, indicating the excellent goodness of the fit. The results reveal different characteristic of the
force model from the conventional electromagnet, where the force is proportional to the square of coil
current and inversely proportianal to the square of air gap.
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A complete HMB is formed by eight sets of hybrid magnetic units described above, with slight
modification. In the experimental prototype, the hybrid magnetic units are arc-shaped in order to form
a circular shape. The winding scheme of the HMB is shown in Figure 6. The eight coil sets on the stator
(inner part) are grouped in four pairs. Two pairs of coil sets (apart by 180◦) are wired in a differential
way. As a result, there are two independent control currents in each HMB, controlling two DOFs in
a horizontal plane. As mentioned above, we have established the magnetic force model (1) for each
hybrid magnetic unit through experimental measurements. To obtain the magnetic force model for the
overall HMB, the eight arc-shaped hybrid magnetic units in Figure 6 are approximately modeled as
eight cuboid hybrid magnetic units, as shown in Figure 7. In other words, there are eight magnetic
forces distributed along the radial direction. These force functions are all in the form of Equation (1).
Although it is quite nonlinear in the air gap for each magnetic force, the resultant forces of the HMB
in both X and Y directions turn out to be independent of the air gap. In other words, the resultant
magnetic forces can be modeled as:

fhtx ≈
8

∑
i=1

fhticosφi ≈ k1 itx (2)

fhty ≈
8

∑
i=1

fhtisinφi ≈ k2 ity (3)

fhbx ≈
8

∑
i=1

fhbicosφi ≈ k3 ibx (4)

fhby ≈
8

∑
i=1

fhbisinφi ≈ k4 iby (5)

where the subscripts “t” and “b” denote top and bottom, respectively. That is, fhtx represents the
resultant magnetic force in the X direction at the top HMB that can be used for active control. Similar
definitions apply to other magnetic forces here and in the sequel. In addition, φi is angle between
the i-th hybrid magnetic unit and X-axis. In addition, itx, ity, ibx, iby are control currents and k1, k2, k3,
k4 are constants. The common differential winding scheme in AMB will provide a magnetic force as
function of displacement and current in a single linearized equation around the operating point. Note
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here that the magnetic forces generated by the HMB depend only on the control currents, not on the
rotor displacements because of the winding scheme and no iron core used in the HMB, so that, no
matter where the rotor position is, there is no interaction between rotor and stator as long as the coil
current is zero.Energies 2016, 9, 1051 8 of 19 

 

 
Figure 6. The winding scheme of HMB. 

 

Figure 7. An octagon structure with eight hybrid magnetic units. 

2.3. Passive Magnetic Bearing 

Next, the magnetic force model of PMB will be established. For the PMB, the magnetic forces are 
functions of the air gap and offset. To identify the force model, extensive measurements were 
conducted. Similar to the case of HMB, the measurements will be performed on a single passive 
magnetic unit. For the Halbach array, each permanent magnet block is of 5 mm × 5 mm × 30 mm (c = 
5 mm and d = 5 mm in Figure 3) with different polarity, and the material is bonded NdFeB magnet, 
which is made by mixing rare earth powder and resin, and is formed by compression. Figure 8 is the 
experimental set-up, where both the horizontal and vertical positions of the test table can be adjusted 
manually to change the air gap and offset, respectively. For each fixed air gap, both the normal and 
vertical magnetic forces will be measured with a variety of offsets. Both the air gap and offset will be 
measured by laser displacement sensors. Some of the measurement results for a single passive 
magnetic unit are presented in Figure 9, where the solid and blue lines represent the vertical forces, 
and the dashed and red lines are the radial forces. 

The radial and vertical magnetic forces generated by a single passive magnetic unit are assumed 
to be 5th degree of polynomial functions in the air gap and offset as: 

),( szkf prpr ≈ , ),( szkf pvpv ≈ , (6) 

Figure 6. The winding scheme of HMB.

Energies 2016, 9, 1051 8 of 19 

 

 
Figure 6. The winding scheme of HMB. 

 

Figure 7. An octagon structure with eight hybrid magnetic units. 

2.3. Passive Magnetic Bearing 

Next, the magnetic force model of PMB will be established. For the PMB, the magnetic forces are 
functions of the air gap and offset. To identify the force model, extensive measurements were 
conducted. Similar to the case of HMB, the measurements will be performed on a single passive 
magnetic unit. For the Halbach array, each permanent magnet block is of 5 mm × 5 mm × 30 mm (c = 
5 mm and d = 5 mm in Figure 3) with different polarity, and the material is bonded NdFeB magnet, 
which is made by mixing rare earth powder and resin, and is formed by compression. Figure 8 is the 
experimental set-up, where both the horizontal and vertical positions of the test table can be adjusted 
manually to change the air gap and offset, respectively. For each fixed air gap, both the normal and 
vertical magnetic forces will be measured with a variety of offsets. Both the air gap and offset will be 
measured by laser displacement sensors. Some of the measurement results for a single passive 
magnetic unit are presented in Figure 9, where the solid and blue lines represent the vertical forces, 
and the dashed and red lines are the radial forces. 

The radial and vertical magnetic forces generated by a single passive magnetic unit are assumed 
to be 5th degree of polynomial functions in the air gap and offset as: 

),( szkf prpr ≈ , ),( szkf pvpv ≈ , (6) 

Figure 7. An octagon structure with eight hybrid magnetic units.

2.3. Passive Magnetic Bearing

Next, the magnetic force model of PMB will be established. For the PMB, the magnetic forces
are functions of the air gap and offset. To identify the force model, extensive measurements were
conducted. Similar to the case of HMB, the measurements will be performed on a single passive
magnetic unit. For the Halbach array, each permanent magnet block is of 5 mm × 5 mm × 30 mm
(c = 5 mm and d = 5 mm in Figure 3) with different polarity, and the material is bonded NdFeB magnet,
which is made by mixing rare earth powder and resin, and is formed by compression. Figure 8 is the
experimental set-up, where both the horizontal and vertical positions of the test table can be adjusted
manually to change the air gap and offset, respectively. For each fixed air gap, both the normal and
vertical magnetic forces will be measured with a variety of offsets. Both the air gap and offset will
be measured by laser displacement sensors. Some of the measurement results for a single passive
magnetic unit are presented in Figure 9, where the solid and blue lines represent the vertical forces,
and the dashed and red lines are the radial forces.

The radial and vertical magnetic forces generated by a single passive magnetic unit are assumed
to be 5th degree of polynomial functions in the air gap and offset as:

fpr ≈ kpr(z, s), fpv ≈ kpv(z, s), (6)
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where z is offset, and the subscript “p” denotes passive and subscript “r” and “v” denotes radial and
vertical, respectively. In other words, there are 21 coefficients for each function. From the experimental
data, one can determine the coefficients by the least square curve fitting. The root mean squared errors
of the fitted curves are 0.64 N and 0.87 N for vertical and radial forces, respectively. The corresponding
R2 values for the fitted vertical and radial force functions are 0.9915 and 0.9819, respectively. Again,
the results indicate the excellent goodness of the fit.
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A complete PMB is formed by 16 sets of passive magnetic units described above, as shown in
Figure 10. These functions are all in the form of Equation (6). The resulting magnetic forces of two
PMB on vertical direction for three different air gaps are shown in Figure 11. The main function of
PMB is to support the rotor weight, which will be achieved by the integrated vertical force. Note that
the rotor weight (about 204 N) is also indicated in Figure 11. From Figure 11, the operation point must
be located at a position offset so that the vertical force can balance the rotor weight. In the experimental
prototype, the nominal air gap is designed to be s = 3.8 mm; hence, the offset of z = 3.4 mm should
be taken. Moreover, at this operation point, the axial motion is passively stabilized with stiffness of
84.22 KN/m.
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In addition to supporting the rotor weight, the vertical force will also induce moments to the
rotor when the rotor is not at the center position. This will cause undesirable tilting rotation motion,
and needs to be compensated by the HMB. To this aim, it is desired to express the force model as a
function of rotor displacements at the location of HMB. Let xt, xb, yt and yb be the rotor displacements
at the location of HMB. Let the moments caused by the vertical force of top HMB and bottom HMB be
denoted by Mvx and Mvy. They are contributed from the 16 sets of passive magnetic units shown in
Figure 10. Although the vertical force of each passive magnetic unit is quite nonlinear, the integrated
moments Mvx and Mvy can be modeled as linear functions of the rotor displacements at the location of
HMB, and it can expressed as:

Mvx ≈
16

∑
i=1

[
fpvti(z, sti) l̂ti(sti) + fpvbi(z, sbi) l̂bi(sbi)

]
sinθi ≈ −kmytyt − kmybyb, (7)

Mvy ≈ −
16

∑
i=1

[
fpvti(z, sti) l̂ti(sti) + fpvbi(z, sbi) l̂bi(sbi)

]
cosθi ≈ kmxtxt + kmxbxb, (8)

where fpvti(z, sti) denotes the passive vertical magnetic force at the top location contributed from the
ith unit, l̂ti(sti) is distance between the force and the rotor’s mass center on plane of top PMB, and sti is
the air gap at the top location of the ith unit, which is a function of xt, xb, yt, and yb. Similar definitions
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apply to other magnetic forces here and in the sequel. In addition, θi represents the angle between the
ith passive magnetic unit and X-axis on X-Y plane as shown in Figure 10.

Note that there are 16 magnetic forces distributed along the circumference as shown in Figure 12.
The radial forces generated by the PMB are also undesirable, and are to be compensated by the HMB.
For a given offset (at the operation point), the radial force is a function of the air gap, which is in turn
a function of the rotor displacement xt, xb, yt and yb. From Equation (6), one can see that although
radial force is quite nonlinear in the air gap for each magnetic unit, the integrated forces of the PMB in
both X and Y directions can be modeled as linear functions of the rotor displacements at the location
of HMB. In other words, the resultant radial magnetic forces can be modeled as:

fptx ≈
16

∑
i=1

fprticos(θi) ≈ k5 xt + k6 xb, (9)

fpty ≈
16

∑
i=1

fprtisin(θi) ≈ k7 yt + k8 yb, (10)

fpbx ≈
16

∑
i=1

fprbicos(θi) ≈ k9 xt + k10 xb, (11)

fpby ≈
16

∑
i=1

fprbisin(θi) ≈ k11 yt + k12 yb, (12)

where k5, k6, k7, k8, k9, k10, k11 and k12 are constants.

Energies 2016, 9, 1051 11 of 19 

 

Similar definitions apply to other magnetic forces here and in the sequel. In addition, θi  represents 
the angle between the ith passive magnetic unit and X-axis on X-Y plane as shown in Figure 10. 

Note that there are 16 magnetic forces distributed along the circumference as shown in Figure 12. 
The radial forces generated by the PMB are also undesirable, and are to be compensated by the HMB. 
For a given offset (at the operation point), the radial force is a function of the air gap, which is in turn 
a function of the rotor displacement tx , bx , ty  and by . From Equation (6), one can see that 
although radial force is quite nonlinear in the air gap for each magnetic unit, the integrated forces of 
the PMB in both X and Y directions can be modeled as linear functions of the rotor displacements at 
the location of HMB. In other words, the resultant radial magnetic forces can be modeled as: 

16

5 6
1

cos(θ )ptx prti i t b
i

f f k x k x
=

≈ ≈ + , (9) 

16

7 8
1

sin(θ )pty prti i t b
i

f f k y k y
=

≈ ≈ + , (10) 

16

9 10
1

cos(θ )pbx prbi i t b
i

f f k x k x
=

≈ ≈ + , (11) 

16

11 12
1

sin(θ )pby prbi i t b
i

f f k y k y
=

≈ ≈ + , (12) 

where 5k , 6k , 7k , 8k , 9k , 10k , 11k  and 12k  are constants. 

 
Figure 12. A top-view on PMB and the radial force for 16 sets of passive magnetic units. 

2.4. Governing Equation 

With the magnetic force model, we can now establish the equations of motion for the overall 
FESS. As mentioned previously, this study focuses on the magnetic force modeling and stable 
levitation of magnetic bearing, and only the case without rotation is considered. Since the motion in 
the Z-direction is passively stabilized with high stiffness, it is assumed that the rotor displacements 
in the Z-direction are very small and only the dynamics of four DOFs are considered. By Newton’s 
law, one can easily obtain the equations of motion as: 

bt

tbbt
x ll

xlxl
mF

+
+

=
 , (13) 

Figure 12. A top-view on PMB and the radial force for 16 sets of passive magnetic units.

2.4. Governing Equation

With the magnetic force model, we can now establish the equations of motion for the overall FESS.
As mentioned previously, this study focuses on the magnetic force modeling and stable levitation of
magnetic bearing, and only the case without rotation is considered. Since the motion in the Z-direction
is passively stabilized with high stiffness, it is assumed that the rotor displacements in the Z-direction
are very small and only the dynamics of four DOFs are considered. By Newton’s law, one can easily
obtain the equations of motion as:

∑ Fx = m
lt

..
xb + lb

..
xt

lt + lb
, (13)
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∑ Fy = m
lt

..
yb + lb

..
yt

lt + lb
, (14)

∑ Mx = Jt

..
yb −

..
yt

lb + lt
, (15)

∑ My = Jt

..
xt −

..
xb

lb + lt
, (16)

and,

∑ Fx = k1 itx + k3 ibx + k13 xt + k14 xb, (17)

∑ Fy = k2 ity + k4 iby + k15 yt + k16 yb, (18)

∑ Mx = k4 iby lb − k2 ity lt + k17 yt + k18 yb, (19)

∑ My = k1 itx lt − k3 ibx lb + k19 xt + k20 xb, (20)

k13 = k5 + k9, k14 = k6 + k10, (21)

k15 = k7 + k11, k16 = k8 + k12, (22)

k17 = k11 lbp − k7 ltp − kmyt, k18 = k12 lbp − k8 ltp − kmyb, (23)

k19 = k5 ltp − k9 lbp + kmxt, k20 = k6 ltp − k10 lbp + kmxb, (24)

where the superscript “·” denotes differentiation with respect to time. Note that lb and lt are nominal
distances from mass center to the bottom and top HMB, respectively; lbp and ltp are nominal distances
from mass center to the bottom and top PMB, respectively; and m is the rotor mass. In addition, the
cross-section radial mass moment of inertia is denoted as Jt. From Equations (13)–(16), it is obvious
that HMB requires no bias current theoretically if the rotor is stabilized at the center position (i.e.,
xt = 0, xb = 0, yt = 0, yb = 0).

3. Controller Design

3.1. State Space Model

To verify the magnetic force models established in the previous section, a stabilizing controller
will be designed in this section based on the obtained force models. Without rotation as assumed in
this work, the FESS is of five DOFs. The axial motion will be passively stabilized by the PMB and
its dynamics are decoupled from the radial motions. Hence, only the four DOFs radial motion are
considered here. From equations of motion given by Equations (13)–(24), the state space model of the
overall system can be expressed as:

.
x = Ax + Bu =

[
0 I

A1 0

]
x +

[
0

B1

]
u, (25)

where x =
[

xb yb xt yt
.
xb

.
yb

.
xt

.
yt

]
T is the state vector, u =

[
ibx iby itx ity

]
T is the

control current, and,

A1 =


− k20lb

Jt
+ k14

m 0 − k19lb
Jt

+ k13
m 0

0 k18lb
Jt

+ k16
m 0 k17lb

Jt
+ k15

m
k20lt

Jt
+ k14

m 0 k19lt
Jt

+ k13
m 0

0 − k18lt
Jt

+ k16
m 0 − k17lt

Jt
+ k15

m

, (26)



Energies 2016, 9, 1051 13 of 19

B1 =



k3

(
1
m +

l2
b
Jt

)
0 k1

(
1
m − lb lt

Jt

)
0

0 k4

(
1
m +

l2
b
Jt

)
0 k2

(
1
m − lb lt

Jt

)
k3

(
1
m − lb lt

Jt

)
0 k1

(
1
m +

l2
t
Jt

)
0

0 k4

(
1
m − lb lt

Jt

)
0 k2

(
1
m +

l2
t
Jt

)


. (27)

3.2. Integral Sliding Mode Control

The mathematical model is based on the approximated force models. There may exist uncertainty
in the dynamic model. Thus, it is assumed that the real system model is a nominal model plus a
bounded uncertain part. Hence, a robust controller is preferred for practical implementation. In this
paper, an integral sliding mode controller will be designed to allow for large uncertainties and to
achieve good steady-state accuracy. To facilitate the controller design, the system’s dynamic model is
rewritten in the regular form as:

.
η = ξ, (28)

.
ξ = GAx + B1u + ∆(x, u), (29)

and η =
[

x1 x2 x3 x4

]T
, ξ =

[
x5 x6 x7 x8

]T
. Moreover, ∆(x, u) represents the

uncertainty, and,
GA =

[
A1 0

]
. (30)

The ISMC takes an integral sliding variable as:

σ = ξ + b1η+ b2z, (31)

and z =
∫
ηdt. Here, b1 and b2 are positive constants. If the system state is on the sliding manifold

σ = 0 and can be maintained on the manifold (
.
σ = 0), the system dynamics will be like:

..
η+ b1

.
η+ b2η = 0, (32)

implying that the system state η and ξ will approach zero asymptotically.
The ISMC consists of an equivalent control ueq and a switching control us. The equivalent control

is to maintain the system state on the sliding manifold once it is there, assuming no uncertainty.
The switching control is to bring the system state to the sliding manifold in finite time, with the
presence of uncertainty. Following the standard design procedure [26], one can get:

u = ueq + us, (33)

where:
ueq = B−1

1 (−GAx − b1ξ − b2η), (34)

us = − kcB−1
1 tanh(σ, ε), (35)

tanh(σ, ε) =
[

tanh(σ1
ε ) tanh(σ2

ε ) tanh(σ3
ε ) tanh(σ4

ε )
]T

(36)

From Equation (27), it is easy to see that B1 is invertible. Here, the smooth type switching function
tanh(σ, ε) is used, σi are the components of the sliding variable σ, and kc and ε are positive constants.

4. Experimental Results

A prototype of FESS has been manufactured to verify the magnetic force models established in
Section 2 and the levatation controller designed in Section 3. The fabrication and magnetization of the
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ring-type Halbach array magnet is very difficult since it is thin (5 mm). As described in Section 3, the
PMB and the rotor of HMB are composed of segmented arc-shaped permanent magnets.

Figure 13 is the stator and Figure 14 is the rotor of HMB and PMB. The assembled FESS protytpe
is shown in Figure 15. Most of the system is made of aluminum alloy. The rotor is coated with copper
for better look. After all of the parts are assembled together, it is easy to find that the lowest part does
not touch the back-up bearing on the bottom, showing the successful levitation of the PMB. The system
parameters are listed in Table 1, and the parameters of the magnetic bearings are listed in Table 2. With
this FESS prototype, the parameters in the magnetic force models are collected in Table 3.
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Table 1. Parameters of proposed FESS prototype. 

Symbol Quantity Value 
m mass of rotor 20.76 kg 
Jt cross-section radial mass moments of inertia 0.1720 kg·m2 

Jp polar mass moments of inertia 0.1793 kg·m2 
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Table 1. Parameters of proposed FESS prototype.

Symbol Quantity Value

m mass of rotor 20.76 kg
Jt cross-section radial mass moments of inertia 0.1720 kg·m2

Jp polar mass moments of inertia 0.1793 kg·m2

lb nominal distances from mass center to the bottom HMB 92.97 mm
lt nominal distances from mass center to the top HMB 93.03 mm
lbp nominal distances from mass center to the bottom and top PMB 42.12 mm
ltp nominal distances from mass center to the bottom and top PMB 41.88 mm

Table 2. Parameters of HMB and PMB.

Symbol Quantity Value

l0a nominal air gap of HMB 2.0 mm
l0p nominal air gap of PMB 3.8 mm
z0 nominal offset of PMB 3.4 mm
N number of coil turns 350
a width of permanent magnet for HMB 8.00 mm
b height of permanent magnet for HMB 8.00 mm
c width of permanent magnet for PMB 5.00 mm
d height of permanent magnet for PMB 5.00 mm

Table 3. Parameters of approximate magnetic force.

Symbol Quantity Value

k1, k2, k3, k4 coefficients of AMB 6.8467 N/A
k5, k7 coefficients of PMB 14,787 N/m
k6, k8 coefficients of PMB 5494 N/m
k9, k11 coefficients of PMB 5460 N/m
k10, k12 coefficients of PMB 14,819 N/m

kmxb, kmyb coefficients of moments by PMB 601.18 N
kmxt, kmyt coefficients of moments by PMB 599.25 N

The PID controller cannot work due to the uncertainties of force model, which has been verified in
numerical simulations. The robustness of ISMC controller is essential in this experiment. Table 4 shows
the parameters of the ISMC controller. They are obtained on a trial and error basis using numerical
simulations carried out by MATLAB/Simulink (https://www.mathworks.com/products/simulink.
html). These controller parameters will also be adopted for the closed-loop experiments without
motor. For real-time implementation, the control algorithm is downloaded into dSpace’s control card
(DS1103, Paderborn, Germany). The pulse-width modulation type power amplifier is utilized to
produce appropriate control currents to the coil sets of HMB. Please refer to Figure 16 for experimental
set-up. The rotor displacements are measured with eddy current sensors. The position sensors are
placed on the horizontal planes passing through the top and bottom HMBs. The measurements of
position sensors are used to calculate the rotor position—the displacement of the geometric center of
the cylindrical, ring-type rotor. The control objective is to drive the rotor position to coincide with the
geometric center of the stator.
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Table 4. Parameters of integral sliding mode controller.

Symbol Quantity Value

b1 parameter of equivalent control 30.00
b2 parameter of equivalent control 55.00
kc parameter of switching control 56.66
ε parameter of switching control 0.50
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Figures 17–19 show the experimental results, i.e., the rotor trajectory, displacements xt, xb, yt, and
yb and control currents itx, ity, ibx, and iby. The dashed red curve in Figure 17 represents the allowable
range of the rotor displacements formed by the back-up bearing. The experimental results indicate that
the rotor can be stabilized to the bearing center with settling time around 0.72–1.06 s and 20.8%–38.9%
overshoot for two HMB, respectively. The steady state errors are all less than 1 µm, approaching the
resolution of the position sensors. The results show the good performance of the levitation controller,
and clearly verify the accuracy of the magnetic force models.
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Figure 18. Experimental results: (a) displacement yb and yb; and (b) displacement xt and yt.
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Figure 19. Experimental results: (a) control currents ibx and iby; and (b) control currents itx and ity.

Finally, Figure 19 shows the control currents, which are all less than 0.5 A at the steady state.
Theoretically, the steady state control currents should be zero since the rotor is at the bearing center.
The nonzero currents here could be due to the non-uniform air gaps between rotor and stator. Such
non-uniform air gap can be a result of the manufacturing and assembly errors. The nonzero steady
state currents account for only 2.2 W of energy consumption. Compared to the rated power 500 W
of the FESS, the energy loss is low and acceptable. In practical applications, it is expected that more
accuracy of manufacturing and assembly can be achieved. Thus, the steady state currents can be
reduced and hence the energy consumption loss can be further reduced. Compare to the conventional
AMB, the experimental results reveal that the low energy consumption HMB is promising in the field
of FESS.

5. Conclusions

In this study, the magnetic force models of HMB and PMB in a FESS have been established.
Both HMB and PMB contain permanent magnet rings in Halbach array arrangement. It is found that
the ring-type configuration and the differential winding scheme for coil sets can effectively simplify
the magnetic force models. In particular, for HMB, no vertical force will be generated, and the radial
magnetic force is linearly proportional to the coil current and is independent of the air gap. For PMB,
both vertical and radial forces will be generated. An operation point of offset and air gap can be
determined based on the vertical force model. The radial magnetic force and the moments by the
vertical magnetic force can be modeled as linear functions of the rotor displacements. The parameters of
the magnetic force models are identified by extensive measurements. To verify the results, a stabilizing
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levitation controller is designed based on the obtained magnetic force models. For robustness, an
ISMC controller is designed. The experimental results show that the rotor can be stabilized to the
bearing center, confirming the accuracy of the magnetic force model. The robustness of suppressing
the external disturbances and model uncertainties, such as assembly errors, manufacturing errors,
mass unbalance and sensor noise, at a constant rotor speed will be the further work.
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