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Abstract: Because of the slow dynamic behavior of the large-inertia wind turbine rotor, variable-speed
wind turbines (VSWTs) are actually unable to keep operating at the design tip speed ratio (TSR)
during the maximum power point tracking (MPPT) process. Moreover, it has been pointed out that
although a larger design TSR can increase the maximum power coefficient, it also greatly prolongs the
MPPT process of VSWTs. Consequently, turbines spend more time operating at the off-design TSRs
and the wind energy capture efficiency is decreased. Therefore, in the inverse aerodynamic design of
VSWTs, the static aerodynamic performance (i.e., the maximum power coefficient) and the dynamic
process of MPPT should be comprehensively modeled for determining an appropriate design TSR.
In this paper, based on the inverse design method, an aerodynamic optimization method for VSWTs,
fully considering the impacts of the design TSR on the static and dynamic behavior of wind turbines
is proposed. In this method, to achieve higher wind energy production, the design TSR, chord length
and twist angle are jointly optimized, which is structurally different from the conventional separated
design procedure. Finally, the effectiveness of the proposed method is validated by simulation results
based on the Bladed software.

Keywords: aerodynamic optimization; design tip speed ratio (TSR); maximum power point tracking
(MPPT); inverse design; variable-speed wind turbine (VSWT)

1. Introduction

Wind energy has been receiving increasing attention as one of the most exploitable renewable
energy sources. The efficiency of wind energy conversion is mainly dependent on the aerodynamic
shape of the wind turbine rotor [1], an essential component of a wind turbine for harvesting wind
energy. Therefore, the aerodynamic optimization of wind turbine rotors plays a crucial role in the
design of wind turbines. Generally, the current aerodynamic design for wind turbines is divided into
two major categories: the direct method [2–10] and the inverse method [11–17]. As compared with the
former, the latter is distinguished by its clear principle, analytical process and fast convergence. In the
inverse method, some basic design parameters (e.g., design tip speed ratio, blade number, blade radius,
hub radius and airfoil distribution) and the desired aerodynamic characteristic (e.g., peak power,
rated wind speed and lift coefficient distribution) are firstly specified. Then, the aerodynamic shape
parameters (e.g., the blade chord and twist distributions) are directly obtained via analytical calculation.
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Variable-speed wind turbines (VSWTs) have become the mainstream of large-scale wind power
generation systems in recent years [18,19]. They mostly operate in the variable-speed region [20],
which corresponds to the wind speed range from the cut-in to the rated speed. In this region, the
maximum power point tracking (MPPT) control is employed to regulate rotor speed according to wind
speed variation so that the VSWT can be maintained at the design tip speed ratio (TSR) λdgn (also
called the optimal TSR λopt) [21]. Therefore, in the conventional inverse methods for the aerodynamic
optimization of VSWTs, such as the Glauert method [11], the Wilson method [12] and others [13–17]
based on the blade element momentum (BEM) theory, the primary objective is to maximize the power
coefficient at a specified λdgn.

As one of the basic parameters in the inverse methods for the aerodynamic optimization of
VSWTs, λdgn exerts a considerable influence upon the aerodynamic shape of rotors [22,23], including
the radial chord and twist distributions. To obtain an appropriate λdgn, the functional relation between
λdgn and the maximum power coefficient Cp,max, which is regarded as a type of the turbines’ static
aerodynamic performance, has been discussed in References [24–27]. According to this relation,
the λdgn corresponding to the maximum value of Cp,max is selected and then the chord and twist
distributions are optimized based on this λdgn by an inverse method in Reference [13].

Obviously, in the aforementioned inverse methods, λdgn is determined only based on the static
aerodynamic performance, and the impact of λdgn on the dynamic process of MPPT is usually neglected.
This may result in a considerable reduction in VSWTs’ efficiency, as interpreted below:

(1) The wind energy capture efficiency, as a closed-loop performance of VSWTs, is actually dependent
on not only the static aerodynamic performance but also the MPPT dynamics. It has been
pointed out in References [10,28–31] that turbines with large inertia usually track λdgn rather than
maintaining at λdgn. Moreover, the longer the dynamic process lasts, the lower the wind energy
capture efficiency is. Especially for the VSWTs designed for low wind speed regions, larger
inertia of the wind turbine rotor and weaker aerodynamic torque result in a slower dynamic
behavior and a longer dynamic process of MPPT. Therefore, the dynamic process of MPPT and
its effect on the wind energy production should be carefully modeled, especially for the low wind
speed VSWTs.

(2) Besides Cp,max, λdgn also has an effect on the dynamic process of MPPT. With the decrease
(increase) of λdgn, the MPPT process is shortened (lengthened) and correspondingly the wind
energy capture efficiency is increased (decreased) [32].

(3) To sum up, λdgn exerts a comprehensive influence upon the wind energy capture efficiency
through the static aerodynamic performance and the MPPT dynamics. If a larger λdgn is
conventionally applied just for improving the static aerodynamic performance (i.e., Cp,max),
the turbine has to spend more time operating at the off-design TSRs due to the prolonged
dynamic process of MPPT and eventually the overall efficiency of the closed-loop VSWT system
is reduced.

Therefore, in the inverse aerodynamic design of VSWT rotors, the static aerodynamic performance
and the dynamic process of MPPT should be compromised for determining an appropriate λdgn. In this
paper, based on the inverse design program PROPID [33,34] for the aerodynamic optimization of
VSWTs, an inverse method fully considering the impact of λdgn on the static and dynamic behavior of
turbines is proposed. Compared to the existing separated design procedure, λdgn, chord length and
twist angle are jointly optimized to maximize the closed-loop performance of VSWTs (i.e., wind energy
capture efficiency) in this method. Finally, the proposed method is verified by the simulation results
based on the commercial software Bladed [35,36].

2. Problem Description

Actually, the wind energy capture efficiency, as a closed-loop performance of VSWTs, is collectively
determined by the static aerodynamic performance as well as the MPPT dynamics. Although a larger
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design TSR can contribute to better static aerodynamic performance (i.e., higher Cp,max), it also greatly
increases the duration of the dynamic process of MPPT so that the overall efficiency of the closed-loop
VSWT system can be reduced. However, this comprehensive impact of λdgn on wind energy capture
efficiency through static aerodynamic performance and MPPT dynamics is usually ignored by the
conventional aerodynamic design of VSWTs in the literature.

2.1. Relationship between λdgn and Cp,max

For single-airfoil wind turbine rotors, the relationship between λdgn and Cp,max characterized
by a parabolic function has been derived in References [24–26]. Furthermore, for multi-airfoil wind
turbine rotors, which are generally implemented in practical VSWTs, the 1.5 MW wind partnership
for advanced component technologies (WindPACT) turbine [37] developed by the national renewable
energy laboratory (NREL), is chosen for analyzing the relation of Cp,max with λdgn. Specifically, keeping
the original blade radius, hub radius and airfoils unchanged, the PROPID code [33,34] is applied
to design the aerodynamic shape of the WindPACT turbine according to the different λdgn, which
ranges from 5.0 to 10.0 with a step size of 0.5. Then, Cp,max of the redesigned wind turbine rotors
corresponding to an array of λdgn are respectively calculated by the software Bladed.

As shown in Figure 1, the variation of Cp,max versus λdgn also exhibits a parabolic shape and the
maximum value of Cp,max occurs at λdgn = 8.5. Therefore, λdgn corresponding to the maximum value
of Cp,max is selected in the existing inverse methods [11–15].
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Figure 1. The variation of Cp,max versus λdgn obtained from simulations on the WindPACT turbine.

2.2. The Impact of λdgn on the Maximum Power Point Tracking (MPPT) Process

Besides the aforementioned Cp,max, it has been shown from the viewpoint of a closed-loop model
of VSWTs that λdgn has a significant impact on the dynamic process of MPPT [32].

2.2.1. A Closed-Loop Model of Variable-Speed Wind Turbines (VSWTs)

As shown in Figure 2, a closed-loop model of VSWTs consists of turbulent wind, a wind turbine
rotor, a drive train, a generator and a MPPT controller. Note that because the electromagnetic response
is much faster than the mechanical one, the converter can be neglected and the generator is assumed
to instantly follow the torque reference requested by the MPPT controller [30].
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Figure 2. A closed-loop model of variable-speed wind turbines (VSWTs).

In this paper, the commercial software Bladed [35,36] is employed to conduct the time-domain
dynamic simulation of the closed-loop model. This software has passed the Germanischer Lloyd’s
certification and has been widely applied for wind turbine design, analysis and validation.

The aerodynamic model used within Bladed is based on the BEM theory. To sufficiently reproduce
the dynamics of rotor wake and induced velocity flow field (i.e., the vorticity trailed into the rotor
wake is influenced by the change in blade loading and the time for the change of the induced flow
field is finite), the dynamic inflow model [35] is selected.

The commonly-used control strategy for MPPT, known as the optimal torque (OT) control [38], is
employed. To track maximum power point, the OT control regulates the generator torque according to
the measured rotor speed and a predefined torque versus rotor speed curve that is expressed as:

Te = Koptω
2, Kopt = 0.5ρπR5Cp,max/λ3

opt, (1)

whereω is the rotor speed, ρ is the air density, R is the blade length and λopt is equal to λdgn.

2.2.2. The Impact of λdgn on the MPPT Process

The optimal rotor speedωopt for MPPT is defined as

ωopt = λdgnv/R (2)

where v is the wind speed. The tracking range of rotor speed, defined as the difference of ωopt

corresponding to wind speed variation, is proportionally related to λdgn. Obviously, λdgn exerts a
direct influence upon the dynamic process of MPPT.

To illustrate the impact of λdgn on the MPPT process, simulations on the redesigned WindPACT
turbines with two different λdgn (i.e., 5.5 and 8.5) excited by a step variation of wind speed are
conducted by the Bladed software. The simulation results are compared in Figure 3 and Table 1,
respectively. It can be seen that as λdgn increases, the tracking range of rotor speed is widened, which
results in a longer dynamic process of MPPT. Correspondingly, the rotor spends more time operating
at the off-design TSRs.
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Figure 3. Trajectories of the wind turbines with different λdgn excited by a same step wind speed.

Table 1. Response of the wind turbines with different λdgn excited by a same step wind speed.

λdgn 5.5 8.5

Tracking range (rpm) 0.7517 1.1535
Tacking time (s) 66.8 100.0

Furthermore, for a given turbulent wind (mean wind speed is 6.5 m/s and the turbulence class is
A [39]), the probability distributions of operational TSR corresponding to an array of λdgn (from 5.0
to 10.0) are obtained by the dynamic simulations and plotted in Figure 4. It also can be observed that
the larger the λdgn, the smaller the probability of operational TSR around λdgn, namely, the more time
the turbine will take to operate at the off-design TSRs.
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Figure 4. The probability distribution of operational tip speed ratio (TSR) corresponding to an array
of λdgn.

2.3. The Comprehensive Impact of λdgn on Wind Energy Capture Efficiency via Cp,max and the MPPT Process

Because off-design TSRs correspond to the power coefficients less than Cp,max, running at such
TSRs results in tracking losses [28–31]. It is inferred that if a turbine operates at off-design TSRs for
a long duration due to the increasing of λdgn, its MPPT efficiency is inevitably reduced. Therefore,
by combining the discussion mentioned in Sections 2.1 and 2.2, λdgn actually exerts a comprehensive
impact on the wind energy production of VSWTs through static aerodynamic performance and MPPT
dynamics. That is to say, although a relatively large λdgn yielding the maximum value of Cp,max can
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contribute to improving the wind energy capture efficiency, the overall efficiency is probably reduced
due to the long-duration dynamic process of MPPT.

To demonstrate such a comprehensive impact of λdgn on wind energy capture efficiency, the
relationship between the efficiency and λdgn is obtained via the Bladed-based simulation on the
WindPACT turbine. Note that the wind energy capture efficiency Pfavg [20] is in fact a closed-loop
performance indicator of VSWTs operating under turbulent wind. Its expression and calculation are
provided in Section 3.1. As depicted in Figure 5, Pfavg first increases and then decreases with λdgn.
This indicates that with the increase of λdgn, the prolonged MPPT process rather than the raised Cp,max

gradually plays a dominant role in the MPPT performance.
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Hence, there is a tradeoff, which can be optimized by λdgn, between the static aerodynamic
performance (i.e., increasing Cp,max) and the dynamic process of MPPT (i.e., reducing the tracking
range of rotor speed). They should be simultaneously considered in determining λdgn so that the wind
energy capture efficiency can be eventually improved.

3. Aerodynamic Optimization Considering the Comprehensive Impact of λdgn

Based on the inverse design method, this paper proposes a new method for the aerodynamic
optimization of VSWTs. Different from the separated procedure applied in the conventional methods,
the design TSR and the distributions of chord and twist are jointly optimized for maximizing the wind
energy capture efficiency in the proposed method so that the effect of λdgn on both Cp,max and the MPPT
process can be integrally considered. Essentially, the new method aims to improve the closed-loop
performance of VSWTs through the coordination between the static aerodynamic performance and the
MPPT dynamics.

3.1. Wind Energy Capture Efficiency

The wind energy capture efficiency is approximated as the ratio of the captured power to the
available wind power Pfavg [20], i.e.,

Pfavg = 1
N

N
∑

i=1
Pi

cap/ 1
N

N
∑

i=1
Pi

inflow

Pi
cap = Te,iωe,i + Jωi

.
ωi

Pi
inflow = 0.5ρπR2v3

i

(3)

where N is the total of the simulation steps, J is the rotor inertia, vi, Pi
cap, Pi

inflow,ωi, Te,i andωe,i are the
wind speed, captured wind power, inflow wind power, rotor speed, generator torque and generator
speed at the i-th step, respectively.
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Before calculating Pfavg according to the Equation (3), the dynamic simulation on the closed-loop
model of VSWTs is conducted for a given turbulent wind. The detailed procedure for calculating Pfavg
is described as follows:

Step 1 Model the concerning wind turbine in the Bladed software, including wind turbine rotor, drive
train, tower, and etc.
Step 2 Call the aerodynamic analysis module provided by the Bladed software to calculate the rotor’s
optimal TSR λopt and the corresponding maximum power coefficient Cp,max.
Step 3 Configure the parameters of the MPPT controller by the Equation (1).
Step 4 Perform the dynamic simulation module in the Bladed software with the given turbulent wind
and obtain the simulated trajectories of the wind turbine.
Step 5 Calculate Pfavg according to the Equation (3) based on the simulated trajectories.

3.2. Joint Aerodynamic Optimization Based on the Inverse Design

The schematic diagrams of the conventional inverse design and the joint aerodynamic
optimization proposed in this paper are illustrated in Figure 6. In the former method, as shown
in Figure 6a, λdgn is first determined according to the relationship between λdgn and Cp,max, then
the aerodynamic shape is derived through analytical calculation for the specified λdgn and other
basic parameters (e.g., hub radius, rotor radius and airfoil distribution). Obviously, λdgn and the
aerodynamic shape are separately obtained and the comprehensive effect of λdgn on the wind energy
capture efficiency cannot be considered. To overcome this disadvantage, this paper proposes a new
aerodynamic optimization method based on the inverse design. In this method, as represented in
Figure 6b, by introducing Pfavg as a performance indicator, λdgn and the aerodynamic shape are jointly
optimized so that the static aerodynamic performance and the MPPT dynamics, which are dependent
on λdgn, are coordinated.
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Specifically, in the proposed method, the PROPID code [32,33] is employed for inverse
aerodynamic design; Pfavg is calculated based on the Bladed-based dynamic simulation; the interval
quartering algorithm [40] is adopted to search the aerodynamic design with maximum Pfavg from a
number of trial λdgn. The flowchart of the joint aerodynamic optimization for VSWTs is shown in
Figure 7 and the detailed procedure is described as follows:
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Step 1 Initialization.

Step 1.1 Initialize the aerodynamic parameters according to the baseline wind turbine, including
blade number B, blade length R, rotor hub radius Rhub, airfoils and original distributions of chord
and twist. B, R, Rhub and airfoils (including the relative thickness) remain unchanged during the
optimization procedure.
Step 1.2 Initialize the PROPID code with B, R, Rhub, airfoils and original distributions of chord
and twist determined in Step 1.1.
Step 1.3 Considering the constraints of material cost and noise, λdgn usually ranges from 5.0 to
9.0 [22,23]. Thus, set the search interval of λdgn as [5.0, 9.0] in this paper.

Step 2 Divide the search interval equally into four connected subintervals and generate three
independent boundaries of all the subintervals.
Step 3 Choose one of the boundaries as a trial λdgn.

Step 4 Call the PROPID code to perform the inverse design for the chosen λdgn and obtain the
aerodynamic shape parameters.

Step 4.1 Specify the distributions of lift coefficient and axial induction factor. It is assumed that
the lift coefficient distributes around the maximum lift-to-drag ratio of airfoils along the blade
span, as listed in Appendix A, and the axial induction factor of each blade section is 0.333, except
the sections near the blade root [33].
Step 4.2 Run the PROPID code to derive the distributions of chord and twist corresponding to
the chosen λdgn. Thus, a newly designed wind turbine with the λdgn chosen at Step 3 is obtained.

Step 5 Calculate Pfavg for the newly designed turbine according to the procedure presented in
Section 3.1.
Step 6 Check whether all the three boundaries are chosen. If yes, go to Step 7; otherwise, return to
Step 3.
Step 7 Check whether the length of the subinterval is less than a termination threshold (which is
determined as 0.1 in this paper by comprehensively considering the optimization result and the
manufacturing precision of wind turbine blades). If yes, go to Step 8; otherwise, define the two
adjacent subintervals sharing the boundary corresponding to the maximum Pfavg as the new search
interval, and then go to Step 2.
Step 8 Output the jointly optimized wind turbine rotor corresponding to the maximum Pfavg.
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Note that performing the inverse design by PROPID code, as a step of the whole optimization
procedure, just aims to obtain the blade shape corresponding to a candidate λdgn. Then, Pfavg for
each candidate rotor obtained by the Bladed-based dynamic simulation can reflect the flow dynamics
predicted by the aeroelastic code. Moreover, the maximum Pfavg corresponds to an appropriate
coordination between the static aerodynamic performance and MPPT dynamics.

4. Simulation Results

The inverse design method and the proposed one are respectively applied to optimize the
aerodynamic shape of the baseline rotor. Comparison and analysis are conducted to verify the
effectiveness of the joint optimization.

4.1. Baseline Wind Turbine and the Parameters of Turbulent Wind

The 1.5 MW WindPACT turbine [37] is chosen as the baseline and its blade geometry is listed in
Table 2.

Table 2. Geometry of the NREL 1.5 MW wind turbine blade.

Element Position (m) Chord (m) Twist (◦) Airfoil

1 1.75 1.95 11.10
cylinder2 2.86 1.95 11.10

3 5.08 2.27 11.10

4 7.30 2.59 11.10

s818
5 9.51 2.74 10.41
6 11.73 2.58 8.38
7 13.95 2.41 6.35
8 16.16 2.25 4.33

9 18.38 2.08 2.85

s825

10 20.60 1.92 2.22
11 22.81 1.75 1.58
12 25.03 1.59 0.95
13 27.25 1.43 0.53
14 29.46 1.28 0.38

15 31.68 1.13 0.23
s82616 33.90 0.98 0.08

17 35.00 0.50 0.00

The parameters for the Bladed software to generate a three-dimensional turbulent wind are
summarized in Table 3. They are determined in compliance with the IEC61400-1 regulation [39]. Note
that in order to represent the common turbulence characteristic of a wind farm, this turbulent wind
should be generated according to the specified mean wind speed and turbulence intensity, which can
be statistically determined by long-term wind data of a wind farm. To highlight the comprehensive
impact of λdgn on wind energy production, the simulation case aims at low wind speed regions (such
as the southeast of China [41,42]). Furthermore, by referring to the specifications of the commercial
wind turbines manufactured by Envision Energy [43] (see Table 4), the mean wind speed of turbulence
is set to 6.5 m/s. Therefore, the wind turbine rotor optimized by the proposed method is suitable for
low wind speed VSWTs.
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Table 3. Parameters for generating 3D turbulent wind.

Parameters Value Unit

Mean wind speed 6.5 m/s
Height at which speed is defined 84 m

Number of grid points in the lateral direction 30 -
Number of grid points in the vertical direction 30 -

Grid width 150 m
Grid height 150 m

Nyquist frequency of turbulent wind field 27.7031 Hz
Time series length 3600 s

Time step 0.05 s
Turbulence model IEC Kaimal -
Turbulence class A -

Table 4. Specifications of the low wind speed wind turbines developed by Envision Energy.

Turbine Type 1.5-93 1.8-106 2.2-115 2.2-121

IEC class IEC S IEC S IEC S IEC S
Design mean wind speed (m/s) 6.5 6 6.5 6.5

Rotor diameter (m) 93 106 115 121
Cut-in wind speed (m/s) 3 3 3 3

Rated power (kW) 1500 1800 2200 2200
Rated wind speed (m/s) 9.5 9.5 9 9

Cut-out wind speed (m/s) 20 25 20 20

4.2. Determination of λdgn for the Inverse Design Method

As mentioned above, λdgn and the aerodynamic shape are separately obtained in the conventional
inverse design method. Moreover, the primary aim of these methods is usually to improve Cp,max at
λdgn [11–16] based on the implicit assumption that VSWTs can be maintained at λdgn by the MPPT
controller. Therefore, λdgn that can contribute to the increasing of Cp,max is of high priority.

To the authors’ knowledge, λdgn is commonly determined based on the empirical analysis [14,15].
Furthermore, λdgn corresponding to the maximum Cp,max is selected according to the functional
relation between λdgn and Cp,max, which, however, is derived based on single-airfoil wind turbine
rotors [24–27]. Because it is hard to deduce the analytical relationship between λdgn and Cp,max for
multi-airfoil wind turbine rotors, in implementing the inverse design method in this paper, λdgn is
chosen as 8.5 according to the analysis result presented in Section 2.1.

4.3. Performance Comparison of the Optimized Wind Turbine Rotors

The optimized wind turbine rotors obtained by the inverse design method (hereinafter
referred to as “separately-optimized rotor”) and the proposed method (hereinafter referred to as
“jointly-optimized rotor”) are compared from the following aspects.

4.3.1. Aerodynamic Shape

The distributions of chord length and twist angle for the optimized and the original wind turbine
rotors are respectively plotted in Figure 8. It can be observed from Figure 8a that compared to the
original rotor, the chord length of the jointly-optimized rotor is averagely increased by 16.5%, while
the chord length of the separately-optimized rotor is obviously decreased for the most part of the blade
except the segments near blade root. As shown in Figure 8b, the twist angle of the jointly-optimized
rotor is larger than the original rotor at the segments near the blade root and tip, while the twist angle
of the separately-optimized rotor is reduced near the root and increased near the tip.
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It is important to note that to highlight the effect of λdgn on the closed-loop performance of VSWTs
through the dynamic process of MPPT, some constraints on rotor loads and material cost are not
included in this paper, which results in a relatively large adjustment of aerodynamic shape. Therefore,
to improve the applicability of the proposed work, the joint aerodynamic optimization considering the
above constraints is worth developing further in the future.

4.3.2. Power Coefficient versus TSR Curve (Static Aerodynamic Performance)

The power coefficient Cp versus TSR curves of the optimized wind turbine rotors are compared
in Figure 9. Although the shapes of the two curves are very similar, the optimal TSR, namely λdgn, of
the separately-optimized rotor (which equals to 8.5) is notably larger than that of the jointly-optimized
rotor (which equals to 6.4) and Cp,max of the former rotor is 0.97% greater than for the latter rotor,
which is consistent with the analysis in Section 2.1.
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4.3.3. Probability Distribution of Operational TSR (MPPT Dynamics)

By comparing the probability distribution of the operational TSR corresponding to the two
optimized rotors, as shown in Figure 10, the jointly-optimized rotor operates around the optimal TSR
more frequently, which agrees with the analysis in Section 2.2.
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4.3.4. Closed-Loop Performance

The static and closed-loop performance of the optimized wind turbine rotors are summarized
in Table 5. To estimate the dynamic annual energy production (AEP) [5], the dynamic simulation
on the closed-loop VSWT system is firstly conducted for a different turbulent wind with a different
mean wind speed from the cut-in (3 m/s) to cut-out limit (25 m/s), and the wind power generation
corresponding to a different mean wind speed is then weighted with the given Weibull probability
density function of wind speed. The shape and scale parameters in the probability density function
are set to 1.97 and 7.35 [42].

Table 5. Comparison results of the static and closed-loop performance between different rotors.

Rotor Separately-Optimized Jointly-Optimized

λdgn 8.5 6.4
Cp,max 0.4790 (+0.97%) 0.4744
Pfavg 0.4452 0.4575 (+2.76%)

Dynamic AEP (MWh) 3985.89 4233.65 (+6.21%)

It is revealed from Table 5 that although Cp,max of the separately-optimized rotor is 0.97% larger
than that of the jointly-optimized one, the latter rotor can capture 2.76% more wind energy from the
turbulence (mean wind speed is 6.5 m/s) and correspondingly the increase in annual energy yield is
247.76 MWh (6.21%). This indicates that shortening the tracking range and increasing the frequency of
the wind turbine rotor operating around the optimal TSR by decreasing λdgn can improve wind energy
production more effectively than increasing Cp,max. In other words, the MPPT dynamics play a more
prominent role in the closed-loop performance than the static aerodynamic performance. Through the
coordination between the static aerodynamic performance and the MPPT dynamics performed by the
proposed method, higher wind energy capture efficiency of VSWTs under turbulence can be achieved.

5. Conclusions

This paper firstly reveals that λdgn exerts a comprehensive influence upon the overall efficiency
of the closed-loop VSWT system through static aerodynamic performance and the dynamic process
of MPPT. With the increase of λdgn, though Cp,max is improved, the tracking range of rotor speed as
well as the dynamic process of MPPT become longer, which might eventually reduce the wind energy
capture efficiency. Therefore, in the inverse aerodynamic design for VSWTs, the impact of λdgn on
the static performance and the MPPT dynamic process should be compromised for determining an
appropriate λdgn.

Based on the inverse design program PROPID for the aerodynamic optimization of VSWTs, this
paper then proposes a new method, fully considering the impact of λdgn on the static and dynamic
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behavior of wind turbines. Different from the conventional separated design procedure, the design
TSR, chord length and twist angle are jointly optimized to maximize the closed-loop performance of
VSWTs, namely wind energy capture efficiency, in this method. Through the coordination between the
static aerodynamic performance and the MPPT dynamics performed by the proposed method, higher
wind energy capture efficiency of VSWTs under turbulence can be achieved, which is validated by the
simulation results based on the Bladed software.
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Appendix A. Lift Coefficient and Axial Induction Factor Distributions

The lift coefficient CL and axial induction factor a of each blade section used in the input file of
PROPID code are listed in Table A1.

Table A1. Lift coefficient and axial induction factor distributions.

r/R CL a

0.05 0 0
0.15 1.25 0.183
0.25 1.60 0.283
0.35 1.45 0.333
0.45 1.35 0.333
0.55 1.30 0.333
0.65 1.25 0.333
0.75 1.15 0.333
0.85 1.12 0.333
0.95 1.09 0.333
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