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Abstract: In electrical power converter systems, the presence of an LC input filter can efficiently
reduce the Electromagnetic Interference (EMI) effect, and at the same time protect the converter
and the load from being impacted by sharp input impulse voltages. However, for transportation
applications, the weight and size limitations of input LC filters for power converters have to be
taken into consideration. The reduction of LC filter size may impair the system stability margin and
dynamic response. In serve cases, the system may even become unstable. Thus, in order to ensure
the system stability while minimizing the input LC filter size, the implementation of a stabilizer for
the system control is needed. In this paper, a novel digital stabilizer design method is proposed for
a boost power converter with a small input LC filter. The proposed method is based on input filter
inductance current measurements and DSP (Digital Signal Processor) -based digital stabilizer design.
Simulation and experimentation confirm the validity of the proposed approach.

Keywords: stabilizer; boost power converter; input filter

1. Introduction

Power electronic devices have been widely used in modern electrical power generation and
conversion systems. In particular, power converters play an important role in electrified powertrains
in transportation applications, such as electric/hybrid vehicles (EV/HEV) and more-electric-aircraft
(MEA) [1,2].

In those on-board DC (direct current) microgrid systems, an input LC filter is usually added at the
DC/DC power converter stage to solve the problem of EMI and instantaneous impulse voltage [3–6],
but it is known that with the presence of an LC filter in cascade, the system damping ratio may
be decreased and instability risks may be increased by the interaction between the filter and the
converter [1,7].

In some typical applications such as more-electric-aircraft, submarines, ships and hybrid electric
vehicles, the stability of the system is important for the user safety and must be carefully considered.
Furthermore, volume and weight constraints should also be considered [8,9].

In order to meet the cascaded system (LC filter and DC/DC converter) stability requirements,
one solution is to damp the input filter using an impedance criterion (Middlebrook criterion) [10–12].
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Although this method could make the system stable, it increases the power loss and adds more volume
to the system.

Another solution to reduce the risk of system instability is to use a larger capacitor in the input
filter. However, in transportation applications, the volume and weight of the overall system have to be
carefully taken into consideration. Using a smaller capacitor can not only reduce the power system
volume, but also reduce the system cost [13,14].

To solve the abovementioned stability and sizing problems in cascaded LC filter and DC/DC
power converters, several methods have already been discussed in the literature. To solve the instability
problem, small-signal methods [15] or large-signal methods are used [8]. Nonlinear control methods
are also used to solve this problem based on synergetic control [16], sliding mode control [17,18],
phase-plane analysis [19] and T-S multi-modeling [20]. A compensation method using output voltage
has been presented in [7,9], use of a virtual resistance and virtual inductance were presented in [21,22],
use of a virtual capacitor was introduced in [8,23], and a global stabilization method using Lyapunov
equation is proposed in [24].

This paper presents a novel stabilizer technique to suppress the oscillation and stabilize the system.
Compared to the methods mentioned in [1,3,7,9,18], the proposed method offers two innovative
improvements. Firstly, instead of generating the stabilizing signal by the output voltage or the
capacitor voltage, the proposed method uses the input filter inductance current. Compared to voltage
measurement, the current measurement could isolate the system and break the limitation of the sensor
bandwidth, thus improve the system reliability. Secondly, instead of adding the stabilizing signal to
the original loop, the method proposed in this paper directly adds the signal of the stabilizer to the
main duty cycle. It does not change the original control structure. In this way, the implementation of
control diagram can be simplified.

This paper is organized in five sections: the system being studied and the mathematical model is
presented and discussed in the second section. In Section 3, the stability analysis of the novel digital
stabilizer is given in details. In Sections 4 and 5, the validity of the proposed approach is further
confirmed by both simulation and experimental results. The last section gives the conclusions.

2. System Model and Control

2.1. DC Power System Model

In transportation applications, DC power sources such as batteries or fuel cells are generally
used. Thus, the power source can be replaced by an equivalent low voltage DC source. The input LC
filter is placed between the DC source and the DC/DC converter. In this paper the resistive load is
supplied by the tightly controlled Boost converter using pulse width modulation (PWM) technique.
The topological structure of the studied system is presented in Figure 1.
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Figure 1. Topological structure of the studied system.

For the studied DC power system, the input DC source voltage is Vg and the output voltage is Vo.
The LC filter consists an inductance Lf, an equivalent resistance rf and a capacitor Cf. The inductance L,
the capacitor C and the equivalent resistance r are the parameters of the boost converter.



Energies 2016, 9, 934 3 of 15

2.2. Control and Design of Stabilizer

To control the system, a double control loop is used in this model. Instead of controlling the
voltage, the energy stocked in the capacitance is controlled [7,9,25]. The external loop (energy loop)
first generates the error signal by comparing E (0.5 CVo

2) and Eref (0.5 CVref
2). Then the energy control

provides a reference current of internal loop, as shown in:

Ire f =
Pre f

Vf
(1)

Pre f = Kpex(Ere f − E) + Kiex

∫ (
Ere f − E

)
dt (2)

where, Kpex, Kiex, Kpin and Kiin are the PI parameters of the controllers. The internal loop (current loop)
generates the main duty cycle d0 for the boost converter. The control strategy is shown in Figure 2:

d0 = Kpin(Ire f − iL) + Kiin

∫
(Ire f − iL)dt (3)
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Figure 2. Command scheme of the studied system.

Thus, in order to ensure the system stability, a stabilizer should be added. In this paper,
the proposed stabilizer design approach is based on the measurement of the inductance current
of the input filter. In the proposed design, the measured inductance current is firstly filtered by
a high-pass filter (HPF) to eliminate fundamental components (thus keeping only the DC current
variation). The filtered value is then multiplied by a proportional compensator coefficient Kstab.
The stability compensation result, noted as dstab, is then added directly to the boost converter main
duty cycle d0 calculated separately from the stabilizer. The stability compensator dstab is calculated by
Equation (4), and the modified duty cycle d is given by Equation (5):

dstab = Kstab · HPF(i f ) (4)

d = d0 + dstab (5)

By using the HPF in the structure, the stabilizer only reacts on the dc current variations, therefore,
the amplitude of dstab is null in steady state. Thus, the operating point and control structure of the
system are not modified. This stabilizer has a very simple structure but it is effective at improving
the system stability margins and thus the reliability of the system, as shown and discussed in the
following section.

2.3. Mathematical Modeling

To achieve an optimum tuning of the stabilizer, a mathematical model is needed to analyze its
influence on the system dynamic and stability. In this section, an analytical system model with the
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stabilizer for the studied system shown in Figures 1 and 2 are developed. The input filter inductance
current (if), the input filter capacitor voltage (Vf), the Boost converter inductance current (iL) and the
output voltage (Vo) are the state variables of the system. Furthermore, there are three other state
variables: Si and Sv represent the integral actions in the current control loop and the energy control
loop; f 1 is the state variable of the high-pass filter. Thus, the system can be modeled by Equation (6):

di f
dt =

Vg−r f i f−Vf
L f

dVf
dt =

i f−iL
C f

diL
dt =

Vf−iLr−(1−d)Vo
L

dV0
dt = (1−d)iL−Vo/R

C
dSi
dt = Ire f − iL

dSv
dt = 1

2 C(V2
ore f −V2

o )
d f1
dt = −wn f1 + wni f

(6)

In order to simplify the system stability analysis, the studied model needs to linearize at its
equilibrium point. To obtain the equilibrium point X0 (and thus the steady-state) of the system, one can
simply set all the time derivatives (left-hand side of each equation) of Equation (6) to zero. The solution
of the corresponding algebraic equation system is the voltages and currents in the steady-state given
by X0:

X0 =
[

I f 0 Vf 0 IL0 Vo0 Si0 Sv0 F10

]T
(7)

According to the small-signal theory, each variable X is expressed as the sum of its steady state
value X0 and a small variation x:

X = X0 + x (8)

Thus, two new state vectors can be defined as:

X =
[

i f Vf iL Vo Si Sv f1

]T
(9)

x =
[

î f v̂ f îL v̂o ŝi ŝv f̂1

]T
(10)

By substituting Equations (7)–(10) into Equation (6), Equation (11) is obtained. It represents a
nonlinear state-space model in the form dx/dt = f (x). Indeed, each differential equation in Equation (11)
depends only on the state vector x and a set of constants considered as the parameters of the system:

d
dt



î f
v̂ f
îL
v̂o

ŝi
ŝv

f̂1


=



Vg−r f (I f 0+î f )−(Vf 0+v̂ f )

L f
(I f 0+î f )−(IL0+îL)

C f
(Vf 0+v̂ f )−(IL0+îL)r−(1−d)(Vo0+v̂o)

L
(1−d)(IL0+îL)−(Vo0+v̂o)/R

C
Ire f − (IL0 + îL)
1
2 C(V2

ore f − (Vo0 + v̂o)
2)

−wn(F10 + f̂1) + wn(I f 0 + î f )


(11)

The parameters Iref, d and dstab are defined in the following equations:

Ire f =
Pre f

Vf
=

1
Vf 0 + v̂ f

(
1
2

CKpex(Vore f
2 − (Vo0 + v̂o)

2) + Kiex(Sv0 + ŝv)) (12)

d = Kpin · (Ire f − (IL0 + îL)) + Kiin(Si0 + ŝi) + dstab (13)
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dstab = Kstab(I f 0 + î f − F10 − f̂1) (14)

The system presented by Equation (11) is nonlinear. For system stability analysis, the model of
the system must be linearized first around its operating point. The Jacobian linearization method is
used in this paper, and the linearized model can be defined as:

dx
dt

= A (X0) x + BU (15)

This linearized model will be used for the analysis of the dynamic stability in the
subsequent chapters.

3. Stability Analysis

The stability behavior of the studied system is investigated based on a Bode diagram and
Lyapunov first method in this section. Above all, the stability analysis will be made from the viewpoint
of loop gain and resonance peak, by the Bode diagram, to ensure a good performance of the control
scheme and see the resonance suppression capability of the stabilizer. Secondly, the stability analysis
will be made, from the viewpoint of the whole system by the Lyapunov first method, to see the
stability margin in different cases and explore the optimal value of the compensator coefficient Kstab.
The parameters used here are presented in Table 1.

Table 1. System Parameters.

Parameter Symbol Quantity

Input Filter Parameters

Filter capacitance Cf 10 µF
Filter inductance Lf 43 µH

Filter inductor resistance rf 0.02 Ω

DC-DC Converter Parameters

Boost capacitance C 10 µF
Boost inductance L 100 µH

Boost inductor resistance r 0.04 Ω

Source and Load Parameters

Source input voltage Vg 24 V
Load Resistance R 70 Ω

Stabilizer Parameters

Stabilizer Gain Kstab −0.8
High-pass filter pulsation ωn 16,075 rad/s

3.1. Analysis of the Loop Gain and Resonance Peak by Bode Diagram

It is generally known that the presence of an LC input filter changes all the transfer functions of
the system and has a degradation effect on the dynamic performance. The transfer functions relating
the duty-cycle to output voltage Gvod (s) and the duty-cycle to the Boost inductance current GiLd (s)
are obtained. The bode diagram of GiLd (s) is presented in Figure 3 (solid blue line) and the bode
diagram of Gvod (s) is presented in Figure 4 (solid blue line). This Bode diagram exhibits a “glitch” at
the resonant frequency of the input filter. This makes the controller design much more challenging
from the stability and dynamic point of view.

In order to solve this problem, the proposed control scheme contains an energy controller, a current
controller and a stabilizer as shown in Figure 2. The lag controllers and the stabilizer can be designed
using the Bode diagram. Based on the aforementioned control scheme, the corresponding Bode
diagram for the cascaded system is as shown in Figures 3 and 4.
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Figure 4. Frequency response of compensated loop gain with energy controller, current controller
and stabilizer.

In Figure 3, the dashed red line shows the compensated loop gain with the current controller and
stabilizer and obtains a phase margin of 88 deg. Meanwhile, the dashed red line which is presented in
Figure 4 shows the compensated loop gain with energy controller, current controller and stabilizer.
The phase margin for this loop gain is 60.4 deg. By using the lag controllers and the stabilizer,
the “glitch” could be eliminated to some degree. The gain at low frequency of the uncompensated
loop gain can also be improved, which permits us to get a response with a negligible steady state error.

In severe cases, the instability is often manifested by resonance. For resonance suppression
purposes, Figures 5 and 6 are presented. Obviously, the stabilizer could affect the resonance peaks
in all transfer function. For example, Figures 5 and 6 shows the impact of proposed stabilizer on the
transfer function v̂o (s) /v̂g (s).
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Figure 6. Bode diagram of the response peaks with the stabilizer.

The resonance peak grows rapidly when the load power level increases accordingly. When the
stabilizer is not in action, as can be seen in Figure 5, there is a resonance peak at its resonance frequency
with the magnitude of 28 dB (p = 25 W). By contrast, when the stabilizer is in action as shown in Figure 6,
the resonance peak could be significantly attenuated over the full range of power. The maximum
resonance peak is 3.5 dB under the same situation (p = 25 W).

3.2. Stability Analysis of the Whole System by the Lyapunov First Method

The linearized model Equation (15) could be directly used to analyze the stability of the whole
system. The term A(X0) is presented in the form of Equations (16) and (17) is the Jacobian matrix of
dx/dt = f (x) at the operation point X0: A1 =

Kiex ·Sv0−C·Kpex ·(V2
o0−V2

ore f )/2

V2
f 0

A2 = Kstab · (F10 − I f 0)− Kiin · Si0 + Kpin · (IL0 − A1 ·V f 0) + 1
(16)
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− r f
L f

− 1
L f

0 0 0 0 0
1

C f
0 − 1

C f
0 0 0 0

Kstab ·Vo0
L −

Kpin ·Vo0·(A1/V2
f 0−1)

L − r+Kpin ·Vo0
L − A2+(C·Kpin ·Kpex ·V2

o0)/Vf 0
L

Kiin ·Vo0
L

Kiex ·Kpin ·Vo0
L·Vf 0

−Kstab ·Vo0
L

−Kstab ·IL0
C

Kpin ·IL0·A1
C

Kpin ·IL0+A2
C

−1/R+(C·Kpin ·Kpex ·Vo0·IL0)/Vf 0
C −Kiin ·IL0

C −Kiex ·Kpin ·IL0
C·Vf 0

Kiin ·IL0
C

0 −A1 −1 −C·Kpex ·Vo0
Vf 0

0 Kiex
Vf 0

0

0 0 0 −C ·Vo0 0 0 0
wn 0 0 0 0 0 −wn


(17)

The Jacobian matrices of the state Equations (16) and (17) are used here to investigate the local
stability of the system. The system is locally stable if all the real parts of the eigenvalues of A(X0) are
located in the left-half plane. The corresponding stability analysis result is presented in this section.
With the view of ensuring the LC input filter works effectively, the filter capacitance value should not
be too small, so we choose a value of 10 µF for it first.

Figure 7 provides a thorough inquiry about the stability level of this system. The vertical axis
“lam” represents the largest real part of the eigenvalue of the Jacobian matrix. If the value of “lam”
is less than zero, it means that the system is stable. The smaller the “lam” is, the more stable the
system will be. In Figure 4, it can be found that, along with the changes in output power P and the
compensator coefficient Kstab, the stability level of the system also changes. The system becomes
unstable when the output power is beyond a particular scope.
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In order to see the increasing power margin of the stability system and the optimal value of the
compensator coefficient Kstab, if the stabilizer is added, Figure 8 is presented.

It shows that added the stabilizer could significantly increase the system stability margin. When
the stabilizer is not in action (Kstab = 0), the limit of the maximum power is 25 W. However, when the
stabilizer is in action (Kstab 6= 0), the maximum power margin occurs at Kstab = −0.8 and the maximum
power is about 72 W.

As discussed in the previous sections, the input filter capacitor value plays also an important role
for the system stability. Figure 9 shows the relationship between the capacitor value and the maximum
stable load power. By comparing Figures 8 and 9, it can be found that by increasing the input filter
capacitor and adding the stabilizer could both enhance its stability. However, increasing the capacitor
will result in an extra volume and weight penalty. The proposed stabilizer could meet the desire of
saving weight and improving stability.
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4. Simulation Results

In order to validate the proposed stabilizer design, simulations are carried out first using MATLAB
with the parameters in Table 1. The simulation is performed firstly without stabilizer. As mentioned
in the previous analysis, if the load power exceeds 25 W without the stabilizer, the system becomes
unstable. In Figure 10, a load power of p = 9 W is applied to the system at t = 0 s. It can be seen from
the figure that the system output voltage can stay stable. Then at t = 0.1 s, the load power is increased
up to about 33 W. The simulation results show that the system becomes unstable. An oscillation occurs
in the voltage as well as the current. This oscillation is dangerous to the whole system in practice and
needs to be eliminated.

In order to verify the effectiveness of the proposed stabilizer, the simulation is conducted again
with the presence of the stabilizer this time. As clearly seen in Figure 11, with the same power step
(from 9 W to 33 W) the system remains stable. Thus, the proposed stabilizer design could efficiently
stabilize the system without increasing the input filter capacitor value.
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5. Experimental Results

In addition to the simulation, experiments are carried out to validate the performance of the
proposed stabilizer approach. A test bench is built in the laboratory as shown in Figure 12. A DSP
(TMS320F28035, Texas Instruments, Dallas, TX, USA) is used to implement different control loops and
stabilizers to control the system. The sampling frequency of the DSP and the switching frequency of
the converter are both set to 80 kHz. The parameters of the test bench are the same as given in Table 1.
The current measurements are realized by a Hall current sensor and sampled by an oscilloscope
(DL850, Yokogawa, Tokyo, Japan). The power is measured by a precision power analyzer (PPA5530,
N4L, Leicester, UK). The DC voltage is generated by a laboratory scale dc power supply. The converter
is connected through input LC filter to the dc link. A resistive load is connected to the boost converter
output. The implemented program flow chart in the DSP is presented in Figure 13.
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P (math:15W/div)
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Figure 13. Program flow chart.

Initially, the stabilizer is switched off. The system is observed in steady state in Figure 14 for
two different power stages: one with a small load power about 9 W in which the system is stable; and
the other one with a higher load power about 33 W in which the system becomes unstable. In the
latter case, voltage and current oscillations occur (instability). The second time, the same experimental
scenario is performed with the action of stabilizer this time. As expected, the system remains stable
during both power stages, as shown in Figure 15.
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Figure 14. Experimental system response to a load references step from 9 W to 33 W without
the stabilizer.



Energies 2016, 9, 934 12 of 15
Energies 2016, 9, 934 12 of 15 

 

 

Figure 15. Experimental system response to a load references step from 9 W to 33 W with the stabilizer. 

Additionally, Figure 16 presents the case when the stabilizer passes from enabled to disabled 

for a load power of 33 W. It can be seen clearly from the figure that the system lost its stability. 

 

Figure 16. Experimental system response when the system loses the stabilizer. 

Furthermore, as discussed in the previous sections, a larger input filter capacitor could also 

increase the stability margin of the system. According to Figure 9, increasing the capacitor value 

from 10 µF to 150 µF can make the system remain stable for a power up to 33 W without adding the 

stabilizer. This experimental result is shown in Figure 17 and verifies the correctness of the 

conclusion of Figure 9. 

 

If  (ch1:1A/div)

IL  (ch2:1A/div)

Io  (ch3:1A/div)

Vo (ch4:20V/div)

P (math:15W/div)

Time (200ms/div)

 
If  (ch1:1A/div)

IL  (ch2:1A/div)

Io  (ch3:1A/div)

Vo (ch4:20V/div)

P (math:15W/div)
Time (200ms/div)

Figure 15. Experimental system response to a load references step from 9 W to 33 W with the stabilizer.

Additionally, Figure 16 presents the case when the stabilizer passes from enabled to disabled for a
load power of 33 W. It can be seen clearly from the figure that the system lost its stability.
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Figure 16. Experimental system response when the system loses the stabilizer.

Furthermore, as discussed in the previous sections, a larger input filter capacitor could also
increase the stability margin of the system. According to Figure 9, increasing the capacitor value
from 10 µF to 150 µF can make the system remain stable for a power up to 33 W without adding the
stabilizer. This experimental result is shown in Figure 17 and verifies the correctness of the conclusion
of Figure 9.
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Compared with the traditional method, in on-board applications such as transportation, the 

proposed stabilizer could break the compromise between weight saving and stability. Compared to 

the methods in the literature, the proposed stabilizer does not change the original control structure 

and can solve the limitations of the sensor bandwidth. 

Implementation of the proposed stabilizer can suppress the oscillations and stabilize the 

system. The performance of the dynamic response could be optimized. Moreover, it is shown that 

the stability power margin can be significantly increased. Simultaneously, this stabilizer permits one 

to reduce the weight and size of the system, which is important for transportation applications. 

A mathematical model is established to analyze the stability and to demonstrate the 

effectiveness of the proposed stabilizer. The stability analysis has been verified by simulation and 

experimental results. 
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6. Conclusions

In this paper, a novel stabilizer for a boost power converter system with a small input LC filter is
proposed. This stabilizer is realized by measuring the input filter inductance current and designing
a DSP-based digital stabilizer. The stability analysis is based on the linearized DC power converter
system around the equilibrium point.

Compared with the traditional method, in on-board applications such as transportation,
the proposed stabilizer could break the compromise between weight saving and stability. Compared
to the methods in the literature, the proposed stabilizer does not change the original control structure
and can solve the limitations of the sensor bandwidth.

Implementation of the proposed stabilizer can suppress the oscillations and stabilize the system.
The performance of the dynamic response could be optimized. Moreover, it is shown that the stability
power margin can be significantly increased. Simultaneously, this stabilizer permits one to reduce the
weight and size of the system, which is important for transportation applications.

A mathematical model is established to analyze the stability and to demonstrate the
effectiveness of the proposed stabilizer. The stability analysis has been verified by simulation and
experimental results.
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