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Abstract: Probabilistic forecasting accounts for the uncertainty in prediction that arises from
inaccurate input data due to measurement errors, as well as the inherent inaccuracy of a prediction
model. Because of the variable nature of renewable power generation depending on weather
conditions, probabilistic forecasting is well suited to it. For a grid-tied solar farm, it is increasingly
important to forecast the solar power generation several hours ahead. In this study, we propose
three different methods for ensemble probabilistic forecasting, derived from seven individual
machine learning models, to generate 24-h ahead solar power forecasts. We have shown that while
all of the individual machine learning models are more accurate than the traditional benchmark
models, like autoregressive integrated moving average (ARIMA), the ensemble models offer even
more accurate results than any individual machine learning model alone does. Furthermore, it is
observed that running separate models on the data belonging to the same hour of the day vastly
improves the accuracy of the results. Getting more accurate forecasts will help the stakeholders come
up with better decisions in resource planning and control when large-scale solar farms are integrated
into the power grid.

Keywords: solar power; probabilistic forecasting; regression; machine learning; ensemble models

1. Introduction

Fossil fuels have been the most widely-used energy sources for centuries and continue to be so.
Unfortunately, both the production and utilization of fossil fuels results in the release of green house
gases in the atmosphere. This environmental impact has been even more aggravated in recent years
as we try to extract less accessible resources, which results in higher emission of green house gases
with the need for additional transportation of those resources [1]. Between 2010 and 2040, the world is
going to see a rise in energy demand by 56% [2]. With this ever-increasing energy demand and with
its associated pollution, the world is looking for renewable energy sources. Renewable energy and
nuclear power are the fastest growing alternative energy resources, growing at the rate of 2.5 percent
every year [2]. Alternative energy sources are important as they can reduce the need to export/import
energy and also stabilize price fluctuations in the energy market.

In recent years, solar energy has gained much importance because of the advances in photovoltaic
(PV) technology and also its environmental friendliness. Solar PV power plants do not emit any green
house gases and use no or very little water resources. Solar energy is also the most abundant resource
naturally available, with one hour of solar energy striking the Earth sufficient for the energy needs of
the world’s entire population for a year [3]. The technology road map for solar PV estimates 4600 GW
of PV capacity by 2050, and that will result in the reduction of four gigatonnes (Gt) of carbon dioxide
per year [4].
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The integration of large solar farms into the power grid is not an easy task, as the output of solar
farms varies with every season. It also depends on various other factors, like cloud cover, wind speed,
humidity, etc. One critical phenomenon to consider is the ramp event, which occurs when the solar
power generation suddenly drops when there is cloud cover and ramps up again when the cloud cover
lifts [5]. With all of these factors in consideration, solar power forecasting comes to play an important
role. Forecasting the solar power several hours ahead could facilitate balancing the grid’s supply and
demand by helping the stakeholders make informed decisions regarding backup power generation
using fossil fuel, demand response, peak load shifting, etc.

Our Contributions

In this study, we propose a method that uses an “ensemble” of multiple point (also known as
single-valued) forecasts to generate probabilistic forecasts 24 h ahead. We use the 12 variables obtained
from 24-h ahead numerical weather prediction (NWP) by the European Centre for Medium-Range
Weather Forecasts (ECMWF) as the input attributes to our ensemble method.

Firstly, we group the data based on their zones and hours of the day. Secondly, we deploy
seven machine learning-based regression models (namely: (1) Decision tree; (2) Gradient boosting;
(3) K-nearest neighbors (KNN) with uniform weights; (4) KNN with distance-based weights; (5) Lasso;
(6) Random forests; and (7) ridge). All of these methods individually outperform the three benchmark
models, like ARIMA, which are widely used in time series forecasting.

Then, the point forecasting outputs from those seven regression models are combined to generate
probabilistic forecasting using three different ensemble methods (namely: (1) Linear; (2) Normal
distribution; and (3) normal distribution with additional features), all of which give better results than
any of those seven models can offer individually. In addition, we have demonstrated that grouping of
the data by the hour of the day vastly improves the accuracy of the forecasting results.

Our proposed method is district from the existing probabilistic solar forecasting methods like [6,7]
because we use literally different base regression models rather than using a single base model with
different parameters or bootstrapping. The good results offered by it can be attributed to the soundness
of the seven base regression models themselves and the effectiveness of our carefully-crafted ensemble
strategies, especially in the case of the normal distribution with additional features method.

A preliminary version of this study has been presented as [8]. In this current paper, we have
significantly extended our work by incorporating a more detailed description of our proposed method,
as well as much more comprehensive experimental results. It is a summary version of the master’s
thesis [9] written by the first author and advised by the second author.

The remainder of the paper is organized as follows. Section 2 presents the related pieces of work.
Section 3 describes the solar power forecasting dataset that we use, as well as the problem formulation.
Section 4 describes the proposed methods to generate the probabilistic forecasts. Section 5 details our
experimental setup. Section 6 presents the experiment results, and finally, conclusions are drawn in
Section 7.

2. Related Work

2.1. Point Forecasting

In the domain of solar forecasting, point forecasting methods, which yield only a single
forecasted value for each forecasting instance, have been widely used. Point forecasting
methods can be subdivided into two broad categories: statistical and machine learning methods.
Some instances of those two categories for solar forecasting are presented in the following
Sections 2.1.1 and 2.1.2, respectively.
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2.1.1. Statistical Methods

Bacher et al. [10] introduced a two-stage model for online short-term solar power forecasting.
In the first stage, the clear sky model is used to normalize the solar power, and in the second stage,
linear time series models are used to forecast the solar power.

Y. Huang et al. [11] provided a comparative analysis of physical and statistical forecasting models
for PV stations. In the physical forecasting model, a physical modeling of the PV panels is carried out
to obtain the forecast, whereas in the statistical model, the past power values are used as an input to
predict the future values.

J. Huang et al. [12] described a method to forecast one-hour ahead solar radiation during cloudy
days. It combined an autoregressive model with a dynamical system model. In addition, the difference
of solar radiation values at the present and lag one time step was used as a correction to a predicted
value, improving the forecasting accuracy by up to 30%.

2.1.2. Machine Learning Methods

In Marquez et al. [13], the authors used an artificial neural network (ANN) model to forecast the
global and the direct solar irradiance with the help of the National Weather Service’s (NWS) database.
Eleven input variables are used in total: nine meteorological variable from the NWS database and
two additional variables of solar zenith angle and normalized hour angle.

Hossain et al. [14] proposed a hybrid intelligent predictor for 6-h ahead solar power prediction.
The system used an ensemble method with 10 widely-used regression models, namely, linear regression
(LR), radial basis function (RBF), support vector machines (SVM), multi-layer perceptron (MLP), pace
regression (PR), simple linear regression (SLR), least median square (LMS), additive regression (AR),
locally-weighted learning (LWL) and IBk (an implementation of the k-nearest neighbor algorithm).

Zhu et al. [15] decomposed the output power of the PV plant using wavelet decomposition to
separate useful information from disturbances. Then, ANNs are used to build the models of the
decomposed PV output power. Finally, the outputs of the ANN models are reconstructed into the
forecasted power of the PV plant.

In [16], Li et al. used a hierarchical forecasting approach to evaluate and compare the two common
methods, ANN and support vector regression (SVR), for predicting energy productions from a solar
photovoltaic system in Florida, USA, 15 min, 1 h and 24 h ahead of time, respectively.

Diagne et al. [17] and Antonanzas et al. [18] are the two recent comprehensive survey papers on
solar power/irradiance forecasting methods, where most of them are the point forecasting ones.

2.2. Probabilistic Forecasting

Every forecast carries with it a certain amount of uncertainty because of the errors in real-time
measurements and the uncertainty of the prediction models themselves. No forecast is perfect.
“Probabilistic forecasting” [19] is the forecast that assigns a probability to each of a number of different
future events. Probabilistic forecasts are preferred to point forecasts (also known as single-valued
forecasts) as they take into account the uncertainties in the predicted values, which helps in assessing
the risk when a decision is made. Probabilistic forecasts are being used widely in the case of predicting
binary events, e.g., events like “what is the probability that it rains today?” and other similar events.
However, now, the focus is shifting towards applying them to more general events, like flood risk
assessment, weather prediction and financial risk management, to name a few [19].

Probabilistic forecasting has been stated to be have been explored in solar forecasting in recent
years. Iversen et al. [6] proposed a framework for calculating the probabilistic forecasts of solar
irradiance using stochastic differential equations (SDE). They construct a process that is limited to a
bounded state space, and it assigns zero probability to all of the events outside this state space.

More recently, Grantham et al. [7] also proposed a probabilistic forecasting method for solar
radiance. They presented a new data-driven approach for constructing a full predictive density of
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solar radiance based on a nonparametric bootstrap. They demonstrated the usefulness of the new
bootstrapped statistical ensembles for probabilistic one-hour ahead forecasting in Mildura, Australia.

3. Dataset and Problem Formulation

The data used in this study are provided by the organizers of the Global Energy Forecasting
Competition (GEFCOM) 2014 [20–22]. The initial training dataset consists of 12 months of hourly solar
power data from April 2012 to March 2013. The testing dataset consists of 15 months of data from
April 2014 to June 2015. After the forecasting has been done for each month in the testing dataset,
that month’s data are incrementally added into the training dataset.

The data are collected from three solar farms (denoted as zones) which are adjacent to each other
in a certain region of Australia, with the following installation parameters (the exact locations of the
farms are not disclosed by the GEFCOM organizers):

• Zone 1: altitude = 595 m; panel type = Solarfun SF160-24-1M195; No. of panels = 8; nominal
power = 1560 W; panel orientation = 38◦clockwise from north; panel tilt = 36◦.

• Zone 2: altitude = 602 m; panel type = Suntech STP190S-24/Ad+; No. of panels = 26;
nominal power = 4940 W; panel orientation = 327◦clockwise from north; panel tilt = 35◦.

• Zone 3: altitude = 951 m; panel type = Suntech STP200-18/ud; No. of panels = 20; nominal
power = 4000 W; panel orientation = 31◦clockwise from north; panel tilt = 21◦.

The data consist of the hourly measurements of 12 input variables (also known as attributes or
features) that affect the solar power generation. They are generated 24 h (one day) ahead [21] by
the European Centre for Medium-Range Weather Forecasts (ECMWF) [23] using numerical weather
prediction (NWP) [24]. These 12 input variables are listed below.

• tclw: Total column liquid water, vertical integral of cloud liquid water content. Unit of
measurement: kg/m2.

• tciw: Total column ice water, vertical integral of cloud ice water content. Unit: kg/m2.
• SP: Surface pressure. Unit: Pa.
• r: Relative humidity at 1000 mbar, defined with respect to saturation over ice below −23 ◦C and

over water above 0 ◦C. For the period in between, a quadratic interpolation is applied. Unit: %.
• TCC: Total cloud cover. Unit: zero to one.
• 10u: 10-meter Uwind component. Unit: m/s.
• 10v: 10-meter Vwind component. Unit: m/s.
• 2T: two-meter temperature. Unit: K.
• SSRD: Surface solar radiation down. Unit: J/m2.
• STRD: Surface thermal radiation down. Unit: J/m2.
• TSR: Top net solar radiation, net solar radiation at the top of the atmosphere. Unit: J/m2.
• TP: Sum of convective precipitation and stratiform precipitation. Unit: m.

The output variable is the solar power generated in each farm at each hour. This value is
normalized to lie between zero and one as the nominal power generated in each of the solar farms is
different.

The solar power forecasting problem we are trying to solve can be formulated as follows.
Suppose we are currently at hour h (where h ∈ {0, . . . , 23}) of day d. Our aim is to forecast the
solar power output of zone z (where z ∈ {1, 2, 3}) at hour h of day d + 1 by using the 12 input variables,
which are the 24-h ahead forecasted weather measurements by ECMWF for hour h of day d + 1 for the
geographical area in which zone z is located. As such, the forecasting problem we are trying to solve is
a supervised learning one rather than a univariate time series forecasting.



Energies 2016, 9, 1017 5 of 17

4. Proposed Method

Our proposed method uses an “ensemble” of different machine learning algorithms to generate
the probabilistic forecasts. In [25], Bell and Koren presented the first-prize winning method in the
$1 million Netflix prize challenge and observed that an ensemble approach using different predictors
offered the best results. The reason behind this phenomenon is that each machine learning algorithm
performs well only with specific type(s) of data. For example, SVM and ANN perform better with
multi-dimensional data and continuous features. On the other hand, decision tree and rule-based
learners perform well with categorical data. Likewise, SVM and ANN models perform at their best
when dealing with large sample sizes, whereas naive Bayes models require only a small sample
size [26]. Thus, in order to take advantage of the strengths of various algorithms in various situations,
ensemble methods are employed.

In this work, we follow an ensemble regression strategy for forecasting. First, we group the
data based on zones and hours of the day. Then, we generate the point forecasts using seven
individual machine learning-based regression models. Finally, we combine those point forecasts
into the probabilistic forecasts using three different ensemble methods.

4.1. Grouping of Data

As mentioned above in Section 3, the data consist of those from 3 different solar farms (zones),
and the power generated at each zone differs in magnitude. To avoid large fluctuations in the output
values, the data are grouped based on zones. The solar power generated varies throughout the day,
going to zero during the night. Hence, within each zone, the data are further grouped by each hour of
the day. This gives us 24 different sets of data in each of the 3 zones (i.e., 24 × 3 = 72 datasets in total).

Figure 1 shows the values for the month of April 2012 in Zone 1. We can see that the values
oscillate between 0 and 1 consistently throughout the month.
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Figure 1. Observed solar power values for the month of April 2012 in Zone 1.

The dataset contains 12 input variables. Let X be a (72t× 13) matrix, where the 13th column is
the output variable, i.e., solar power generated. Matrix X contains the data from the three different
solar farms, Zones 1, 2 and 3, and t is the number of days in the training dataset.

Initially, the data are grouped based on the zone. Let Xz denote the data from each zone where
z ∈ {1, 2, 3}. Xz is a (24t × 13) matrix. Xz in turn contains the data for each of the 24 h in a day.
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Grouping Xz based on each hour would give us the matrix Xzh, where z represents the zone and
h represents the hour. Xzh is a (t× 13) matrix.

At the end of the grouping process, we have 24 different datasets in each of the three zones,
which results in 72 datasets in total. Hence, when we say, for instance, that the decision tree regressor is
used to generate the point forecast, it means that 72 decision tree sub-models are built from 72 different
datasets, and among them, a particular sub-model corresponding to the test instance at hand is selected
to perform the point forecasting. For example, if we are to point forecast the solar power generated in
Zone 1 at Hour 5 for a particular day, among the 72 different decision tree sub-models, we select the
one built only from the historical data recorded at Hour 5 in Zone 1 in the training dataset.

For each sub-model dedicated to zone z and hour h, for the training phase, the input is a matrix
Xzh of size (t× 13), where t is the number of days in the training dataset, and the output is a regression
model. For the testing (forecasting) phase, the input is a matrix Fzh of size (d × 13) with its 13th
column withheld, and the output is a matrix P of size (d × 1), where d is the number of days the
forecasting is to be made. The training and testing processes are to be repeated 72 times to cover all of
the combinations of zones and hours.

4.2. Generating Point Forecasts

After the data are grouped, the following machine learning-based regression models are used
to generate the point forecasts. These algorithms are implemented using the Python scikit learn
module [27]. The tunable parameters for each model are selected by a ten-fold cross-validation on the
initial training dataset.

1. Decision tree regressor: A model is fitted using each of the input variables. For each of the
individual variables, the mean squared error is used to determine the best split. The maximum
number of features to be considered at each split is set to the total number of features [28].

2. Gradient boosting: An ensemble model that uses decision trees as weak learners and builds the
model in a stage-wise manner by optimizing the loss function [29].

3. KNN regressor (uniform): The output is predicted using the values from the k-nearest neighbors
(KNNs) [30]. In the uniform model, all of the neighbors are given an equal weight. Five nearest
neighbors are used in this model, i.e., k = 5. The “Minkowski” distance metric is used in finding
the neighbors.

4. KNN regressor (distance): In this variant of KNN, the neighbors closer to the target are given
higher weights. The choice of k and the distance metric are the same as above.

5. Lasso regression: A variation of linear regression that uses the shrinkage and selection method.
The sum of squares error is minimized, but with a constraint on the absolute value of the
coefficients [31].

6. Random forest regressor: An ensemble approach that works on the principle that a group of
weak learners when combined would give a strong learner. The weak learners used in random
forest are decision trees. Breiman’s bagger, in which at each split all of the variables are taken
into consideration, is used [32].

7. Ridge regression: It penalizes the use of a large number of dimensions in the dataset using linear
least squares to minimize the error [33].

4.3. Generating Probabilistic Forecasts

We propose three different ensemble methods to generate the probabilistic forecasts using the
point forecasts from the 7 machine learning models mentioned above.

4.3.1. Method I: Linear Method

The linear method is used to generate the 99 percentiles where the first percentile is the lowest
among the point forecasts and the 99th percentile is the highest. The i-th percentile of a distribution
is a number such that approximately i percent of the values in the distribution are equal or less than
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that number. For example, if we say that 12 is the 80th percentile of a distribution, then that means
approximately 80% of the numbers in that distribution are less than or equal to 12.

Let x1, x2, . . . , xn be a set of values where n represents the total number of observations, which are
point forecasts in our case. Here, n = 7 because we use 7 individual machine learning models to
generate 7 distinct point forecasts. Following is the linear interpolation method, adapted from [34],
to calculate the percentiles. First, we sort the data such that x1 is the smallest value and xn is the
largest. Then, we calculate the relative index of the i-th percentile, denoted as ri, for i = 1, . . . , 99 using
Equation (1).

ri =
n · i
100

+ 0.5 (1)

If ri is an integer, then xri will be the i-th percentile value. If ri is not an integer, then we can
separate it into the integer part k and the fractional part f , respectively. Then, pi, the interpolated i-th
percentile value is calculated using Equation (2). We regard x0 = x1 and xn+1 = xn, respectively.

pi =

{
xri if ri is an integer

(1− f ) · xk + f · xk+1 otherwise
(2)

4.3.2. Method II: Normal Distribution Method

Let the n point forecasts generated using n regression models be represented as x1, x2, . . . , xn

with a mean µ and standard deviation σ (note: n = 7 in our case). For i = 1, . . . , 99, finding the
i-th percentile value pi is the same as finding pi such that P(X < pi) = i/100. For that, we find the
corresponding Z value, denoted as zi, using the Z table or standard normal table [35] by looking for the
table entry that is closest to i/100. Once we have the values of µ, σ and zi, that of pi can be calculated
using Equation (3).

pi = µ + zi · σ (3)

4.3.3. Method III: Normal Distribution Method with Additional Features

This method is similar to Method II, but now, we add two additional sets of regression models
along with the original model set. In the first additional model set, we use an additional feature
“month” of the year along with the existing 12 features. In the second additional model set, only the
most recent 30 days of data (instead of the whole of the available training data) are considered to
carry out the forecasts. All 7 individual machine learning regression models are deployed for both
additional model sets. This results in n = 21 regression models in total (7 for the original model set + 7
for the first additional model set + 7 for the second additional model set). Having more data points
(n = 21) helps smoothen the percentile curve when compared to those curves in Methods I and II,
where fewer data points are available (n = 7).

5. Experimental Setup

In this section, we will discuss the experimental setup that we use to evaluate the accuracy
performance of our proposed methods described above in Section 4.

5.1. Training and Testing Datasets

As mentioned above in Section 3, we use data from the Global Energy Forecasting Competition
(GEFCOM) 2014 [20–22] comprising 3 solar farms (zones). Each instance (record) corresponds to the
hourly data with 12 input variables, which are the environmental variables, and 1 output variable,
which is the generated solar power.

The initial training dataset consists of 12 months of hourly solar power data from April 2012 to
March 2013. This corresponds to 365 days × 24 hours × 3 zones = 26,280 training instances.
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The testing dataset consists of 15 month of data from April 2013 to June 2014. This corresponds to
456 days × 24 h × 3 zones = 32,832 test instances. Testing (forecasting) is carried out in a “monthly”
fashion in 15 batches. For example, in the first testing month of April 2013, the forecasting for the
2160 test instances (i.e., 30 days × 24 h × 3 zones) is performed.

After the forecasting has been done for each month in the testing dataset, that month’s data
are accumulated into the training dataset before forecasting is performed on the next month.
For example, after the forecasting for April 2013 is done, its 2160 test instances (along with their
actual observed values for the solar power output) are added to the training dataset, increasing its
sizes to 26,280 + 2160 = 28,440 instances.

5.2. Evaluation Metrics

Three different metrics are used to evaluate our results.
Root mean square error (RMSE) and mean absolute error (MAE), the two most common metrics

in regression analysis, are used to evaluate the point forecasts.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (4)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (5)

where N is the number of observations, yi is the observed value and ŷi is the forecasted value for
i = 1, . . . , N. Lower values indicate better forecasts for both RMSE and MAE.

When it comes to probabilistic forecasts, RMSE and MAE cannot be used because we generate
99 percentile values for each forecast. Therefore, instead, we use the pinball loss function [36], which is
a commonly-used error evaluation metric for probabilistic forecasts. Let the 99 percentile values
(generated using either Equation (2) or Equation (3)) be defined as p1, p2, . . . , p99, respectively, p0 = −∞
the natural lower bound and p100 = +∞ the natural upper bound. Then, the pinball loss score for the
i-th percentile pi (1 ≤ i ≤ 99) with regard to the observed value y can be calculated as follows:

pinball-loss(pi, y) =

{
(1− i/100)(pi − y) if y < pi

(i/100)(y− pi) otherwise
(6)

To evaluate the overall performance, this score is averaged across all of the target percentiles.
Lower scores indicate better forecasts.

For point forecasts, we mimic the probabilistic forecasts by generating 99 percentiles all assuming
the same forecasted values (note: the same approach was also used for the benchmark point forecasting
method in the GEFCOM 2014 competition [22]).

5.3. Benchmark Models

In order to conduct a comparative performance analysis on the 7 individual machine learning
models, as well as the 3 proposed ensemble models, we choose 3 commonly-used methods in the
area of time series forecasting to serve as our benchmark models (note: since they are univariate time
series models, only the solar power output time series itself is used as the input, but not ECMWF’s
12 forecasted weather measurements). The forecast package [37] in R [38] is used to implement these
models. Their brief descriptions are as follows:

1. ARIMA: The autoregressive integrated moving average (ARIMA) model is one of the most
widely-used techniques in time series forecasting. The function auto.arima() from the forecast
package [37] in R is used. It automatically detects the best parameters to fit the data.
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2. Naive: In this method, all of the forecasts are set to the last observed value. Surprisingly enough,
this model works well for many economic and financial time series problems [39].

3. Seasonal naive: This method is similar to the naive method, but the forecasts are set to the last
observed value from the same season [39].

6. Experimental Results

6.1. Benchmark Models

Figures 2 and 3 show the RMSE and MAE values respectively of the three benchmark models.
The results are the average RMSE/MAE values for each of the 15 months in the testing dataset across
the three zones throughout the full 24-h period (including the night hours where the solar power
output is zero).
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Figure 2. Average RMSE values of benchmark models’ point forecasts before and after grouping of
data by hours of the day.
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Figure 3. Average MAE values of benchmark models’ point forecasts before and after grouping of data
by hours of the day.
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Among the three models, ARIMA performs the best both in terms of average RMSE and MAE,
especially after grouping by hours of the day.

We can also observe from the figures that after grouping by hours, the results are generally better
(i.e., lower in RMSE and MAE values) than before grouping. (Note: “Before grouping” means that the
data are sub-divided only by distinct zones, but not by hours of the day. “After grouping” means that
the data are grouped both by distinct zones and distinct hours of the day, as mentioned in Section 4.1.)

The benchmark models can also be used to produce the probabilistic forecasts by generating
99 percentiles all assuming the same forecasted values (note: the same approach was also used for
the benchmark method in GEFCOM 2014 [22]). The pinball loss scores of the benchmark models are
presented in Figure 4. Again, ARIMA offers the best (i.e., least) average pinball loss score.
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Figure 4. Average pinball loss scores of benchmark models’ point forecasts before and after grouping
of data by hours of the day.

The average RMSE, MAE and pinball loss scores of the three benchmark methods are given in
Table 1.

6.2. Individual Machine Learning Models

Figures 5 and 6 show the RMSE and MAE values for the point forecasts from the
seven individual machine learning-based regression models. It can be observed that in almost all
cases, machine learning-based regression models beat the benchmark models both for before and
after grouping of the data by hours of the day (note: if the data are not grouped by hours of the day,
the hour is added as an additional (13-th) input variable). It can be seen that grouping helps improve
the accuracy of the outputs for the machine learning models, as well. Among all of the regression
models, the gradient boosting algorithm offers the best results in terms of average RMSE and MAE.

As in the case of the benchmark models, the probabilistic forecasts by the seven individual
regression models can be computed by generating 99 percentiles. Their pinball loss scores are given in
Figure 7. The KNN (uniform) method offers the smallest average pinball loss.

The average RMSE, MAE and pinball loss scores of the seven machine learning methods are given
in Table 1.
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Figure 5. Average RMSE values of seven individual machine learning models’ point forecasts before
and after grouping of data by hours of the day. Results for: (a) decision tree; (b) gradient boosting;
(c) KNN (distance); (d) KNN (uniform); (e) lasso regression; (f) random forests; and (g) ridge regression.

Figure 6. Average MAE values of seven individual machine learning models’ point forecasts before and
after grouping of data by hours of the day. Results for: (a) decision tree; (b) gradient boosting; (c) KNN
(distance); (d) KNN (uniform); (e) lasso regression; (f) random forests; and (g) ridge regression.

6.3. Ensemble Models

Figure 8 shows the pinball loss scores for the probabilistic forecasts of all three proposed ensemble
models before and after grouping by hours of the day (note: we cannot simply use the RMSE and MAE
metrics to evaluate probabilistic forecasts, as they are designed just for point forecasts). In comparison
with the results by individual regression models in Figure 7, all of the ensemble models help improve
the accuracy of the forecasts significantly. Again, it can be seen that the performance has vastly
improved after grouping of the data. Method III provides the best results of the three models with
an average pinball loss score of 0.01457 when compared to 0.01544 and 0.01503 of Methods I and II,
respectively.
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Figure 7. Pinball loss scores of seven individual machine learning models’ point forecasts before and
after grouping of data by hours of the day. Results for: (a) decision tree; (b) gradient boosting; (c) KNN
(distance); (d) KNN (uniform); (e) lasso regression; (f) random forests; and (g) ridge regression.
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Figure 8. Pinball loss scores of three ensemble models’ probabilistic forecasts before and after grouping
of data by hours of the day.

Table 1 summarizes Figures 2 to 8, showing the average RMSE, MAE and pinball loss scores for
the three benchmark models, the seven individual machine learning models and the three ensemble
models.
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Table 1. Summary of Figures 2 to 8: Average RMSE, MAE and pinball loss scores for 3 benchmark
models, 7 individual machine learning models and 3 ensemble models. In each section, the best results
are highlighted.

Model Before Grouping After Grouping

RMSE MAE Pinball Loss RMSE MAE Pinball Loss

Benchmark
ARIMA 0.33363 0.26691 0.08418 0.13988 0.07454 0.02318
Naive 0.40756 0.35748 0.08526 0.16410 0.08433 0.03518

Seasonal Naive 0.36894 0.25997 0.08535 0.17405 0.08829 0.02873

Machine Learning
Decision Tree 0.12973 0.06211 0.03954 0.11190 0.04999 0.02483

Gradient Boosting 0.10105 0.05719 0.07159 0.08284 0.03784 0.02164
KNN (Distance) 0.14537 0.08109 0.04055 0.09790 0.04519 0.02259
KNN (Uniform) 0.14406 0.08072 0.03633 0.09696 0.04501 0.01891
Lasso Regression 0.17546 0.13690 0.07108 0.08826 0.04329 0.02028
Random Forest 0.09801 0.04886 0.04036 0.08312 0.03798 0.02251

Ridge Regression 0.17349 0.13471 0.03185 0.08320 0.04056 0.01936

Ensemble
Method I 0.02775 0.01544
Method II 0.02934 0.01503
Method III 0.03105 0.01457

The average hourly error values in terms of pinball loss scores (after grouping) for the 24 h are
shown in Figure 9. Those values vary significantly except for Hours 11 to 18 showing a zero error
value since the power generated during that period is zero. The highest error values are observed
during Hours 0 through 4.

Figure 9. Average pinball loss scores for different hours. (Note: the hours shown on the X-axis are just
nominal and not the real wall-clock hours. The offset between these two is not disclosed by the Global
Energy Forecasting Competition (GEFCOM) 2014 organizers.)

The average monthly pinball loss scores (after grouping) from April 2013 to June 2014 are shown
in Figure 10. Very low errors are observed in the months of May and June, whereas August exhibits
the highest error rate. These fluctuations in the error rates are possibly caused by the cloud cover.
In general, the better forecasts are achieved in the summer because of clear sky, and there are higher
error rates during the winter with more cloud cover during the daytime.
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Figure 10. Average pinball loss scores for different months.

The average zonal pinball loss scores (after grouping) of the three zones (solar farms) are shown
in Figure 11. Among the three zones, we obtain the best results for Zone 1, while the results for Zone 2
are the worst for all of the methods. We can observe that there is a rough correlation between the
nominal power output of the solar farm (see Section 3) and the pinball loss scores. The smaller the
power output of the solar farm, the lower the forecasting error rate.

Figure 11. Average pinball loss scores for different zones (solar farms).

6.3.1. Ensemble Method III

Among the three ensemble models, it is observed that Ensemble Method III offers the best overall
results as shown in Figure 8 and summarized in Table 1. As described in Section 4.3.3, Method III
is made up of two added additional sets of regression models along with the original model set of
Method II. The first additional model set uses the additional feature “month” of the year along with
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the existing 12 features, and the second additional model set uses only the most recent 30 days of data
(instead of the whole available training data).

It is observed that the contributions of all three sets (the original and the two additional sets)
are essential for the good performance of Method III. The relative performances of Method III’s
three regression model sets individually and any combinations thereof are given in Table 2.

Table 2. Performances of three individual sets and any combinations thereof of Method III (in terms of
the average pinball loss score after grouping by hours of the day).

Contributor Pinball Loss

original set only (i.e., Method II) 0.01503
1st additional set only 0.01516
2nd additional set only 0.01794

original set + 1st additional set 0.01510
original set + 2nd additional set 0.01498

1st additional set + 2nd additional set 0.01483
original set + 1st additional set + 2nd additional set (i.e., Method III) 0.01457

An example of probabilistic forecasting output by Method III along with the actual solar power
generated for a 72-h period (25 May, 0 h to 27 May, 23 h in the year 2013) in Zone 1 is illustrated in
Figure 12. For the sake of simplicity, only the 1st, 50th and 99th percentile forecasted values are shown
(instead of showing all the first to 99th percentile values).

Figure 12. Example of probabilistic forecasting by Method III. First, 50th and 99th percentile forecasted
values are shown along with actual solar power generated for the 72-h period (25 May, 0 h to
27 May, 23 h in year 2013) in Zone 1.

7. Conclusions

In this study, we explore the concept of generating probabilistic forecasts for solar power output
using individual point forecasts from different machine learning models. Day ahead forecasts are
generated for three solar farms for a period of 15 months. The models are built using the meteorological
data from the European Centre for Medium-Range Weather Forecasts (ECMWF)’s numerical weather
prediction (NWP) output provided through the GEFCOM 2014 [22] organizers. The study sought to
answer the following questions:

• Does combining the results from different models improve the performance?
• Does grouping the data from each hour and running separate models on them give

a better performance?

The findings of this study show that combining the results from individual machine
learning-based regression models gave exceedingly better performance than the individual models
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themselves. These results are consistent across the forecasting horizon of 15 months. Furthermore,
grouping the data based on individual hours of the day results in lower error rates in comparison to
the results where the data are not grouped. We use three different strategies to combine the results
to generate probabilistic forecasts. It is found that Method III, which assumes the normal probability
distribution and incorporates additional features, offers the best results.

The field of probabilistic forecasts is still new, and various evaluation metrics are still being
developed. In this study, we have used RMSE and MAE to evaluate the point forecasts and pinball
loss score to evaluate the probabilistic forecasts. To better evaluate the model, there is a need to
explore various other metrics in the field of probabilistic forecasts, like the continuous rank probability
score (CRPS). Furthermore, the models can be further improved by relaxing the assumption that the
probabilistic forecasts follow a normal distribution, as this assumption is too restrictive.

Acknowledgments: This research work was funded by Masdar Institute of Science and Technology, Abu Dhabi,
United Arab Emirates.

Author Contributions: Azhar Ahmed Mohammed designed and developed the system, performed the
experiments and wrote the initial draft of the paper. Zeyar Aung supervised the project, provided technical
guidelines and insights and carried out the final revision of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Davidson, D.J.; Andrews, J. Not all about consumption. Science 2013, 339, 1286–1287.
2. International Energy Agency. International Energy Outlook 2013. Available online: http://www.eia.gov/

forecasts/archive/ieo13 (accessed on 1 November 2016).
3. Goldemberg, J.; Johansson, T.B.; Anderson, D. World Energy Assessment Overview: 2004 Update; United

Nations Development Programme, Bureau for Development Policy: New York, NY, USA, 2004.
4. International Energy Agency. Technology Roadmap: Solar Photovoltaic Energy. 2014. Available

online: http://www.iea.org/publications/freepublications/publication/technology-roadmap-solar-
photovoltaic-energy---2014-edition.html (accessed on 1 November 2016).

5. Runyon, J. Transparency and Better Forecasting Tools Needed for the Solar Industry. 2012. Available
online: http://www.renewableenergyworld.com/rea/news/article/2012/12/transparency-and-better-
forecasting-tools-needed-for-the-solar-industry (accessed on 1 November 2016).

6. Iversen, E.B.; Morales, J.M.; Møller, J.K.; Madsen, H. Probabilistic forecasts of solar irradiance using stochastic
differential equations. Environmetrics 2014, 25, 152–164.

7. Grantham, A.; Gel, Y.R.; Boland, J. Nonparametric short-term probabilistic forecasting for solar radiation.
Sol. Energy 2016, 133, 465–475.

8. Mohammed, A.A.; Yaqub, W.; Aung, Z. Probabilistic forecasting of solar power: An ensemble learning
approach. In Proceedings of the 7th International KES Conference on Intelligent Decision Technologies
(KES-IDT), Sorrento, Italy, 17–19 June 2015; Volume 39, pp. 449–458.

9. Mohammed, A.A. Probabilistic Forecasting of Solar Power: An Ensemble Learning Approach. Master’s
Thesis, Masdar Institute of Science and Technology, Abu Dhabi, UAE, 2015.

10. Bacher, P.; Madsen, H.; Nielsen, H.A. Online short-term solar power forecasting. Sol. Energy 2009, 83,
1772–1783.

11. Huang, Y.; Lu, J.; Liu, C.; Xu, X.; Wang, W.; Zhou, X. Comparative study of power forecasting methods
for PV stations. In Proceedings of the 2010 IEEE International Conference on Power System Technology
(POWERCON), Hangzhou, China, 24–28 October 2010; IEEE: New York, NY, USA, 2010; pp. 1–6.

12. Huang, J.; Korolkiewicz, M.; Agrawal, M.; Boland, J. Forecasting solar radiation on an hourly time scale
using a Coupled AutoRegressive and Dynamical System (CARDS) model. Sol. Energy 2013, 87, 136–149.

13. Marquez, R.; Coimbra, C.F.M. Forecasting of global and direct solar irradiance using stochastic learning
methods, ground experiments and the NWS database. Sol. Energy 2011, 85, 746–756.

14. Hossain, M.R.; Oo, A.M.T.; Shawkat Ali, A.B.M. Hybrid prediction method for solar power using different
computational intelligence algorithms. Smart Grid Renew. Energy 2013, 4, 76–87.



Energies 2016, 9, 1017 17 of 17

15. Zhu, H.; Li, X.; Sun, Q.; Nie, L.; Yao, J.; Zhao, G. A power prediction method for photovoltaic power plant
based on wavelet decomposition and artificial neural networks. Energies 2016, 9, 11.

16. Li, Z.; Rahman, S.M.; Vega, R.; Dong, B. A hierarchical approach using machine learning methods in solar
photovoltaic energy production forecasting. Energies 2016, 9, 55.

17. Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutza, N. Review of solar irradiance forecasting methods
and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 2013, 27, 65–76.

18. Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; de Pison, F.J.M.; Antonanzas-Torres, F. Review of
photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111.

19. Gneiting, T.; Katzfuss, M. Probabilistic forecasting. Annu. Rev. Stat. Appl. 2014, 1, 125–151.
20. Hong, T. Energy forecasting: Past, present, and future. Foresight 2014, 32, 43–48.
21. Hong, T.; Pinson, P.; Fan, S.; Zareipour, H.; Troccoli, A.; Hyndman, R.J. Probabilistic energy forecasting:

Global Energy Forecasting Competition 2014 and beyond. Int. J. Forecast. 2016, 32, 896–913.
22. GEFCOM. Global Energy Forecasting Competition 2014 Probabilistic Solar Power Forecasting.

2014. Available online: https://crowdanalytix.com/contests/global-energy-forecasting-competition-2014-
probabilistic-solar-power-forecasting (accessed on 1 November 2016).

23. European Centre for Medium-Range Weather Forecasts. 2016. Available online: http://www.ecmwf.int/
(accessed on 1 November 2016).

24. Coiffier, J. Fundamentals of Numerical Weather Prediction; Cambridge University Press: Cambridge, UK, 2012.
25. Bell, R.M.; Koren, Y. Lessons from the Netflix prize challenge. ACM SIGKDD Explor. Newsl. 2007, 9, 75–79.
26. Kotsiantis, S.B. Supervised machine learning: A review of classification techniques. Informatica 2007, 31,

249–268.
27. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;

Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12,
2825–2830.

28. Breiman, L.; Friedman, J.; Stone, C.; Olshen, R.A. Classification and Regression Trees; Taylor & Francis:
Abingdon, UK, 1984.

29. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232.
30. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992,

46, 175–185.
31. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58,

267–288.
32. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.
33. Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics

1970, 12, 55–67.
34. Langford, E. Quartiles in elementary statistics. J. Stat. Educ. 2006, 14, n3.
35. Larson, R.; Farber, E. Elementary Statistics: Picturing the World; Prentice Hall: Upper Saddle River, NJ,

USA, 2003.
36. Koenker, R. Quantile Regression; Cambridge University Press: Cambridge, UK, 2005.
37. Hyndman, R.J.; Athanasopoulos, G.; Razbash, S.; Schmidt, D.; Zhou, Z.; Khan, Y.; Bergmeir, C.; Wang, E.

Forecast: Forecasting Functions for Time Series and Linear Models. R Package Version 5.6. 2014.
Available online: http://CRAN.R-project.org/package=forecast (accessed on 1 November 2016).

38. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2014. Available online: http://www.R-project.org/ (accessed on 1 November 2016).

39. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Toronto, ON, Canada, 2013.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

