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Abstract: An energy storage system (ESS) in a power system facilitates tasks such as renewable
integration, peak shaving, and the use of ancillary services. Among the various functions of an
ESS, this study focused on frequency regulation (or secondary reserve). This paper presents an
optimal scheduling algorithm for frequency regulation by an ESS. This algorithm determines the
bidding capacity and base point of an ESS in each operational period to achieve the maximum profit
within a stable state-of-charge (SOC) range. However, the charging/discharging efficiency of an
ESS causes SOC errors whenever the ESS performs frequency regulation. With an increase in SOC
errors, the ESS cannot respond to an automatic generation control (AGC) signal. This situation
results in low ESS performance scores, and finally, the ESS is disqualified from performing frequency
regulation. This paper also presents a real-time SOC management algorithm aimed at solving the
SOC error problem in real-time operations. This algorithm compensates for SOC errors by changing
the base point of the ESS. The optimal scheduling algorithm is implemented in MATLAB by using
the particle swarm optimization (PSO) method. In addition, changes in the SOC when the ESS
performs frequency regulation in a real-time operation are confirmed using the PSCAD/EMTDC tool.
The simulation results show that the optimal scheduling algorithm manages the SOC more efficiently
than a commonly employed planning method. In addition, the proposed real-time SOC management
algorithm is confirmed to be capable of performing SOC recovery.

Keywords: energy storage system (ESS); frequency regulation (FR); optimal scheduling; state-of-
charge (SOC); energy management

1. Introduction

Recent power systems are focusing on energy storage systems (ESSs) because of their ability
to store energy. Many studies have examined ESSs to utilize renewable integration, peak shaving,
ancillary services, and microgrids [1–10]. In [11], the authors presented the feasibility of an ESS for
the operation of an island AC microgrid with photovoltaic generation. In [12], the authors proposed
an ESS management algorithm for full renewable energy source (RES) exploitation. This algorithm
was shown to minimize the curtailment of RES energy generation through energy buffering and
forecasting error compensation by an ESS. A one-day-ahead scheduling procedure was combined with
a real-time control strategy to improve RES generation and reliability. This study shows that excellent
forecasting error compensation can be achieved even with ESSs of moderate size. In recent years,
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many studies have focused on the ability of ESSs to enable frequency regulation, given that its ramp
rate is higher than that of conventional resources. In [13], the authors proposed an alternative market
structure with the ability to efficiently demand response (DR) and automatic generation control (AGC)
and accommodate the intermittency and uncertainty that are concomitant in renewable generation,
thereby leading to the efficient integration of renewables at the market level and reduced regulation
requirements at the AGC level. This paper proposed an integrated dynamic market mechanism (DMM)
that combined a real-time market clearing procedure with AGC. DMM implementation enabled more
frequent economic dispatch than the optimal power flow (OPF). Our proposed algorithm also reduces
the root mean square error of the area control error by using an aggregate frequency error. In [14],
the authors proposed a hybrid operation strategy for a wind energy conversion system with a battery
energy storage system (BESS) to support frequency control. In their study, the output power command
of the BESS was determined according to three factors: the state-of-charge (SOC), frequency deviation,
and load variation. Their proposed operation strategy significantly improved the initial low-frequency
response and provided a superior contribution to short-term frequency regulation. The research of [15]
proposed an SOC feedback control scheme and investigated the performance of the grid frequency
deviation response. The control was integrated with the widely used wind turbine blade pitch control
and the speed governor control of a local synchronous generator. It was shown that the ESS helped
supply power to wind farms to support frequency regulation and effectively regulated the battery SOC.
An outcome of the increasing number of studies conducted on ESS frequency control is the proposal
of a novel approach associated with the actual performance measurement of an ESS conducting
frequency regulation [16]. This paper evaluated the current methods for procuring, dispatching,
and compensating resources for frequency regulation. The authors also calculated the performance
payment of the proposed novel approach by employing a sigmoid function. This approach influenced
revenue by adjusting the calculation of the performance score. This approach will provide further
insight into administrative price adjustment. The operator would be able to estimate the total mileage
expected on an annual cost, and they would be able to calculate an administrative price that would
reflect a fair compensation for the resources based on their actual frequency-regulation contribution
and performance. In [17], the authors proposed a model that decided the optimal joint bidding strategy
of battery storage in joint day-ahead energy, reserve, and regulation markets. Their novel algorithm
considering the battery life cycle significantly improved a storage battery’s overall economics in
performance-based regulation.

At present, an ESS participates in the frequency regulation market by bidding its maximum
capacity. However, an ESS is unable to manage its SOC because the power system operator sends an
AGC signal without considering the SOC of an ESS. If an ESS is unable to manage its SOC, it does not
respond to the AGC signal; therefore, an ESS should be able to manage its SOC. Many studies have
focused on SOC management via day-ahead scheduling or via compensation by renewable generation;
however, management by these methods in a real-time operation is difficult.

This study proposes an optimal scheduling algorithm and a real-time SOC management algorithm
for frequency regulation by an ESS. The optimal scheduling algorithm determines the bidding capacity
and base point through the particle swarm optimization (PSO) method for achieving the maximum
profit through SOC management. Further, the real-time SOC management algorithm recovers the
SOC in a real-time operation via participation in the energy market. This algorithm manages the SOC
of an ESS by rebidding the scheduled base point in the energy market. Furthermore, a simulation
is performed using actual PJM (Monroe, MN, USA) operation data. This paper is organized as
follows. Section 2 explains the frequency regulation service and frequency regulation market. Section 3
presents the optimal scheduling algorithm and compares it with a commonly employed planning
method. Section 4 presents the proposed real-time SOC management algorithm. Section 5 presents
simulation cases and discusses the simulation results. Section 6 summarizes the conclusions and
suggests future work.
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2. Frequency Regulation Market

In a power system, the frequency changes continuously because of an imbalance of supply
and demand. The system operators conduct frequency regulation or secondary reserve to reduce
the fluctuations and thereby provide stable and reliable system operation. Frequency regulation
involves the injection or withdrawal of as much active power as the assigned regulation capacity
of the resource [18]. Two types of frequency regulation market exist. The first frequency regulation
market type is separated into regulation up and regulation down. Examples include New York
Independent System Operator (NYISO, Rensselaer, NY, USA) and California Independent System
Operator (CAISO, Folsom, CA, USA), and ISO of Europe. The second frequency regulation market
type does not separate regulation up and regulation down and examples for this type include PJM
and Midcontinent Independent System Operator (MISO, Carmel, CA, USA). The second frequency
regulation market type was assumed in this study because PJM data were used; the frequency
regulation market in PJM was selected as the test bed, and simulation was performed according to PJM
frequency regulation market rules. To provide frequency regulation, resources bid on the frequency
regulation market according to the requisite capacity in each operation time [19]. The resources provide
as much active power as the AGC signal whenever the resources receive an AGC signal; this output
point is called the “set point”. If the resources participate in the energy market, the resources provide
as much active power as the bidding quantity every time; this output point is called the “base point”.
The resources participating in both frequency regulation and the energy market provide as much
active power as the base point and perform frequency regulation whenever the resources receive an
AGC signal by additionally providing as much active power as the set point [20]. Figure 1 illustrates
the concept of the set point and base point of an ESS.
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Figure 1. The concept of set point and base point. AGC: automatic generation control.

An ESS always provides active power according to the base point with the assigned energy and
provides active power according to the set point when the ESS receives an AGC signal. Therefore,
an ESS provides as much active power as the output point. The data used in this paper consist of the
actual operation data of the PJM region. The hourly averaged AGC signal, regulation market capacity
clearing price, regulation market performance clearing price, and locational marginal price were used
to plan the optimal scheduling [21–23]. A real-time operation simulation was performed using an
actual AGC signal. The data were collected on 5 September 2013. Figure 2 shows the hourly market
price data, hourly averaged AGC signal, and actual AGC signal.
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3. Optimal Scheduling Algorithm

To provide frequency regulation, ESS owners bid the maximum capacity in the day-ahead market,
but they do not manage the SOC in the same manner. The optimal scheduling algorithm schedules the
bidding plan of an ESS to earn the maximum profit within a stable SOC range. When a schedule is
determined, ESS owners bid on the frequency regulation market in day-ahead market according to the
schedule. For a scheduling plan, this study chose 4 MW/2 MWh Li-ion batteries as the ESS and set the
charging/discharging efficiency to 91%. The initial SOC was set at 60%. This section compares the
SOC, frequency regulation profit, and scheduling results of the maximum-capacity bidding plan and
the optimal scheduling algorithm.



Energies 2016, 9, 1010 5 of 13

3.1. Maximum-Capacity Bidding Plan

The maximum-capacity bidding plan is a conventional bidding method in the frequency
regulation market. In this plan, the base point is set to zero. Therefore, the bidding capacity is
4 MW, and the base point is set to 0 p.u. The SOC changes are calculated as follows Equation (1):

If AGC (i) ≤ 0, SOC (i + 1) = SOC (i)− cbid × AGC (i)
Crated

× ηc × ∆t;

If AGC (i) > 0, SOC (i + 1) = SOC (i)− cbid × AGC (i)
Crated

× 1
ηd
× ∆t

(1)

where i is the index of time (h), SOC (i) is the SOC of the ESS at time i, cbid is the bidding capacity
of ESS, Crated is the rated capacity of ESS, AGC (i) is the hourly averaged AGC signal, and ηc and ηd
are the charging and discharging efficiencies of the ESS, respectively. Figure 3 presents the bidding
capacity, base point, and SOC when the ESS is bid by the maximum-capacity bidding plan. In addition,
Table 1 lists the frequency regulation profit.

Energies 2016, 9, 1010 5 of 12 

 

If ( ) ≤ 0, ( + 1) = ( ) − × ( ) × η × ∆ ; 

If ( ) > 0, ( + 1) = ( ) − × ( ) × × ∆ 	 (1) 

where i is the index of time (h), SOC(i) is the SOC of the ESS at time i,  is the bidding capacity of 
ESS,  is the rated capacity of ESS, ( ) is the hourly averaged AGC signal, and η  and η  
are the charging and discharging efficiencies of the ESS, respectively. Figure 3 presents the bidding 
capacity, base point, and SOC when the ESS is bid by the maximum-capacity bidding plan. In 
addition, Table 1 lists the frequency regulation profit. 

(a) 

(b) 

(c) 

Figure 3. Maximum capacity bidding plan and optimal scheduling algorithm results (a) bidding 
capacity; (b) base point; and (c) SOC. 

Table 1. Frequency regulation scheduling profits. 

Method Regulation Profit Energy Profit Total Profit 
Maximum capacity bidding plan $2773.4 $0 $2773.4 

Optimal scheduling algorithm $2483.1 $9.4 $2492.5 

Figure 3. Maximum capacity bidding plan and optimal scheduling algorithm results (a) bidding
capacity; (b) base point; and (c) SOC.



Energies 2016, 9, 1010 6 of 13

Table 1. Frequency regulation scheduling profits.

Method Regulation Profit Energy Profit Total Profit

Maximum capacity bidding plan $2773.4 $0 $2773.4
Optimal scheduling algorithm $2483.1 $9.4 $2492.5

3.2. Optimal Scheduling Algorithm

The optimal-scheduling algorithm is a method used to earn the maximum profit within a stable
SOC using the PSO method. PSO is a widely used traditional method for solving problems in power
systems [24–27]. PSO solves the optimization problem as follows:

xj
k+1 = xj

k + vj
k+1 (2)

vj
k+1 = wvj

k + c1r1

(
Pj

k − xj
k

)
+ c2r2

(
Pg

k − xj
k

)
(3)

where Pj
k and Pg

k are the individual best position and the global best position, respectively; k and j
represent the iteration number and particle number, respectively; x is the position of the particle; v is
the velocity; w is the inertia weight; c1 and c2 are acceleration coefficients, and r1 and r2 are randomly
generated numbers in the range of [0,1]. The PSO method finds a solution to minimize the cost function,
F (xi). To minimize the cost function F (xi) in particle j, PSO calculates the individual best position of
particle j using each xi and updates each xi position as much as the velocities to find the individual
best position in each iteration k. Finally, PSO is used to compare the individual best position to update
the global best position and determine a solution.

To plan the optimal scheduling, the cost function, F (xi), was formulated as:

max
24

∑
i=1

Co (i) (4)

Co (i) = Cc (i) + Cp (i)− Ce (i) (5)

Cc (i) = c (xi)× RMCCP (i)× PS (6)

Cp (i) = c (xi)× RMPCP (i)× PS×MR (7)

Ce (i) = c (xi)× LMP (i)× bp (xi) (8)

subject to the following constraints:
SOC (0) = SOC (24) (9)

SOCmin ≤ SOC (i) ≤ SOCmax (10)

If AGC (i) ≤ 0, SOC (i + 1) = SOC (i)−
cbid ×

[
AGC (i) + bp (xi)

]
Crated

× ηc × ∆t;

If AGC (i) > 0, SOC (i + 1) = SOC (i)−
cbid ×

[
AGC (i) + bp (xi)

]
Crated

× 1
ηd
× ∆t

(11)

c (xi) + c (xi)× bp (xi) ≤ Maximum capacity (12)

where Co (i) is the operation profit, Cc (i) and Cp (i) are the regulation capability credit and regulation
performance credit, respectively; Ce (i) is the cost by bidding in the energy market; c (xi) and bp (xi)

are the scheduled bidding capacity and base point in the energy market by PSO, respectively;
RMCCP (i), RMPCP (i), and LMP (i) are the hourly regulation market capability clearing price, the
hourly regulation market performance clearing price, and the hourly locational marginal pricing,
respectively. PS and MR are the performance score and mileage ratio, respectively. Note that the
initial SOC and final SOC are considered in constraint Equation (9). For operation within a stable
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SOC range, the SOC management constraint is set as in Equation (10). The SOC was calculated using
constraint Equation (11). Constraint Equation (12) manages the bidding capacity up to the maximum
capacity. For the optimal scheduling algorithm, the upper and lower limits of the stable SOC range,
Smin and Smax, are set to 40% and 80%, respectively. Typically, ESSs achieve a performance score of
0.95; thus, PS was assumed to be 0.95. In addition, the MR on 5 September 2013 was 3. To perform
optimal scheduling, the data described in Section 3 were used, and Equations (4)–(12) were solved
in MATLAB/Simulink (MathWorks, Natick, MA, USA). Figure 3 shows the changes in the bidding
capacity, base point, and SOC. Table 1 lists the frequency regulation profits. Regulation profit is the
benefit participating frequency regulation market, and energy profit is the cost participating energy
market. As shown in Table 1, the maximum-capacity bidding plan earned higher frequency regulation
profit than that of the optimal scheduling algorithm. On the other hand, the optimal scheduling
algorithm was advantageous in terms of SOC management. The maximum-capacity bidding plan did
not manage the SOC, which can cause problems in the operation the next day; in contrast, the optimal
scheduling algorithm did manage the SOC by using constraints Equations (9) and (10), which ensured
stable operation every day.

4. Real-Time State-of-Charge Management Algorithm

In a real-time operation, the ESS performs frequency regulation in response to an AGC signal
every two seconds. The charging/discharging efficiency of the ESS causes an SOC error whenever
the ESS provides frequency regulation. Because the SOC error would prevent the ESS from providing
frequency regulation, a novel SOC management algorithm is proposed. In a real-time operation,
the SOC is calculated as follows:

If AGC (z) ≤ 0, SOC (z + 1) = SOC (z)− c (xi)× [AGC (z) + bp (xi)]

Crated
× ηc × ∆t;

If AGC (z) > 0, SOC (z + 1) = SOC (z)− c (xi)× [AGC (z) + bp (xi)]

Crated
× 1

ηd
× ∆t

(13)

where AGC (z) is the actual AGC signal, and z is the frequency regulation interval. To solve the SOC
error, this study presents a real-time SOC management algorithm. This algorithm changes the base
point through hysteresis loop according to the SOC range. Figure 4 illustrates the concept of a real-time
SOC management algorithm. When the SOC is between SOCmin_limit and SOCmax_limit, the base point
is set to bp (xi). The ESS then operates according to the optimal scheduling algorithm. When the SOC
is above SOCmax_limit because of the accumulation of SOC errors, bp (xi + 2) is set to BPdis by rebidding
the base point after two hours’ operation according to PJM market rules. Owing to the changing base
point, the ESS provides as much additional active power in the energy market as BPdis until the SOC
crosses SOCmax_end. When the SOC crosses SOCmax_end, the ESS bids the base point as bp (xi + 2) in
the optimal scheduling algorithm results. When the SOC is below SOCmin_limit, bp (xi + 2) is set to
BPch by rebidding the base point, and the ESS provides as much additional active power in the energy
market as BPch until the SOC crosses SOCmin_end. When the SOC crosses SOCmin_end, the ESS bids
the base point as bp (xi + 2) in the optimal scheduling algorithm results. Table 2 lists the parameters
selected to maintain a stable SOC range for real-time SOC management. SOCmin_limit and SOCmax_limit
was set to 45% and 75%, respectively. SOCmin_end and SOCmax_end was set to 50% and 70% respectively.
The stable SOC range was set from 40% to 80%.
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Table 2. Simulation case results.

Case Regulation Profit Energy Profit Total Profit SOC

Case 1 $911.8 $0 $911.8 10%
Case 2 $1116.2 $−10.4 $1105.8 10%

Case 3 (0.05 p.u) $2630.3 $−147.4 $2482.9 39.9%
Case 3 (0.1 p.u) $2555.5 $−159.7 $2395.8 48.9%
Case 3 (0.15 p.u) $2506.2 $−157.2 $2349 37.4%

5. Simulation Results

This section reports the simulation results to evaluate the performance of the proposed algorithm
using a real operation parameter. In the first case, the maximum-capacity bidding plan was performed,
the second case used the optimal scheduling algorithm, and the third case applied the real-time SOC
management algorithm to the optimal scheduling algorithm. The PSCAD/EMTDC (Manitoba HVDC
Research Centre, Winnipeg, MB, Canada) was used to confirm the SOC changes using Equation (12)
when the ESS performed frequency regulation in a real-time operation. The actual AGC signal data
in the PJM on 5 September 2013 were used to calculate the SOC in real-time. Because the AGC cycle
of the PJM is 2 s, the SOC was calculated every 2 s. For the simulation, the scheduling was set as
described in Section 4. To protect the ESS, the operational SOC range was set between 10% and 90%.
Therefore, the ESS will shut down to protect itself when the SOC exceeds the operational SOC range.
Case 1 is result by maximum capacity bidding plan, case 2 is result by optimal scheduling algorithm
and case 3 is result by optimal scheduling algorithm with real-time SOC management by various
base point. Cases 1 and 2 were compared to evaluate the optimal scheduling algorithm, which was
confirmed by the frequency regulation profit change and increased operation time. In addition, Case 2
was compared with Case 3 to evaluate the real-time SOC management algorithm by changing the base
point. Table 2 shows total case results.

5.1. Case 1

Figure 5 shows the SOC changes when the ESS performed frequency regulation through the
maximum-capacity bidding plan. In a real-time operation, the ESS performs frequency regulation by
charging and discharging in response to an AGC signal. At 1 a.m., the SOC difference between the
real-time operation SOC (55.8%) and maximum-capacity bidding plan (59.8%) was 4% because of the
charging/discharging efficiency. This SOC difference increased consistently when the ESS performed
the frequency regulation in a real-time operation. At 10 a.m., the SOC reached 10%, and the ESS
was shut down. When the ESS performed frequency regulation according to the maximum-capacity
bidding plan, the performance score decreased because the ESS does not perform frequency regulation
when the SOC reaches 10%. According to the decreasing performance score, the frequency regulation
profit decreased from $2773.40 to $911.80.
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5.2. Case 2

Figure 6 shows the SOC changes when the ESS performed frequency regulation through the
optimal scheduling algorithm of Section 4. The SOC decreased consistently when the ESS performed
frequency regulation. According to the optimal scheduling algorithm, the base point of the ESS was
set to −0.1 p.u for charging the SOC at 6 a.m. By changing the base point, the ESS recovered the
SOC. Nevertheless, the real-time SOC reached 10% at 1 p.m., and the ESS was shut down. On the
other hand, the simulation result of the optimal scheduling algorithm operated 3 h longer than the
maximum-capacity bidding plan because the optimal scheduling algorithm managed the SOC by
constraint in Equation (10). In the planning step, the maximum-capacity bidding plan earned more
frequency regulation profit than the optimal scheduling algorithm (more than $280.90); however, in the
real-time operation, the optimal scheduling algorithm earned more frequency regulation profit than
the maximum-capacity bidding plan (as much as $194.00) through its scheduling capacity and base
point. This result means that the optimal scheduling algorithm can increase the operation time of the
ESS and earn more frequency regulation profit.
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5.3. Case 3

Figure 7 presents the SOC changes when the ESS performed frequency regulation through the
optimal scheduling algorithm and real-time SOC management algorithm by various base points. In the
0.05-p.u case, at 3 a.m., the SOC reached 43.7%. Consequently, the bidding schedule of the base point
was changed to −0.05 p.u through the real-time SOC management algorithm after 2 h according to
the PJM market rules until 9 a.m., when the SOC reaches more than 50%. The bidding schedule can
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change 1 h before the operation time according to PJM market rules, thus, the bidding schedule was
changed at 4 a.m. because the bidding schedule of 3 a.m. had already been submitted. Although the
SOC reached more than 50% at 3 p.m., the bidding schedule was not changed until 4 p.m. for the
same reason. Owing to the changed base point, the bidding capacity was also changed to 3.8 MW by
constraint Equation (12). In this case, the ESS maintained recovery time for 16 h because 0.05 p.u was
not enough for SOC recovery. The SOC reached 39.9% when the ESS finished operating. The frequency
regulation earned a profit of $2482.90. In the 0.1-p.u case, the ESS maintained the recovery time for
8 h, and the 0.1-p.u case recovery was more rapid and stable than that of the 0.05-p.u case. The SOC
reached 48.9% in the stable range, and the frequency regulation earned a profit of $2395.80. In the
0.15-p.u case, the ESS recovery was more rapid than that of the 0.1-p.u case; however, the 0.15-p.u
case recovered too much because the SOC reached 81.7% at 5 p.m. The SOC management algorithm
changed the base point to 0.15 p.u, causing the SOC to escape the stable range again. In this case,
the ESS maintained the recovery time for 9 h, and the SOC reached 37.4%. The frequency regulation
earned a profit of $2349. The ESS of Case 3 used the optimal scheduling algorithm and real-time SOC
management algorithm to perform frequency regulation for a day. In contrast, Case 2, which used
only the optimal scheduling algorithm, did not perform for a day. This result shows that when an
ESS performs frequency regulation without an additional SOC management algorithm, the ESS does
not perform for a day, and the proposed SOC management algorithm successfully managed the SOC
of the ESS. Moreover, the base point is a significant factor in this algorithm because the base point
determines the recovery quantity.Energies 2016, 9, 1010 10 of 12 
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Table 3 lists simulation results for different day. As shown Table 3, the base point is an
important factor in this algorithm because the base point determines the recovery quantity of the
SOC. Furthermore, for the determination base point, real-time SOC management algorithm should use
accurate forecasting information.
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Table 3. Additional simulation case results.

Optimal Scheduling &
Real-Time SOC Managment Base Point Profit SOC

2013.06.10
0.05 $1254.2→ $211.7 10%
0.1 $1254.2→ $948.4 25.61%
0.15 $1254.2→ $953.6 40.60%

2013.12.2
0.05 $2232.4→ $1857.1 51.42%
0.1 $2232.4→ $1815.1 37.89%
0.15 $2232.4→ $1778.1 42.32%

2014.03.10
0.05 $4024.3→ $3536.8 52.12%
0.1 $4024.3→ $3301.4 65.56%
0.15 $4024.3→ $3475.8 41.21%

6. Conclusions

This study proposed an optimal scheduling algorithm for frequency regulation by an ESS
to ensure the realization of maximum profit within a stable SOC range. The maximum-capacity
bidding plan is the best method for realizing frequency regulation profit, but it does not manage
the SOC. The optimal scheduling algorithm schedules a bidding plan using the PSO method to
realize the maximum frequency regulation profit within a stable SOC range. Although the optimal
scheduling algorithm provides less frequency regulation profit than the maximum-capacity bidding
plan, the former maintains stable operation through SOC management. The proposed algorithm was
evaluated through simulation of three cases by means of the PSCAD/EMTDC tool in a real-time
operation. The simulation results show that the optimal scheduling algorithm increases the duration
of real-time operation and results in higher profits in comparison to the conventional bidding plan
without SOC management. While the conventional maximum-capacity bidding plan provides more
profit than the optimal scheduling algorithm in the planning step, the optimal scheduling algorithm
provides more profit in real-time operations.

This study also proposed a real-time SOC management algorithm. The ESS constantly performs
frequency regulation using this algorithm by which the ESS changes the base point to recover the SOC
in a real-time operation. In the case where the real-time SOC management algorithm was applied in the
PJM regulation market, it effectively recovered the SOC when the base point was changed to 0.1 p.u.
The proposed real-time SOC management algorithm can be applied to various regulation market
environments by changing the base point. This algorithm is expected to promote the participation of
ESSs in various regulation markets.

Future work will deal with the forecasting error. The cases in this study were simulated using
actual operation data, but the ESS uses forecast data during actual operation. Accordingly, the proposed
algorithm should consider ESS potential forecasting error.
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