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Abstract: The rule-based logic threshold control strategy has been frequently used in energy
management strategies for hybrid electric vehicles (HEVs) owing to its convenience in adjusting
parameters, real-time performance, stability, and robustness. However, the logic threshold control
parameters cannot usually ensure the best vehicle performance at different driving cycles and
conditions. For this reason, the optimization of key parameters is important to improve the fuel
economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear
optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV
is comprehensively analyzed and developed in this study. Seven key parameters to be optimized
are extracted. The optimization model of key parameters is proposed from the perspective of
fuel economy. The global optimization method, DIRECT algorithm, which has good real-time
performance, low computational burden, rapid convergence, is selected to optimize the extracted
key parameters globally. The results show that with the optimized parameters, the engine operates
more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized
parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle
energy management strategy from the perspective of fuel economy.

Keywords: fuel economy; hybrid electric vehicle; energy management strategy; logic threshold value;
DIRECT; parameters optimization

1. Introduction

The main factors affecting the fuel consumption and emission performance of a hybrid electric
vehicle (HEV) include the performance parameters of various powertrain components and vehicle
control strategy parameters. Optimizing the parameters of the powertrain and control strategy will
not only result in a reasonable match for the powertrain, but also reduce the vehicle fuel consumption
and emissions.

At this stage, the energy management strategy based on logic threshold is mainly used in HEVs [1,2].
The focus is to predetermine a number of threshold parameters that make the engine and battery work
in the high efficiency area. The battery charging and discharging efficiency are also considered in
order to properly distribute the driver’s required torque to the engine and motor, thereby attaining a
good vehicle fuel economy and emission performance.

In vehicle tests, the predefined parameter values of the logic threshold control strategy are usually
obtained by trial and error based on engineering experience. This method requires considerable
debugging time to acquire satisfactory results both in simulation and vehicle transfer hub test for
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the defined typical driving cycle. In addition, this method cannot ensure optimal global parameters.
Therefore, it is necessary to adopt an optimization method that can automatically search the globally
optimized threshold parameters for the energy management strategy.

The optimization of key parameters for logic threshold energy management strategies is a
mathematical nonlinear problem with many variable constraints. The genetic algorithm was applied
in optimizing various governing parameters of hybrid electric vehicles (HEVs) and the fuel economy
was improved significantly [3–6]. The multi-objective genetic algorithm was adopted to optimize
the control parameters of the HEV for improving the fuel economy and emission performance [7,8].
Li et al. utilized a modified non-dominated sorting genetic algorithm-II to effectively optimize the logic
threshold control strategy parameters of the HEV to minimize the equivalent fuel consumption [9].
Li et al. applied a hybrid genetic algorithm (HGA), which combines an enhanced genetic algorithm
with simulated annealing, in optimizing the powertrain and control parameters of plug-in hybrid
electric bus simultaneously. Simulation results show that HGA has a better convergence speed
and global searching ability [10]. The particle swarm optimization (PSO) algorithm was applied to
search the optimal value of the power system and control parameters of HEV to improve the fuel
economy [11–13]. In order to achieve a better fuel economy and emission performance, Deng et al.
presented an optimization method for logic threshold control strategy parameters of a parallel HEV
using the simulated annealing particle swarm optimization [14]. Wang et al. utilized evolutionary
algorithm in conjunction with an instantaneous optimal energy management strategy to optimize
the propulsion system parameters as well as the energy control parameters for plug-in HEV [15].
Zhang et al. used differential evolution algorithm to globally optimize the plug-in HEV control
parameters [16]. Long et al. optimized the key component and control parameters by using the
bees algorithm [17]. Chris et al. showed that the DIvided RECTangle (DIRECT) algorithm has a better
optimal effect compared with the genetic algorithm, simulated annealing, PSO and other algorithms by
test, because it can cover the global space for parameter optimization without missing any optimization
value [18].

The DIRECT algorithm [19] does not require a clear expression of the objective function equation
as well as derivative information, but decides on the next searching area based on the estimated value
of the function at the sampling points of each iteration and the division of a hyper-rectangle. Thus, it is
ideal for simulation of the black-box function optimization [20]. However, it requires a large number
of samples in the region to ensure the final global optimum. Besides, the number of estimated function
is relatively larger than that of the gradient-based optimization method. In practical engineering
optimization, the meta-model optimization is often very complex and the simulation time is relatively
long [21]. Instead of the complex meta-model, an approximate model built by the sampling points of
each DIRECT algorithm iteration is utilized, thereby reducing the number of simulations, improving
the convergence speed, shortening the optimization time, and saving computing resources.

As mentioned above, the advantage of DIRECT algorithm is to obtain the global optimization
result compared with other optimization algorithm. Besides, it also has low computational burden,
rapid convergence. So it is meaningful to utilize the DIRECT algorithm to acquire the global optimized
value of the parameters of HEV energy management strategy. However, a few works have been found
to optimize the control strategy parameters of hybrid electric vehicle utilizing the DIRECT algorithm.
Rousseau et al. and He et al. established a power component parameter optimization model for a
HEV to minimize the fuel consumption. The constraints are the dynamic design specifications and
variables, namely the engine power, battery power, battery capacity, battery bus voltage, etc. The
DIRECT algorithm is utilized to optimize these parameters. Whereas, the logic threshold control
strategy parameters have not been analyzed and optimized [22,23]. Panday et al. utilized DIRECT
algorithm to optimize partial parameters of HEV control strategy, such as state of charge in the battery,
engine idle speed, engine on duration and power demand [24].

The general comparison of different algorithms is presented in Table 1. The research works which
optimize the parameters of HEV energy management strategy utilizing GA, PSO, etc. may lead to local



Energies 2016, 9, 997 3 of 24

optimization. The DIRECT algorithm based optimization method can ensure the global optimized
parameters of HEV energy management strategy. However, the literatures which optimized hybrid
electric vehicle parameters based on DIRECT algorithm merely optimized the parameters of powertrain
configuration or partial parameters of control strategy to improve energy efficiency. Few research
works have comprehensively analyzed and optimized the influencing parameters of logic threshold
control strategy for HEV, especially for all-wheel-drive HEV. The logic threshold control strategy of
all-wheel-drive HEV is more complicated, for the all-wheel-drive HEV has more freedom of power
sources. And the optimization of the logic threshold control strategy parameters for all-wheel-drive
HEV comprehensively is more challenging and more meaningful to improve the fuel economy.

Table 1. General comparison of different algorithms.

Algorithm Convergence Computation Burden Global Optimization

Genetic algorithm good general bad
Hybrid genetic algorithm good general general

Particle swarm optimization good good bad
Simulated annealing bad good general

Bees algorithm good bad general
DIRECT algorithm good general good

In this paper, the logic threshold parameters of the all-wheel-drive HEV energy management
strategy are comprehensively analyzed, and the seven energy efficiency influencing parameters to
be optimized are extracted. Then, the minimized equivalent fuel consumption per 100 km is set as
the target, and the DIRECT algorithm is implemented to optimize the proposed parameters globally.
Finally, the effectiveness of the algorithm to solve the problem is analyzed by simulation.

2. HEV Powertrain Model

The research object in this study is an all-wheel-drive full HEV, and its powertrain structure is
shown in Figure 1 [25]. Its front axle adopts the driving structure including the engine, integrated
starter and generator (ISG) motor, and automated mechanical transmission (AMT) gearbox. Its rear
axle is driven by two in-wheel motors. The ISG motor shares the same axle with the engine; therefore,
it can function as a cranking motor to start the engine quickly. Besides, the output torque of the
in-wheel motor can be directly transmitted to the wheel and is capable of driving the vehicle alone at
low speed. At the same time, the ISG and in-wheel motors can be used both as driving motors for the
vehicle and function as generators to regenerate the excess kinetic energy.

Figure 1 shows that the key parts of the HEV powertrain include the engine, ISG motor, AMT
gearbox, in-wheel motor, and power battery. The main technical parameters of these components
are shown in Tables 2–7. In consideration of the complexity for acquiring the model parameters and
control accuracy, the static model with dynamic correction for main power components is adopted.

Table 2. Vehicle parameters of four-wheel drive HEV.

Vehicle
Curb Mass

Tire
Radius

Frontal
Area

Correction Coefficient
of Rotating Mass

Coefficient of Air
Resistance

Coefficient of
Rolling Resistance

1650 kg 0.308 m 2.095 m2 1.05 0.293 0.0137

Table 3. Engine parameters of four-wheel drive HEV.

Engine Capacity Peak Torque Peak Power Maximum Rotational Speed

1.8 L 250 N·m 150 kW 6500 rpm
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Table 4. ISG motor parameters of four-wheel drive HEV.

Rated Power Peak Torque Peak Power Maximum Rotational Speed

10 kW 72 N·m 15 kW 6500 rpm

Table 5. In-wheel motor parameters of four-wheel drive HEV.

Rated Power Peak Torque Peak Power Maximum Rotational Speed

6 kW 200 N·m 16 kW 2000 rpm

Table 6. Gear ratio of AMT gearbox.

Gear 1st 2nd 3rd 4th 5th 6th

Gear Ratio of AMT gearbox 3.615 2.042 1.257 0.909 0.902 0.0137

Table 7. Transmission parameters of four-wheel drive HEV.

Gear Ratio of Main Reducer Reverse Gear Ratio Transmission Efficiency

3.894 4.293 0.92
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2.1. Engine Model

Since the engine output torque in steady-state condition is a function of its speed and throttle
opening, the numerical model of the engine can be established by polynomial fitting based on the
engine test data. Considering that the throttle opening changes quickly under the condition of starting
or speed-changing, a dynamic process is needed for the engine to be steady. For this reason, a first-order
inertia link is used to amend the engine torque representing its dynamic property [26].
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Te =
1

τes + 1
f (ωe, α), (1)

where Te is the engine output torque; ωe is the engine speed; α is the throttle opening; τe is the time
constant of the engine torque response; f is a function of the engine torque characteristic.

The data regarding the external characteristic, fuel consumption, and emissions are acquired from
the existing engine test. Then, the working characteristic of the engine is obtained by a lookup table or
fitting. The current maximum torque and fuel consumption rate of the engine can be acquired by a
lookup table according to the current engine speed and torque in the Simulink model. Figure 2 shows
the engine fuel consumption rate curve and external characteristic curve used in the model.
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2.2. Motor Model

Both the ISG and in-wheel motors are permanent magnet synchronous motors. The motor model
is established according to the data of motor efficiency. The dynamic correction is done via a first-order
inertia link [26].

Tm =


1

τms+1 min(Tmr, Tdismax(ωe)) Tmr > 0
1

τms+1 max(Tmr, Tchmax(ωe)) Tmr < 0
, (2)

where Tm is the output torque of the motor; Tmr is the required torque of the motor; τm is the time
constant of the motor; Tdismax(ωe) is the maximum output torque of the motor at the speed ωe when
discharging; Tchmax(ωe) is the minimum output torque of the motor at the speed ωe when charging.

The motor power can be calculated based on the following equation:

Pm = ImUm =


Tmωe

9550ηm
, Tm ≥ 0

Tmωeηm
9550 , Tm < 0

, (3)

where Im is the motor current; Um is the bus voltage; ηm refers to the motor efficiency; Pm is the
motor power.

The working efficiency and external characteristic curves of the ISG and in-wheel motors,
which are shown below in Figures 3 and 4, respectively, are obtained from the experiment.
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(ISG) motor.
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Figure 4. Working efficiency curve and external characteristic curve of in-wheel motor.

2.3. Powertrain Model

The powertrain components in this research include the clutch, AMT gearbox, and main reducer.
The powertrain model diagram is shown in Figure 5. The combination and separation of the clutch
is determined by the transmission control unit. The vehicle management system controls the clutch
state only in the starting process. The transmission and reducer output the powertrain speed and
torque according to the throttle percentage, current gear, state of clutch, output torque of clutch, and
vehicle velocity.

Considering the practical needs of the control strategy when modeling, we simplify the clutch
model using 0 and 1 to represent the complete separation and combination of the clutch. The function
of the AMT gearbox and main reducer is to slow down the speed and increase the torque. In particular,
when the AMT gearbox is running, the gear changes with shifting control strategy, which directly
influences the dynamic performance, fuel economy, and comfort in the vehicle. Therefore, it is
necessary to introduce a gear shifting control strategy in the model. Figure 6 shows the gear shift
curve calculation module and gear shift control module in the Simulink/Stateflow. The gear ratio is
determined by the engine throttle position and vehicle velocity, which can be attained by the lookup
table based on the current gear.
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2.4. Battery Model

The battery functions as an auxiliary power supply for HEVs to provide energy for the motor as
well as recycle the excess kinetic energy when braking. The recovery of braking energy is important for
improving the vehicle efficiency and saving energy. Although the chemical reaction inside the battery
is relatively complex, only the external characteristic of the battery is used in the model. The commonly
used battery models include the equivalent circuit model and neural network model. The equivalent
circuit model can accurately reflect the battery characteristics using the circuit components such as
resistors, capacitors, and voltage to simulate the dynamic performance of the battery. The equivalent
circuit models mainly used are the Rint, Thevenin, and PNGV models [27]. The Rint model, which is
shown in Figure 7, is selected in this study [28].
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In the diagram, Rdis and Rchg are the internal resistance of the battery when charging and
discharging, and Voc is the open circuit voltage of the battery. Rdis, Rchg, and Voc are functions of
the battery state of charge (SOC) and temperature T. When the battery power demand is known, the
terminal voltage of the battery, Vo, and current, Io, can be calculated based on the mathematical models
described below.

Pcmd = Vo Io, (4)

Vo = Voc − Rint Io, (5)

By combining Equations (4) and (5), Equation (6) can be obtained.

Io =
Voc

2Rint
−

√
(

Voc

2Rint
)

2
− Pcmd

Rint
, (6)

Here, Rint is the internal resistance of the battery when charging or discharging; and Pcmd is the
battery demand power when charging or discharging.

The current battery SOC value can be calculated by the ampere hour algorithm [26] method with
the specific formula shown as follows:

SOC(t) = SOCstart −
∫ t

0 Iodt
Qmax

, (7)

where SOCstart is the initial battery SOC value, and Qmax is the maximum battery capacity.
The working state and related parameters of the battery are related to the temperature, so the

change of the internal battery temperature should be considered. The specific calculation formula is
presented as follows:

mcp
dT(t)

dt
= Rint I2

o (t)− hc A[T(t)− Ta], (8)

where A is the total heat dissipation area of the battery, cp is the specific heat capacity of the battery, hc

is the heat transfer coefficient of the battery cooling system, and Ta refers to the ambient temperature.
Based on the above equations, the battery model is established in Simulink. The input and output

signals, as well as the calculation module of battery model, are shown in Figure 8. The battery model
mainly includes the current, internal resistance, terminal voltage, output power, SOC, and temperature
calculation modules. The main characteristic parameters of the battery are shown in Table 8.



Energies 2016, 9, 997 9 of 24

Energies 2016, 9, 997 9 of 25 

 

temperature calculation modules. The main characteristic parameters of the battery are shown in 
Table 8. 

 
Figure 8. The battery model diagram. 

Table 8. Main characteristic parameters of the battery. 

Characteristic Parameter Value Characteristic Parameter Value 
Capacity  8 Ah Total heat dissipation area 1.6 m2 
Voltage  312 V Specific heat capacity  800 J/(kg·K) 

Mass 70 kg Heat transfer coefficient 24 W/(m2·K) 

2.5. Longitudinal Dynamics Model of Vehicle 

This research focuses on the fuel economy of the HEV, thus only the longitudinal dynamics is 
considered in the vehicle model, regardless of the vertical vibration and handling stability. According 
to the vehicle kinematics equation [29], we have: 

2cos sin
21.15

D
t

C A
F mgf u mg mu= + + +α α δ , (9) 

where tF  is the driving force, m  is the total mass of the vehicle, f  is the rolling resistance 
coefficient, α  is the slope angle, A  is the vehicle frontal area, DC  is the air drag coefficient, u  is 
the vehicle speed, and δ  refers to the correction coefficient of rotating mass. 

2.6. Driver Model 

The function of the driver model is to simulate the real driver’s controllability. And the driver 
model diagram is shown in Figure 9. The driver controls the accelerator or the braking pedal opening 
based on the difference between the real velocity and driving cycle velocity. The proportional–
integral (PI) controller is selected for the driver model [30]. 

The driver model can be described as follows: 

= ( ) ( )p target i targetk v v k v v dt− + −α , (10) 

where α  is the pedal opening, with positive and negative values representing the accelerator pedal 
opening and brake pedal opening, respectively; targetv  is the target velocity; v  is the current actual 

speed; pk  and ik  refer to the proportional and integral coefficients of the PI controller, 

respectively. 

Figure 8. The battery model diagram.

Table 8. Main characteristic parameters of the battery.

Characteristic Parameter Value Characteristic Parameter Value

Capacity 8 Ah Total heat dissipation area 1.6 m2

Voltage 312 V Specific heat capacity 800 J/(kg·K)
Mass 70 kg Heat transfer coefficient 24 W/(m2·K)

2.5. Longitudinal Dynamics Model of Vehicle

This research focuses on the fuel economy of the HEV, thus only the longitudinal dynamics is
considered in the vehicle model, regardless of the vertical vibration and handling stability. According
to the vehicle kinematics equation [29], we have:

Ft = mg f cosα +
CD A
21.15

u2 + mgsinα + δmu, (9)

where Ft is the driving force, m is the total mass of the vehicle, f is the rolling resistance coefficient, α is
the slope angle, A is the vehicle frontal area, CD is the air drag coefficient, u is the vehicle speed, and δ

refers to the correction coefficient of rotating mass.

2.6. Driver Model

The function of the driver model is to simulate the real driver’s controllability. And the driver
model diagram is shown in Figure 9. The driver controls the accelerator or the braking pedal opening
based on the difference between the real velocity and driving cycle velocity. The proportional–integral
(PI) controller is selected for the driver model [30].

The driver model can be described as follows:

α = kp(vtarget − v) + ki

∫
(vtarget − v)dt, (10)

where α is the pedal opening, with positive and negative values representing the accelerator pedal
opening and brake pedal opening, respectively; vtarget is the target velocity; v is the current actual
speed; kp and ki refer to the proportional and integral coefficients of the PI controller, respectively.
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Figure 9. Driver model diagram.

3. Parameters to Be Optimized for HEV Logic Threshold Energy Management Strategy

3.1. Hybrid Electric Vehicle Energy Management Strategy

The all-wheel drive full-HEV has two power sources—the engine and power battery. According
to the steady-state efficiency map diagram, the working efficiency differs at different working sections.
Based on the power battery charging and discharging resistance characteristics, its internal resistance
under various charged states is different, thus the working efficiency is also different. The energy
management strategy based on the logic threshold aims to make the engine operate in the high
efficiency range and keep the battery SOC within a specific range [1]. The working area of the engine
is shown in Figure 10. The engine is set to work within the area between the upper limit and lower
limit. The working area of motor is presented in Figure 11. The motor works when the battery SOC
is between 0.3 and 0.8. When the SOC is high, the motor provides driving torque. On the contrary,
the motor works as a generator. The parsing of the driver’s intention and torque distribution are the
main focus of the energy management strategy.
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3.1.1. Parsing of Driver’s Intention

In the process of driving, the driver shows his or her acceleration or deceleration demand by
manipulating the accelerator pedal or braking pedal. Therefore, to parse the driver’s demand, it is
necessary to transfer the pedal signal into vehicle demand torques, which can be divided into driving
demand torque and braking demand torque. In order to identify the demand torque, the pedal signal
is normalized, and is expressed as α, within (−1, 1). The positive value represents the accelerator
pedal opening while the negative value is for the braking pedal opening. In order to maintain the
driver’s reaction when operating the pedal and obtain the same dynamic properties as the prototype,
we consider the engine external characteristic curve as the driver’s maximum demand torque curve
for HEVs.

Therefore, when the driver controls the accelerator pedal, the demand driving torque can be
represented as

Tcmd = αTemax, (11)

where Tcmd is the demand driving torque, α is the accelerator pedal opening, and Temax is the engine
maximum torque.

When the driver controls the braking pedal, the demand braking torque can be represented as

Tcmd = α(TMaxGen + TMaxMechBrake), (12)

where Tcmd is the demand braking torque, α is the braking pedal opening, TMaxGen is the maximum
regenerative braking torque, and TMaxMechBrake refers to the highest mechanical braking torque.

For the all-wheel drive full-HEV, the energy management strategy distributes the driver’s demand
braking torque to the engine, ISG motor, in-wheel motor, and mechanical braking system.

The demand driving torque is as follows:

Tcmd = Te + TISG + Thubmotor/ioig, (13)

The demand braking torque is presented as follows:

Tcmd = TISGGenioig + ThubmotorGen + TMechBrake, (14)

where Te, TISG, and Thubmotor are the driving torques provided by the engine, ISG motor, and in-wheel
motor, respectively; TISGGen, ThubmotorGen, and TMechBrake refer to the braking torques provided by ISG
motor, in-wheel motor, and mechanical braking system, respectively; io and ig are the gear ratios of the
main reducer and AMT gearbox, respectively.
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3.1.2. Torque Distribution Strategy for Different Driving Modes

When the vehicle is running, the engine working points can be controlled to stay in the high
efficiency area, and the battery can be controlled to work in the range within the low internal resistance
by adjusting the output torques of the ISG and in-wheel motors. Many driving modes can be obtained
by various combinations of the engine, ISG motor, and in-wheel motor.

(1) Pure electric driving mode

When starting, if the vehicle is at low load condition and the battery capacity is sufficient, the
vehicle is driven only by the in-wheel motor, in order to avoid the engine from working in the low
efficiency area. When the maximum speed of pure electric driving is exceeded, the vehicle switches
into pure engine driving mode.

(2) Pure engine driving mode

When the vehicle works at medium load condition, the demand torque is provided by the engine
only if it can work in the area of high efficiency. If the demand torque is greater than the maximum
torque at the high efficiency area or the battery needs charging, the ISG motor or in-wheel motor starts
to work, and the vehicle switches into hybrid driving mode.

(3) Hybrid driving mode

When the vehicle is at high load conditions such as climbing or accelerating, and the engine
output maximum torque cannot meet the demand torque, the ISG and in-wheel motors provide power,
if the battery capacity is sufficient. Then, the vehicle switches into hybrid driving mode. The hybrid
driving mode can be subdivided into engine driving + ISG motor charging mode, engine driving +
in-wheel motor driving mode, and engine driving + ISG motor driving + in-wheel motor driving mode.

The judgment condition and control logic for the different driving modes mentioned above can
be displayed in Figure 12.Energies 2016, 9, 997 13 of 25 
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3.1.3. Torque Distribution Strategy in Braking Mode  

For HEVs, there are two sets of braking system: the conventional mechanical braking system, 
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are the focus of the control strategy. 

Figure 12. Control logic flow for various driving modes.



Energies 2016, 9, 997 13 of 24

In the diagram, Tcmd is the driver demand torque; AssistISGMotor is the power-assisting mark of
ISG motor; AssistAllMotor is the power-assisting mark of all motors; v is the vehicle velocity; vMaxElec is
the maximum speed of pure electric driving; SOClow and SOChigh refer to the lower and upper limit of
the battery working SOC, respectively; Englow and Enghigh refer to the lower and upper limit of the
engine working area, respectively.

3.1.3. Torque Distribution Strategy in Braking Mode

For HEVs, there are two sets of braking system: the conventional mechanical braking system, and
motor regenerative braking system. When braking, the mechanical braking system should coordinate
with the motors to provide the demanded braking torque for braking safety, recover the excess kinetic
energy, and improve the vehicle efficiency as well. The braking control strategy, which is shown in
Figure 13, is formulated based on the battery SOC and the braking pedal opening.Energies 2016, 9, 997 14 of 25 
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3.2. Key Parameters of HEV Logic Threshold Energy Management Strategy

According to the optimal working area division of the engine and motor, the driver’s intention
parsing, and the torque distribution strategy in different working modes, the energy management
strategy based on a logic threshold is established in the MATLAB/Simulink. After studying the energy
control strategy, the influencing parameters, which are presented in Table 9, can be obtained. These
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parameters, which have a direct effect on the vehicle performance especially the fuel economy, are the
focus of the control strategy.

Table 9. Key parameters of logic threshold energy management strategy.

Name Definition Parameter Simplified Version

Maximum torque coefficient of
the engine high-efficiency area

The ratio of the maximum torque and engine
peak torque for the engine high-efficiency area Enghigh x1

Minimum torque coefficient of
the engine high-efficiency area

The ratio of the minimum torque and engine
peak torque for the engine high-efficiency area Englow x2

Power battery SOC upper limit The upper limit of the working
SOC for power battery SOChigh x3

Power battery SOC lower limit The lower limit of the working
SOC for power battery SOClow x4

Throttle opening threshold for
ISG motor assisting

The minimum throttle
opening when the ISG motor assists AssistISGMotor x5

Throttle opening threshold for
all motors assisting

The minimum throttle
opening when all motors assist AssistAllMotor x6

Maximum speed in pure
electric driving mode

The maximum speed
in pure electric driving mode vMaxElec x7

4. Validation and Analysis of the Simulation Model of HEV and Energy Management Strategy

In order to verify the accuracy of the HEV simulation model and validity of the energy
management strategy, a comparative analysis between the output data of the components from
offline simulation and the real drum bench experiment was performed. It was ensured that the
parameters of the offline simulation model were consistent with those of the real vehicle. In addition,
the control strategy and parameters threshold were the same for both the simulation and real vehicle.
The tests are carried out in the new European driving cycle (NEDC). The comparison between the
offline simulation and drum test results during the driving cycle of NEDC are shown in Figures 14
and 15. As observed, there is a small difference between the output results of components from the
simulation and bench test. The transient characteristic has not been accurately reflected in modeling,
which contributed to the difference. However, the difference is within the acceptable range.
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parameters optimization for the HEV energy management strategy based on offline simulation.

Table 10. Comparison of results from offline simulation and drum bench test.

Parameter Offline Result Drum Bench Test Result Error

SOC 0.7~0.52 0.7~0.56 —
Equivalent fuel consumption 7.69 L/100 km 7.36 L/100 km 4.5%

5. Optimization of HEV Control Parameters Using DIRECT Algorithm Based on Fuel Economy

5.1. Implementation of DIRECT Algorithm

The DIRECT algorithm is a deterministic global optimization algorithm proposed by Jones et al.
in 1993 [19]. It is especially suitable for optimizing a multivariable function with specific variables and
space [31]. Take the optimization problem with three-dimensional space as an example; it supposes
that c is the center point of the hypercube and calculates the value of a function f (x) at point c ± δei
with δ equal to 1/3 of the hypercube length; ei is a unit vector. The parameter, wi is defined as follows:

wi = min( f (c + δei), f (c − δei)), (15)
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It splits the hypercube in the order of wi. First, it cuts the hypercube in the direction perpendicular
to the minimum value of wi. Second, it cuts the hypercube in the direction perpendicular to weak
minimal value of wi. Then, it repeats the above steps until the hypercube is cut in all directions.
Figure 16 shows an example of the hypercube division.Energies 2016, 9, 997 17 of 25 

 

1x

2x

1x

2x

1x

2x

 
Figure 16. Division and selection of potential optimal hyper-rectangle in DIRECT algorithm. 

It is supposed that 1 min =ω = （5,8）5 , and 2 min =ω = （6,2）2 . First, the hypercube is cut in 

the direction perpendicular to 2x . Then, the hypercube is cut in the direction perpendicular to 1x . 
The method of cutting the longest side of the hypercube can ensure decreasing the length of the 
longest side. In DIRECT algorithm, the side length of the hypercube is at most two values after each 
division. The hypercube, with a function value at the center point equal to 2 in Figure 16, is the 
potential optimal hyper-rectangle after two divisions. 

Based on the above result, Figure 17 can be obtained by setting the function value at the center 
point as y-axis, and the distance between the center point and vertex as x-axis. In the figure, (1)–(3) 
are the potential optimal hyper-rectangle from the first to third iteration, respectively. In the first 
iteration, there is only one list of selectable points. The hypercube, with a function value at the center 
point equal to 2, is the potential optimal hyper-rectangle. We need to divide the cube further. 
Similarly, in the second iteration, we can get two hyper-cubes with the smallest value, to be divided 
in the third iteration. The process continues until it satisfies the stopping condition. 

Figure 16. Division and selection of potential optimal hyper-rectangle in DIRECT algorithm.

It is supposed that ω1 = min(5, 8) = 5, and ω2 = min(6, 2) = 2. First, the hypercube is cut in
the direction perpendicular to x2. Then, the hypercube is cut in the direction perpendicular to x1.
The method of cutting the longest side of the hypercube can ensure decreasing the length of the longest
side. In DIRECT algorithm, the side length of the hypercube is at most two values after each division.
The hypercube, with a function value at the center point equal to 2 in Figure 16, is the potential optimal
hyper-rectangle after two divisions.

Based on the above result, Figure 17 can be obtained by setting the function value at the center
point as y-axis, and the distance between the center point and vertex as x-axis. In the figure, (1)–(3) are
the potential optimal hyper-rectangle from the first to third iteration, respectively. In the first iteration,
there is only one list of selectable points. The hypercube, with a function value at the center point
equal to 2, is the potential optimal hyper-rectangle. We need to divide the cube further. Similarly, in
the second iteration, we can get two hyper-cubes with the smallest value, to be divided in the third
iteration. The process continues until it satisfies the stopping condition.
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For multidimensional space optimization problems, the DIRECT algorithm takes similar steps to
select the best potential optimal hyper-rectangle.

5.2. Optimization of Key Parameters for Logic Threshold Energy Management Strategy Using DIRECT
Algorithm Based on Fuel Economy

Based on the discussions in the third section, the key parameters of the logic threshold energy
management strategy for the HEV are presented in Table 3. In this research, the purpose of the energy
management strategy is to achieve the best fuel economy for a given driving cycle. Therefore, the
target function is

FC = min f (x), (16)

where f (x) is the equivalent fuel consumption per 100 km, which includes the engine fuel consumption
and equivalent fuel consumption of the electric energy from the power battery. The unit is L/100 km.
The calculation for f (x) is shown as below.

f (x) = 100

∫
k1UIdt

q

ρ
∫

vdt
+ 100

∫
k2 fr(Te, ωe)

Teωe
9550 dt

ρ
∫

vdt
ne (17)

where ρ is the gasoline density in g/L; fr(Te, ωe) is the current engine fuel consumption rate, which
is a lookup function of the engine torque and speed, with the unit g/kWh; Te and ωe are the current
engine torque and speed, with the units N ·m and rpm, respectively; k1 and k2 are the gasoline–electric
conversion constant coefficients; U and I are the present battery voltage and current, with the units V
and A, respectively; q refers to the gasoline calorific value in J/kg; v is the current speed in km/h.

The engine torque and speed, battery voltage and current, and average speed are related to the
seven parameters to be optimized as shown in Table 3.

Therefore, the optimization of key parameters for the HEV energy management strategy is
converted to the optimization of seven dimensional parameters. The DIRECT algorithm is selected
to solve this problem. The process is shown in Figure 18. First, we normalized n-dimensional space
into n-dimensional unit hyper-cube and calculate the equivalent fuel consumption per 100 km at
the center point as the initial minimum fuel consumption. The hyper-cube is the potential optimal
hyper-rectangle when iteration starts. Then, we choose a potential optimal hyper-rectangle and divide
it. Afterwards, we calculate the equivalent fuel consumption per 100 km at the center point of each
rectangle. After that, we compare it with the minimal value collected in the last iteration. If this
value is smaller than the previous minimum fuel consumption, we update and store the minimum
fuel consumption. In addition, we update the potential optimal hyper-rectangle. The optimization of
DIRECT algorithm will stop until the defined maximum number of iterations or the potential optimal
hyper-rectangle is empty.
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Figure 18. Optimization procedure of key parameters for HEV energy management using
DIRECT algorithm.

5.3. Optimization Result and Analysis

Figure 19 shows the optimization model for the HEV energy management key parameters, which
includes the previously established HEV closed-loop simulation model, target to minimize the fuel
consumption per 100 km, and code of the DIRECT algorithm. The optimization model is established
in MATLAB/Simulink. Besides, the constraint of vehicle’s dynamic performance should also be taken
into account. The 0 to 60 time for the all-wheel drive full-HEV studied should not be more than 10 s.
The driving cycle of NEDC is selected, and the initial SOC is set to 55%. The key parameters of the
DIRECT algorithm are set as shown in Table 11.
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Table 11. Key parameters of DIRECT algorithm.

Key Parameters Value

Maximum number of iterations 20
Maximum number of function calculation 1000

Maximum division time per side of hyper-rectangle 100
Global/local weighting coefficient 0.0001

Relative error 0.01%

x1, x2, x3, x4, x5, x6, x7 are the parameters that need to be optimized. The meaning of these
parameters are described in Table 3. The initial value, range, and optimized value of these parameters
are shown in Table 12.

Table 12. Optimized result of key parameters based on DIRECT algorithm.

Parameters Initial Value Lower Limit Upper Limit Optimized Value

x1 0.4 0.2 0.6 0.3889
x2 0.3 0.1 0.5 0.3556
x3 70 50 70 53.333
x4 40 30 50 47.963
x5 20 15 25 22.222
x6 50 40 60 50.667
x7 15 10 20 18.333

Changes to the parameters to be optimized have a big impact on the fuel economy. In the
optimization process of DIRECT algorithm, the equivalent fuel consumption per 100 km for different
iteration function evaluations is shown in Figures 20 and 21, respectively.
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As can be observed from the beginning, the equivalent fuel consumption per 100 km decreases
rapidly with the increase of iterations and function evaluations in the driving cycle of NEDC. Then,
it stabilizes after 9 iterations or 150 function evaluations. This stabilized value is the minimum
equivalent fuel consumption per 100 km. The corresponding parameters are the globally optimized
results using the DIRECT algorithm, which meet the minimum equivalent fuel consumption. It shows
that the proposed optimization method using the DIRECT algorithm has good convergence and
effectiveness to optimize the key parameters of energy management strategy from the perspective of
fuel economy.

The simulation of the all-wheel-drive HEV is implemented in the driving cycle of NEDC, utilizing
the optimized logic threshold control strategy parameters. The simulation results are shown in
Figure 22. As can be seen, frequently gear change is avoided. And in the driving condition, the
in-wheel motors output more torques than engine and ISG motor. During the braking cycle, both
in-wheel motors and ISG motor work as generators to charge the battery. And the battery SOC changes
from the initial value 0.55 to the terminal value 0.7. The instantaneous fuel consumption is controlled
within low range in most of the time.

Energies 2016, 9, 997 22 of 25 

 

equivalent fuel consumption per 100 km. The corresponding parameters are the globally optimized 
results using the DIRECT algorithm, which meet the minimum equivalent fuel consumption. It shows 
that the proposed optimization method using the DIRECT algorithm has good convergence and 
effectiveness to optimize the key parameters of energy management strategy from the perspective of 
fuel economy. 

The simulation of the all-wheel-drive HEV is implemented in the driving cycle of NEDC, 
utilizing the optimized logic threshold control strategy parameters. The simulation results are shown 
in Figure 22. As can be seen, frequently gear change is avoided. And in the driving condition, the in-
wheel motors output more torques than engine and ISG motor. During the braking cycle, both in-
wheel motors and ISG motor work as generators to charge the battery. And the battery SOC changes 
from the initial value 0.55 to the terminal value 0.7. The instantaneous fuel consumption is controlled 
within low range in most of the time. 

Figure 22. Simulation results of all-wheel drive HEV model utilizing the optimized parameters. 

  

0 200 400 600 800 1000 1200
1

2

3

4

5

6

7
gear

G
e
a
rS

ta

t(s)
0 200 400 600 800 1000 1200

0

50

100

150

200

250
engine output torque

e
n

g
in

e
 o

u
tp

u
t t

o
rq

u
e

(N
m

)

t(s)

0 200 400 600 800 1000 1200
-80

-60

-40

-20

0

20
ISG motor output torque

IS
G

 m
o

to
r o

u
tp

u
t t

o
rq

u
e

(N
m

)

t(s)
0 200 400 600 800 1000 1200

-100

-50

0

50

100

150
in-wheel motor output torque

in
-w

he
el

 m
ot

o
r 
o

ut
pu

t t
or

q
ue

(N
m

)

t(s)

0 200 400 600 800 1000 1200
45

50

55

60

65

70

75
battery SOC

b
a
tte

ry
 S

O
C

(%
)

t(s)
0 200 400 600 800 1000 1200

0

1

2

3

4

5

6
instantaneous fuel consumption

in
st

a
n
ta

n
e
o
u
s 

fu
e
l c

o
n
su

m
p
tio

n
(g

/s
)

t(s)

Figure 22. Simulation results of all-wheel drive HEV model utilizing the optimized parameters.
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In the driving cycle of NEDC, the equivalent fuel consumption per 100 km decreases from 7.691 L/
100 km using the initial parameters to 7.148 L/100 km utilizing the optimized parameters. Therefore,
the equivalent fuel consumption using the optimized results decreases by 7.06% compared to the
previous fuel consumption. Figure 23 shows the engine operating points before and after optimization.
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As shown in Figure 23, the engine operating points scattering in the area with low torque
(0–60 N·m) and high fuel consumption have decreased. Furthermore, the engine operating points
scattering in the zone with low speed (1000–1500 rpm) and high fuel consumption have also decreased.
Hence, the energy management strategy using the optimized parameters makes the engine operate
more in the area with high torque and low fuel consumption.

By comparing the equivalent fuel consumption per 100 km and the distribution of engine
operating points before and after optimization, it can be concluded that the DIRECT algorithm
can be applied to optimize the key parameters of the energy management strategy for the HEV with a
positive effect. The optimized results obtained by the offline simulation can provide a reference for
debugging the real vehicle.

6. Conclusions

(1) In this study, the closed-loop simulation model of the all-wheel–drive HEV powertrain is built in
Matlab/Simulink with the power component model established based on the experimental test.
The logic threshold energy management strategy is comprehensively analyzed and formulated.
On this basis, the seven key parameters that influence the fuel economy of the HEV, which need
to be optimized, are extracted. The accuracy of the simulation model and validity of the proposed
logic threshold energy management strategy are verified by comparing the simulation test and
real drum bench experiment.

(2) The optimization model of the key parameters based on the fuel economy is proposed.
The implementation of the DIRECT algorithm is analyzed. Then, it is applied to solve this
nonlinear multiparameter optimization problem with the objective of minimizing the equivalent
fuel consumption.

(3) The optimization result shows that the logic threshold energy management strategy using the
optimized parameters reduces the equivalent fuel consumption per 100 km by 7% and makes
engine operate more in the high efficiency area. The simulation result validates the effectiveness of
the DIRECT algorithm in solving the multiparameter energy consumption optimization problem.
It will play a guiding role in calibrating the control strategy parameters for a real vehicle. Next,
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we will verify the optimization method of the key parameters for the HEV energy management
strategy based on logical threshold by testing a real vehicle.
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