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Abstract: This paper presents a new energy management system based on equivalent consumption
minimization strategy (ECMS) for hybrid electric vehicles. The aim is to enhance fuel economy and
impose state of charge (SoC) charge-sustainability. First, the relationship between the equivalent factor
(EF) of ECMS and the co-state of pontryagin’s minimum principle (PMP) is derived. Second, a new
method of implementing the adaptation law using fuzzy proportional plus integral (PI) controller
is developed to adjust EF for ECMS in real-time. This adaptation law is more robust than one with
constant EF due to the variation of EF as well as driving cycle. Finally, simulations for two driving
cycles using ECMS are conducted as opposed to the commonly used rule-based (RB) control strategy,
indicating that the proposed adaptation law can provide a promising blend in terms of fuel economy
and charge-sustainability. The results confirm that ECMS with Fuzzy PI adaptation law is more robust
than ECMS with constant EF as well as PI adaptation law and it achieves significant improvements
compared with RB in terms of fuel economy, which is enhanced by 4.44% and 14.7% for china city
bus cycle and economic commission of Europe (ECE) cycle, respectively.

Keywords: hybrid electric vehicle; equivalent consumption minimization strategy; equivalent factor;
fuzzy proportional plus integral (PI)

1. Introduction

The term hybrid powertrain generally refers to vehicles equipped with an electric motor and
an internal combustion engine. Hybrid electric vehicles (HEVs) offer more viable options compared
to conventional vehicles in terms of emissions and fuel economy, attracting more attention recently.
Energy management is a key problem in HEVs with a goal of determining an optimal power-split
between the internal combustion engine (ICE) and the electric motor, given the total power demand.
This topic has been extensively researched in published literature [1–3].

Numerous optimization approaches have been proposed for HEVs to optimize fuel economy.
Dynamic programming (DP) is considered to be a global optimization method to obtain optimal
results for a given driving cycle and it has been previously investigated [4,5]. However, DP cannot
be implemented directly on a real vehicle because it is impossible to know the specific driving
conditions in advance (e.g., speed, road slope, etc.). To address this problem, a stochastic dynamic
programming (SDP) algorithm is proposed by establishing a driver power demand sequence over
different driving cycles based on the Markov chain to obtain a state transfer matrix of the driver’s
power demand [6,7]. However, SDP presents computational issues in real-time applications. ECMS as
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a real-time optimization method, was first introduced by Paganelli et al. [8] and the corresponding
optimization algorithms have been supplemented by others [9,10]. ECMS can be implemented online
for real-time control with improved adjustability performance, closely relating to the equivalent factor,
EF, which converts the motor power into equivalent fuel consumption. The calculation of EF is more
challenging. Several approaches have been previously proposed to determine EF [8–22]. The simplest
approach is to set EF as constant value for every type of driving cycle. In [11], optimal EF is selected
for different driving cycles to achieve better fuel economy and impose charge-sustainability, but there
is a need for more calibration efforts and, using this method, EF cannot be automatically adapted to the
driving cycle. Another approach is to obtain the optimal EF for a given driving cycle by an iterative
method or DP [12], but this is only possible with a prior knowledge of the whole cycle and cannot
be applied in a real condition due to the variation in driving cycles. Zhang et al. [12] used DP and
backward ECMS to estimate the EF for plug-in HEVs considering the upcoming terrain information.
Kim et al. [13] developed a method based on pontryagin’s minimum principle (PMP) to calculate
the optimal EF and this is feasible only for a given driving cycle. In addition, one commonly used
approach is to adjust the EF using a feedback controller based on state of charge (SoC) variation at each
time step [14,15]; however, this requires extensive computational effort and parameters of the feedback
controller may be diverse for different driving cycles. Serrao et al. [16] indicated that the PMP can be
shown as the underlying optimization principle for ECMS, but online implementation is not feasible
due to the number of iterations required to find the initial value of the dynamic EF for CS operation.
Sezer et al. [17] developed a new ECMS for series HEVs considering the efficiency of the engine,
battery, and generator to obtain the cost map combining fuel consumption and emissions; however,
this method cannot adapt to different driving cycles. Musardo et al. [18] proposed an adaptive ECMS
by estimating EF to update the control parameters under different road loads, implementing CS
operation and minimizing fuel consumption. Sciarretta et al. [19] came up with a new method to
redefine EF based on the coefficient of charging and discharging of the battery. Park et al. [20] used
ECMS to distribute the power between the engine and the motor for a hybrid vehicle. To find the
optimal EF for a certain driving cycle, a model-based parameter optimization method using a genetic
algorithm was investigated. Simona et al. [21] proposed an adaptation law to adjust the EF of ECMS at
an interval, with the advantage of lower computational burden. Han et al. [22] used DP to extract the
optimal EF for the whole driving cycle and designed the dynamic EF adaptation algorithm under hilly
road conditions. Kessels et al. [14] proposed an online energy management system for parallel HEVs
using a PI controller to adjust the EF in real-time to obtain a charge-sustaining solution. Feng et al. [23]
presented a PI controller applied in ECMS to track the SoC reference and determine the power-split for
plug-in HEVs. Adaptive ECMS was deployed to implement SoC tracking during the whole driving
cycle. Ambuhl et al. [24] also used a PI controller to adjust the EF in ECMS for HEVs, but they did
not describe how to choose the parameters of the PI adaptation law. Moreover, the parameters of
the PI adaptation law may be different for diverse driving cycles. In [25], a PI feedback controller
was designed to adapt online the emissions and SoC to track the NOx emissions and implement the
charge-sustaining causal control.

However, the robustness of the adaptation law of ECMS to the deviation of EF and driving cycle
has not been considered among these approaches. In fact, the performance of ECMS is sensitive
to variations in EF and driving cycle, especially for the charge-sustainability HEVs. The optimal
EF for one driving cycle cannot be applied in another driving cycle. Thus, it is important to adjust
EF in real-time to attain charge-sustainability for HEVs due to the error between optimal EF and
estimated EF.

In light of this, an adaptive ECMS is proposed to improve the adaptability using a new adaptation
law for different driving cycles in this paper. First, the relationship between EF of ECMS and
co-state of PMP is given. Second, a new adaptation law is derived to tune the EF using a fuzzy
PI controller to impose charge-sustainability and enhance robustness. The parameters of the PI are
tuned dynamically by a fuzzy logic controller to improve the robustness of the adaptation law in
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ECMS. To our best knowledge, the second finding in this study (the adaptation law) is believed to
be an original contribution. Finally, simulation results over different driving cycles are evaluated
to demonstrate the effectiveness of the proposed energy management strategy compared with a
rule-based control strategy. Three control strategies, namely ECMS with Fuzzy PI adaptation law,
ECMS with PI adaptation law, and ECMS with constant EF, are also investigated in terms of SoC
charge-sustainability and fuel economy.

The remainder of this paper is organized as follows. The system configuration and vehicle models
are presented in Section 2. Section 3 introduces the energy management problem of HEVs. Section 4
proposes real-time energy management for parallel hybrid electric vehicle using a fuzzy PI controller
to tune the EF applied to ECMS. In Section 5, simulation results for two driving cycles are presented
and analyzed comprehensively, while conclusions are presented in Section 6.

2. System Configuration and Vehicle Modeling

2.1. System Configuration

A single-shaft parallel hybrid electric vehicle is used in this study, as shown in Figure 1. The system
is composed of an engine, an automatic clutch, an electrical machine, an automated mechanical
transmission (AMT), and other components. The system is simple without explicit torque couple
devices, having the capability to provide six modes including motor-only, engine-only, hybrid mode,
recharging mode in a driving condition, regenerative braking in hybrid mode, and regenerative
braking by the motor.
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2.2. Vehicle Modeling

2.2.1. Engine Model

To reduce the computational burden, the engine model can be established by a look-up table
based on experimental data, which can be obtained by a bench test. The engine fuel map is shown in
Figure 2. The fuel rate is a function of the engine speed and throttle. The engine maximum torque
curve is presented in Figure 3. The fuel rate can be described by Equation (1) and the engine torque is
formulated by Equation (2)

.
m f = f (ne, α) (1)

Te = αTemax(ne) (2)

where
.

m f is the engine fuel rate, ne is the engine speed, α is the throttle opening of engine, Te is the
engine torque before adding a first-order inertial link, and Temax (ne) is the engine maximum torque at
the current speed.
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In addition, to simulate the dynamic process of the engine, a first-order inertial link is added to
the output torque of engine as shown in Equation (3)

TICE =
1

τes + 1
Te (3)

where τe is the coefficient for torque response and TICE is the actual engine torque after adding a
first-order inertial link.

Considering the engine inertia, the engine speed can be calculated by Equation (4)

Je
.

we = TICE − Tc (4)

where Je is the engine inertia, we is the engine angular speed, and Tc is the transmitted torque of
the clutch.

2.2.2. Electrical Machine Model

Considering the efficiency and torque of the motor, the motor model is established by experimental
data. The motor efficiency map is presented in Figure 4. The motor efficiency can be written as
Equation (5), which is a function of speed and torque. The maximum and minimum torque is a
function of speed as shown in Equations (6) and (7). The relationship between the actual motor torque
and the required torque is described as Equation (8). The dynamic response of the torque is considered
by adding a first-order inertial link as shown in Equation (9)
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ηm = ψ(nm, Tm) (5)

Tmax_dis = f1(nm) (6)

Tmax_char = f2(nm) (7)

Tm =

{
min(Tm_req, Tmax_dis(nm)) Tm_req > 0

max(Tm_req, Tmax_char(nm)) Tm_req < 0
(8)

Tmotor =
1

τms + 1
Tm (9)

where Tm is the output torque of the motor, τm is the coefficient for the torque response, Tm_req is the
required torque of the motor (Nm), Tmax_dis (nm) is the maximum output torque of the motor at the
current speed when the battery is discharging, Tmax_char (nm) is the maximum output torque of the
motor at the current speed when the battery is charging, and f1, f2 are the efficiency functions.

In addition, the battery power is given by Equation (10)

Pb =

{
Tmotornm
9550ηm

Tmotor > 0
Tmotornmηm

9550 Tmotor ≤ 0
(10)

where Tmotor is the actual motor torque after adding a first-order inertial link, nm is the motor speed,
ηm is the motor efficiency, and Pb is the required battery power.
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2.2.3. Clutch Model

The clutch is used to transmit the torque to the driveline and to reduce the shock. To determine the
relationship between output torque and input torque of the clutch as well as the corresponding speed,
two conditions are included, as described below. Additionally, the clutch engagement is regarded to
be rigidly connected since the dynamic process of the mode switch is not considered.

(1) When the clutch is engaged or disengaged, the clutch model can be represented as Equations (11)
and (12)

Tc =

{
ηcTe (Clutch_cmd = 1)

0 (Clutch_cmd = 0)
(11)
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wc =

{
we (Clutch_cmd = 1)

wm (Clutch_cmd = 0)
(12)

where Tc represents the clutch transmitted torque, Te is the engine torque (Nm), ηc is the clutch
efficiency, we is the engine angular velocity(rad/s), and wc is the clutch output angular velocity
(rad/s). Clutch_cmd = 1 denotes that the clutch is engaged while Clutch_cmd = 0 denotes that
the clutch is disengaged.

(2) When the clutch is slipped, the input shaft speed of the clutch can be formulated by
Equation (14). The transmitted torque is a function of the displacement of the clutch as shown in
Equation (13) [26]. In this state, the input shaft speed of clutch is calculated by Equation (14)

Tc = Ψ(dc) (13)

we = w0 +
∫ t

t0

Te(υ)− Tc(υ)

Je
dυ (14)

where dc is the displacement of clutch, Tc is the transmitted torque by the clutch, w0 is the engine
angular speed at instant t0, we is the engine angular speed at instant t, Te is the engine torque,
and Je is the engine rotation inertia.

2.2.4. Battery Model

The battery model is a complicated nonlinear system, which is influenced by many factors, such as
temperature, internal resistance, state of charge (SoC), and voltage, and thus it is difficult to establish a
precise battery model. Some models have previously been proposed that has used some simplifications,
such as Rint model, RC model, Thevenin Model, and PNGV Model [27]. The Rint model is basic and
it is commonly used for energy management, which is adopted in this paper. It is assumed that the
model shown in Figure 5 is equivalent to a cascade system of an ideal voltage source and a resistance.
Normally, the resistance and open circuit voltage are a function of SoC, which can be represented as
Equations (16) and (17).
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The relationship between the terminal voltage and the open circuit voltage is formulated as
Equation (15)

VL = Voc − IbRin (15)

Rin = N · ϕ(SoC) (16)

Voc = N · ψ(SoC) (17)

where N is the number of cells, Voc is the open circuit voltage, Rin is the battery resistance, Ib is the
battery current, VL is the terminal voltage, and ϕ (·) and ψ (·) represent the functions of open cell
circuit voltage and battery resistance, respectively.
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The SoC is an important parameter for energy management and it can be calculated using
Equation (18) [28]

d
dt

SoC = −
Voc −

√
Voc2 − 4RinTmwmηm−sgn(Tm)

2RinQmax
(18)

where Qmax is the maximum charging capability, Tm is the motor torque, and wm is the motor speed.
Equation (18) can be rewritten in discretization form, as shown in Equation (19), to calculate the

SoC at instant k

SoC(k) = SoC(t0) +
∫ t

t0

(−
Voc −

√
Voc2 − 4RinTmwmηm−sgn(Tm)

2RinQmax
)dτ (19)

where SoC (k) is the SoC value at instant k and SoC (t0) is the SoC value at instant t0.
In addition, the battery mainly operates in a narrow range between 0.5 and 0.7 for

charge-sustaining HEVs; therefore, the resistance and open circuit voltage may not vary substantially
as shown in Figure 6. Based on this fact, the resistance and open circuit voltage are considered to be
constant and independent of the battery SoC.
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Figure 6. The battery resistance and open circuit voltage.

2.2.5. Transmission Model

In this paper, the model of the gearbox and the main retarder are included. The aim of
establishing the model is to determine the relationship between the output and input torque as well
as the corresponding speed by taking the efficiency and the ratio of the driveline into consideration.
In addition, the following assumptions were made to simplify the transmission model:

(1) Each rotating component in the drivetrain system is considered to be rigid and is presented as a
concentrated mass.

(2) Torsional and lateral vibrations of each rotating component are ignored.

Normally, the transmission model can be formulated using Equations (20) and (21) when the gear
is completely engaged

Tout = TinηGig(Gcu) (20)

wout = win/ig(Gcu) (21)

where Tin is the torque of the transmission input shaft (Nm), Tout is the transmission output shaft
torque (Nm), win is the angular velocity of the transmission input shaft (rad/s), wout is velocity of
the transmission output shaft (rad/s), ηG is the transmission efficiency, ig is the gear ratio of each
transmission gear, and Gcu is the number of the current gear.
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When the gear is in the neutral position, it is disengaged. The input shaft speed of transmission
can be determined by Equation (22). In addition, the output shaft torque is equal to zero, as shown in
Equation (23)

win = w0,in +
∫ t

t0

Tin(τ)

Jin
dτ (22)

Tout = 0 (23)

where Jin is the input shaft equivalent inertia of transmission and w0,in is the angular speed of the
input shaft at instant t0.

Due to the fixed gear ratio of the main retarder, the model can be formulated using Equations (24)
and (25) by taking the efficiency and the gear ratio into consideration

Tf = ToutηFDiFD (24)

wout = w f iFD (25)

where Tf is the output torque of the main retarder, ηFD is the efficiency of the main retarder, iFD is the
gear ratio of the main retarder, and w f is the output angular speed of the main retarder.

2.2.6. Vehicle Dynamic Model

It is assumed that vehicle operates on a flat road; therefore, only longitudinal dynamics are
considered. Lateral dynamics and handing stability are neglected. The longitudinal dynamic model
for the vehicle is given by Equations (26)–(28), which are used to calculate velocity.

The vehicle drive force is shown in Equation (26)

Fw = Fa(ν) + Fr + Fi (26)

where Fw is the drive force, Fa is the air resistance, Fr is the roll resistance, and Fi is the
acceleration resistance.

The air resistance is a function of velocity, as shown in Equation (27)

Fa(ν) =
cd · A f · νa

2

21.15
(27)

where cd is the air resistance coefficient, A f is the frontal area, and νa is the vehicle velocity.
Thus, the longitudinal dynamic model can be rewritten as Equation (28)

Tw

rw
=

cd · A f · νa
2

21.15
+ mvg f + δmv

dν

dt
(28)

where mν is the complete vehicle curb mass, δ is the correction coefficient of the rotating mass, f is the
rolling resistance coefficient, rw is the radius of the wheel, and Tw is the drive torque.

The relationship between the output angular speed of transmission and the velocity is given as
Equation (29)

wout =
νi0

3.6 · rw
(29)

where wout is the output angular speed of transmission and i0 is the gear ratio of the main retarder.

2.2.7. Driver Model

To track the velocity of the driving cycle, the driver model is adopted to determine the values
of acceleration and deceleration in the forward simulation. The proportion integral derivative (PID)
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driver model formulated in Equations (30) and (31) is commonly used. The structure of the PID driver
model is shown in Figure 7.

e = vdem − vact (30)

uPID = Kpe + Ki

∫ t

0
edt + Kd

de
dt

(31)

where uPID ∈ [−1 1], with uPID < 0 representing the driver braking and uPID > 0 representing the
driver accelerating. Kp, Ki, Kd are the proportional, integral, derivative coefficients of the PID driver
model, respectively, which are determined by trial and error. vdem is the demand velocity and vact is
the actual velocity.Energies 2016, 9, 919 9 of 26 
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3. Problem Statement

The goal of HEVs energy management is to distribute the power between the internal combustion
engine (ICE) and the electrical machine (EM), given the driver’s total power demand, while aiming to
minimize fuel consumption. The energy management of HEVs is commonly regarded as an optimal
control problem, aiming to find an optimal power split between the engine and the motor under
various soft and hard constraints. Note that the power distribution is converted into the torque split
due to the system configuration in this paper.

The cost function can be written as Equation (32), which is an optimization objective for the
energy management problem in HEVs. The first term is fuel consumption and the second term is used
to attain SoC charge-sustainability

J(SoC(t)) =
∫ t

t0

L(u, t)dt + β(SoC(t)− SoCr)
2 (32)

{Topt
e , Topt

m } = argmin{J(SoC(t))} (33)

where J (SoC (t)) is the cost function from t0 to t, u is the control input, such as engine torque and motor
torque, β is the penalty coefficient, SoC (t) is the current SoC at instant t, and SoCr is the reference SoC.

ECMS, as a real-time optimization method, aims at minimizing instantaneous fuel consumption
by converting the electrical power into the equivalent fuel consumption to obtain the optimal solution.
Thus, the equivalent factor (EF) is needed to convert the motor power into equivalent fuel consumption.
The challenge in implementing ECMS is that the optimal solution is sensitive to the EF, which can be
appropriately determined only if the whole driving cycle is known; however, this is impossible under
real conditions. Thus, it is necessary to adjust the EF online. The basic principle of ECMS is illustrated
as follows.

The instantaneous fuel consumption of ECMS is given in Equation (34)

.
meqv(u(t), t) =

.
m f (u(t), t) +

.
me(u(t), t) =

.
m f (u(t), t) + s(t)

Pm(u(t), t)
HLHV

(34)

where
.

meqv (u (t) , t) is the equivalent fuel consumption,
.

m f (u (t) , t) is the engine fuel mass flow
(kg/s),

.
me (u (t) , t) is the equivalent fuel by converting the motor power into fuel consumption (kg/s),

s(t) is the equivalent factor (EF), Pm (u (t) , t) is the motor power (kW), and HLHV is the fuel lower
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heating value (kJ/kg). The optimal solution should be subjected to the constraint conditions shown as
Equation (35)

Tdem(t) = Te(t) + Tm(t)
Tm_min(wm(t)) ≤ Tm(t) ≤ Tm_max(wm(t))

0 ≤ Te(t) ≤ Te_max(we(t))
0 ≤ wm(t) ≤ wm_max

we_min ≤ we(t) ≤ we_max

SoCmin ≤ SoC(t) ≤ SoCmax

(35)

where Topt
e and Topt

m are the optimal engine and motor torques, respectively, Tdem (t) is total torque
demand(Nm), Te (t) is the engine torque, Tm (t) is the motor torque, Tm_max (w (t)) is the motor
maximum torque, Tm_min (we (t)) is the motor minimum torque, Te_max (we (t)) is the engine maximum
torque, wm (t) is the motor speed, wm_max is the motor maximum speed, we (t) is the engine speed,
we_min is the engine minimum speed, we_max is the engine maximum speed, SoCmin is the minimum
SoC, and SoCmax is the maximum SoC.

The aim of the optimal control algorithm is to obtain the ideal power-split and to ensure SoC
charge-sustainability over a whole cycle. Figure 8 shows the SoC trajectory for charge-sustaining HEVs.
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From the above analysis, we can see that the key problem is how to adjust the EF to ensure
optimal performance of ECMS.

4. The Proposed Energy Management of HEVs

4.1. Equivalent Consumption Minimization Strategy (ECMS)

To improve the optimal performance of ECMS, the principle used to adjust the EF is derived as
follows. It is well known that pontryagin’s minimum principle (PMP) can give a better understanding
of the ECMS to determine the optimal EF. The Hamiltonian function for the cost objective is expressed
as Equation (36)

H(u(t), SoC(t), t, λ(t)) =
.

m f (u(t), t) + λ(t)S
.
oC(t) (36)

where λ(t) is the co-state, according to the principle of PMP, and the co-state dynamic equation can be
given as Equation (37) [29].

.
λ(t) = −∂H(u(t), SoC(t), t, λ(t))

∂SoC(t)
= −λ(t)

∂S
.
oC(t)

∂SoC(t)
(37)

According to the Equation (18), we can derive Equation (38) since the battery mainly operates in
a narrow range for charge-sustaining HEVs, e.g., from 0.5 to 0.7 [30], and the voltage and resistance
remain constant, as explained in Section 2.
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.
λ(t) = 0 (38)

This denotes that λ (t) is constant and the optimal co-state λ∗(t) should satisfy the SoC boundary
condition as Equation (39)

SoC(t f ) = SoC(t0) (39)

where t0 and t f are the start and end times of the driving cycle, respectively.
The SoC can be expressed as Equation (40).

SoC(t) = − Q
Qmax

= − 1
Qmax

∫ t

0
Ib(τ)dτ (40)

We can derive Equation (41) by deriving Equation (40).

S
.
oC(t) = −Ib/Qmax (41)

The battery current can be expressed as Equation (42).

Ib = Pm(u(t), t)/Voc (42)

We can substitute Equation (42) into Equation (41) and the Equation (41) can be rewritten as

S
.
oC(t) = −Pm(u(t), t)/VocQmax (43)

then the Equation (43) is substituted into Equation (36) and Equation (36) can be rewritten as

H(u(t), SoC(t), t, λ(t)) =
.

m f (u(t), t)− λ(t)HLHV
QmaxVoc

Pm(u(t), t)
HLHV

(44)

By comparing Equation (34) with Equation (44), it was found that

s(t) = −λ(t)HLHV
QmaxVoc

(45)

Thus, it may be observed that the challenge in finding the EF depends on the value of the co-state
in Equation (45). However, the optimal co-state may vary for different driving cycles and it strongly
depends on the future driver’s power demand, while satisfying the SoC boundary in Equation (39).
Therefore, the optimal value of s(t) depends on the future driver’s power demand as well as the
current value of SoC.

According to the Hamilton-Jacobi-Bellman equation, we know that the corresponding optimal
co-state λ∗(t) [12], is equal to

λ∗(t) =
∂J(SoC(t))

∂SoC(t)
(46)

To impose SoC charge-sustainability, the cost function can be rewritten as

J(SoC(t)) =
∫ t

t0

.
m f (u(t), t)dt + η

Qmax

HLHV

∫ SoC(t)

SoC(t0)
Vocd(1− SoC) + β(SoCr − SoC(t))2 (47)

where SoCr is the SoC reference value and SoCr − SoC (t) is the difference between the reference SoC
and the actual SoC value. η = ηm/ηe, where ηm is the average motor efficiency and ηe is the average
engine efficiency. The first term of Equation (47) is the engine fuel consumption, which is independent
of the battery SoC. The second term represents the equivalent fuel consumption by converting the
motor power and the third term is a penalty function to impose battery charge-sustainability. Thus,
we can derive Equation (48) by taking the derivative of Equation (47) with respect to SoC.
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λ∗(t) =
∂J(SoC(t))

∂SoC(t)
= −η

QmaxVoc

HLHV
− 2β(SoCr − SoC(t)) (48)

Combining Equations (45) and (48), the equivalent factor can be derived as Equation (49).

s(t) = η + 2β
HLHV

QmaxVoc
(SoCr − SoC(t)) (49)

Equation (49) is composed of two parts. The first term represents the efficiency of the motor and
engine while the second term is related to the difference between the reference SoC and the actual SoC.
To impose charge-sustainability effectively, we can obtain the law describing how to adjust the EF by
replacing Equation (49) with Equation (50)

s(t) = s0 + Kp(SoCr − SoC(t)) + Ki

∫ t

t0

(SoCr − SoC(υ))dυ (50)

where s0 is the initial value (constant) and Kp and Ki are the proportional and integral
coefficients, respectively.

When the value of s (t) is determined, ECMS is used to obtain the optimal torque-split as
Equation (51)

[T∗e_opt, T∗m_opt] = argmin
{ .

meqv(u(t), t, s(t))
}

(51)

where T∗e_opt and T∗m_opt are the optimal engine torque and motor torque, respectively.

4.2. Adjust the Equivalent Factor

As Equation (50) indicates, the key problem is deciding how to adjust the parameters Kp and Ki
of the adaptation law of EF, which is illustrated as follows.

4.2.1. Estimating the EF

To determine the approximate optimal EF in an effective way, an iterative method is adopted to
calculate the EF. Thus, we propose the following specific steps. It is noted that this method requires
prior knowledge of the driving cycle. In this paper, we use a standard driving cycle for simulations to
demonstrate the effectiveness of the proposed strategy. However, since the full driving cycle is not
known in real conditions, we can choose the average efficiency (η = ηm/ηe) as the initial EF for the
adaptation law.

Step 1: Estimate the range of EF and select the initial value as a first try to obtain the SoC trajectory.
Step 2: Discretize the range of EF at a fixed step to obtain a series of EF values.
Step 3: Calculate the SoC trajectory for each EF according to the vehicle model as well as ECMS

and obtain the final SoC value.
Step 4: Check the final SoC of each trajectory and select the value of EF that satisfies the boundary

condition (Equation (52)). The optimal SoC trajectory is also obtained accordingly

SoC(t0) = SoC(t f ) (52)

where t0 and t f are the initial and final times of the driving cycle, respectively.
The specific flowchart describing the methods used to determine the initial EF is presented in

Figure 9.
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It is noted that the boundary condition is not strictly held in some cases due to the choice of the
discretization step. In light of this, we need to set up a soft constraint, as illustrated in Equation (53),
to determine the EF

SoCnew_ f = SoC(t0)± ∆SoC (53)

where SoCnew_ f is the new final value after correction.
Normally, the choice of ∆SoC is related to the driving cycle and discretization step. In this paper,

∆SoC is selected as 0.02. On the other hand, the EF obtained from the iterative method cannot be
directly applied in real conditions due to variation in the driving cycle. Hence, it is necessary to adjust
the EF online based on the variation of SoC.

4.2.2. Adjust the EF

A PI controller is adopted to adjust the EF of ECMS for plug-in HEVs [14]; however, the methods
used to tune the parameters of the PI controller are not given to impose SoC charge-sustainability for
HEVs. Thus, we emphasize the adjustability of EF using a fuzzy PI controller in this section.

To impose charge-sustainability and improve fuel economy, the EF needs to be tuned online.
In view of this, a new adaptation law based on a fuzzy PI controller is devised. The error (E) between
the SoC reference value and its actual value along with the derivative of this error (CE) are selected as
inputs of a fuzzy inference system. We define five linguistic values for inputs and outputs, namely
“Large Negative” (NL), “Small Negative” (NS), “Zero” (ZO), “Small Positive” (PS), and “Large Positive”
(PL). In addition, different membership functions may produce distinct results. However, we mainly
focus on the adjustment of PI parameters instead of optimizing membership function in this paper.
Thus, we select the Triangular Membership function that is commonly used [31,32]. The range of
inputs and outputs is determined as (−0.02, 0.02) and (−1.8, 1.8), respectively, after completing the
testing. Based on these parameters, a fuzzy logic controller is devised to adjust the values of Kp and
Ki dynamically. Based on the new adaptation law, the proposed energy management is illustrated
in Figure 10. As can be seen from Figure 10, the first step is to derive the EF applied in ECMS from
the PMP based on the analysis of the battery SoC operating range, as shown in Section 2. In the next
step, the new adaptation law applied in ECMS based on fuzzy PI is proposed to improve robustness.
Finally, the optimal power-split can be obtained by ECMS to implement energy management.
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Figure 10. The overall structure of the proposed energy management.

The output of the fuzzy inference system for ∆Kp and ∆Ki is shown in Figures 11 and 12,
respectively. The membership functions for the inputs and outputs are shown as Figure 13. The fuzzy
rules of ∆Kp and ∆Ki are presented in Tables 1 and 2, respectively. The values of Kp and Ki can be
expressed as Equations (54) and (55).

Kp = Kp0 + ∆Kp (54)

Ki = Ki0 + 0.5∆Ki (55)

Table 1. The fuzzy rule of ∆Kp.

E
CE NL NS Zero PS PL

NL PL PS PS PS ZO
NS PS PS PS ZO NS

Zero PS PS ZO NS NS
PS PS ZO NS NS NL
PL ZO ZO NS NS NL

Table 2. The fuzzy rule of ∆Ki.

E
CE NL NS Zero PS PL

NL NL N NS NS ZO
NS NL NS NS ZO PS

Zero NL NS ZO PS PL
PS NS ZO PS PS PL
PL ZO ZO PS PS PL
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Figure 11. The output of the fuzzy inference system for ∆Kp.
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Figure 12. The output of the fuzzy inference system for ∆Ki.
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Figure 13. The membership functions of inputs and outputs.

5. Simulation Results and Discussion

5.1. SoC Trajectory

To evaluate the performance of the proposed fuzzy PI controller, two strategies, namely ECMS
with constant EF and with the fuzzy PI controller, are conducted and compared. Figures 14 and 15
present the SoC trajectory using these two methods for the 2 × CHA (two CHA cycles) and 3 × ECE
(three ECE cycles) cycles, respectively. The initial value of SoC is set as 0.6, and the initial values of Kp0

and Ki0 are chosen as 5 and 0.5, respectively. Moreover, to make a fair comparison of the optimal ECMS
(ECMS-con) and Fuzzy-PI-ECMS, we choose the approximate optimal EF (obtained from the iterative
method described in Section 4.2.1) as the initial value for the Fuzzy-PI ECMS. The approximate optimal
EF are chosen as 2.58 and 2.555 for 2 × CHA and 3 × ECE, respectively. As for the real condition, we
can choose the average efficiency (η = ηm/ηe) as the initial EF for the fuzzy-PI-ECMS. The average
efficiency is not always equal to the optimal EF. To further demonstrate the adaptability of the fuzzy PI
for ECMS, deviations (±2% for the 2 × CHA cycle and ±5% for the 3 × ECE cycle) are added to the
approximate optimal EF (ECMS-con) for two strategies as well since it is difficult to obtain the exact
optimal EF. Normally, the difference between the exact optimal EF and the estimated EF exists. As for
ECMS-fuzzy PI, deviations are added to the initial EF. Note that the optimal EF is obtained from the
iterative method to satisfy the SoC boundary, as described in [13].
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Figure 14. SoC trajectories for different control strategies (2 × China city bus cycle (CHA)).
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Figure 15. SoC trajectories for different control strategies (3 × Economic Commission of Europe (ECE)).
Note: ECMS-con: ECMS with optimal EF; ECMS-con (±2%/±5%): ECMS with EF when deviations are
added to the optimal value; ECMS-adjust: ECMS with fuzzy PI controller; ECMS-adjust (±2%/±5%):
ECMS with a fuzzy PI controller adjusted with EF when deviations are added to the initial value; CHA:
china city bus cycle.

As can be seen in Figures 14 and 15, the SoC trajectory obtained from the fuzzy PI controller is
almost consistent even though different values of EF are selected for the 2 × CHA cycle. However,
the trajectories differ substantially when EF is chosen as different value using ECMS with a constant
EF. Similarly, the deviation of the SoC trajectory using ECMS with the fuzzy PI controller is smaller
than that generated by ECMS with a constant EF for the 3 × ECE cycle. This verifies that the new
adaptation law can adjust the EF efficiently and it is more robust for ECMS with a constant EF.

A comparison of SoC deviations for two control strategies is also presented in Figure 16.
The maximum and minimum SoC deviations for the ECMS-Fuzzy-PI are 0.0127 and 0.0003, respectively,
while they are 0.0152 and 0.0045, respectively, for ECMS-con. It is found that the same deviation of
the equivalent factor leads to a substantial difference. The SoC deviation of ECMS with a fuzzy PI
controller is observed to be smaller than that of ECMS with a constant EF. The final SoC value of ECMS
with a fuzzy PI controller shows improved convergence to the reference value. This also confirms the
capability of the proposed fuzzy PI controller to impose SoC charge-sustainability.
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Figure 16. SoC deviation for two control strategies. Note: ECMS-con: ECMS with optimal EF;
ECMS-Fuz-PI: Adaptive ECMS with a fuzzy PI controller.
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5.2. Fuel Consumption

To assess the performance of the proposed control strategy, the fuel consumption for a hybrid
electric bus is calculated by ECMS. The vehicle configuration is shown in Table 3. In addition, to obtain
a fair comparison for different control strategies, we use the SoC compensated fuel consumption, which
is calculated by Equations (56) and (57)

E∆SoC = (SoC f − SoC0) · Ncell ·Qmax · 3600
∫

Uocv_discharged(1− SoC) (56)

FC∆SoC_comp =
FC− E∆SoC

EdieselηdieselηICEηEM

ρdieseldcycle · 10−5 (57)

where E∆SoC is the energy produced by the SoC deviation (J), SoC f and SoC0 are the final and initial
values of SoC, respectively, Ncell is the number of cells in the battery, Qmax is the capacity of the
battery (Ah), Uocv_discharge is the cell voltage (V), FC∆SoC_comp is the SoC compensated fuel consumption
(L/100 km), FC is the fuel consumption before compensation (kg), Ediesel is the energy content of the
diesel fuel (J/kg), ηdiesel is the efficiency of the conversion from diesel energy to electricity, ηICE is the
diesel engine efficiency, ηEM is the motor efficiency, ρdiesel is the density of diesel (0.84 kg/L), and dcycle
is the distance traveled (m).

Table 3. The vehicle configuration.

Component Parameter Value

Engine
Maximum Power (kW) 125
Maximum Torque (Nm) 600

Maximum speed (r/min) 2600

Motor
Maximum Power (kW) 150
Maximum Torque (Nm) 650
Nominal speed (r/min) 2600

Transmission
AMT gear ratio [6.25, 3.583, 2.22, 1.36, 1, 0.74]
Final gear ratio 6.17

Battery
Cell open circuit voltage (V) 3.8

Capacity (Ah) 70
Voltage (V) 650

Vehicle

Mass (kg) 18,000
Roll coefficient 0.01

Cd 0.65
A 6.73

Radius (m) 0.5715
δ 1.04

Table 4 summarizes the fuel consumption as well as the SoC deviation over two driving cycles.
As can be seen in Table 4, the fuel consumptions of ECMS-con and ECMS-Fuzz-PI are 2.818 km/L and
2.824 km/L over a 2 × CHA cycle, respectively, when the optimal value of EF is increased. Similarly,
the fuel consumptions are 2.750 km/L and 2.851 km/L for a 3 × ECE cycle, respectively. When the
optimal EF is increased, the fuel economies of ECMS-Fuzz-PI are improved by 0.2% and 3.6%, while
those of ECMS-con have less substantial improvements. In contrast, the ECMS with constant EF
can achieve a better fuel economy if the optimal EF is selected. However, this cannot be guaranteed
because of variation of the parameters and the driving cycle. To further demonstrate the effectiveness
of the proposed strategy, the adaptation law in [18] (A-ECMS) is implemented as well. It can be seen
that both ECMS-Fuzz-PI and A-ECMS can adjust the EF efficiently. The only difference is that the
adaptive ECMS [18] results in greater fuel consumption than the proposed strategy for the 2 × CHA
cycle. The reason may be that A-ECMS only adopts the proportional law and is not as steady as
Fuzzy-PI-ECMS for different driving cycles.
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Table 4. Comparison of performances of different control strategies.

Driving Cycle Performance
Index

ECMS-Con ECMS-Fuz-PI A-ECMS

ECMS-Con ECMS-Con
(+2%/+5%)

ECMS-Con
(−2%/−5%) ECMS-Adjust ECMS-Adjust

(+2/+5%)
ECMS-Adjust
(−2%/−5%) ECMS-Adjust ECMS-Adjust

(+2%/+5%)
ECMS-Adjust
(−2%/−5%)

2 × CHA
SoC f inal 0.601 0.6149 0.5858 0.6012 0.5885 0.6063 0.5913 0.5892 0.5913
|∆ SoC| 0 0.0139 0.0152 0 0.0127 0.0051 0 0.0021 0

FC_com (km/L) 2.886 2.818 2.945 2.795 2.824 2.777 2.747 2.749 2.746

3 × ECE
SoC f inal 0.5992 0.6037 0.5889 0.6002 0.5987 0.6005 0.5934 0.5937 0.5928
|∆ SoC| 0 0.0045 0.0103 0 0.0015 0.0003 0 0.0003 0.0006

FC_com (km/L) 2.844 2.750 3.065 2.813 2.851 2.815 2.814 2.807 2.823
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Thus, the ECMS fuzzy PI can give a better performance in adjusting EF, especially when the EF is
not optimal. Another interesting phenomenon is that the fuel consumption using ECMS with fuzzy PI is
slightly higher than that with constant EF when the optimal EF decreases. This is because more charging
behaviors are performed by the engine to impose charge-sustainability for ECMS-Fuzz-PI while for
ECMS-con, the solution is charge-depleting when the EF is smaller than the optimal value. However,
the fuel economy does not deteriorate much compared to the optimal fuel consumption. In conclusion,
the ECMS-Fuzz-PI provides a promising blend in terms of fuel economy and charge-sustainability.
To obtain a fair comparison and to demonstrate the effectiveness of the optimal algorithm, we perform
a simulation of rule-based control (RB) strategy. Table 5 summarizes the fuel consumption of two
control strategies, showing that the fuel economy through ECMS-Fuzz-PI improves by 4.44% and
14.7% compared with RB over the 2 × CHA and 3 × ECE cycles, respectively.

Table 5. Comparison of different control strategies.

Driving Cycle 2 × CHA 3 × ECE

Index FC_com
(km/L) SoC_final FC

Improvement
FC_com
(km/L) SoC_final FC

Improvement

RB 2.676 0.5999 0 2.453 0.589 0
ECMS-Fuz-PI 2.795 0.6012 4.44% 2.813 0.6002 14.7%

Note: FC_com: SoC compensated fuel consumption.

5.3. Performance of Adjusting EF

To demonstrate the performance of the fuzzy PI, the evolution of EF as well as SoC over the
2 × CHA and 3 × ECE cycles are presented in Figures 17 and 18, respectively.

As it may be observed from Figure 17, the EF of ECMS-Fuzz-PI is changing with varying SoC
over the 2 × CHA cycle, resulting in variation in SoC to impose SoC charge-sustainability. The scope
of EF using the fuzzy PI controller involves reacting to these changes of SoC and therefore the fuel
consumption is reduced. Specifically, the EF is gradually increased to encourage the use of the engine
torque to charge the battery starting from 1200 s to 1700 s and then the EF decreases at about 2000 s
when the SoC reaches the reference value. In contrast, the solution is charge-increasing for the reference
SoC value when the EF remains constant over the entire driving cycle, resulting in an increase of
fuel consumption.Energies 2016, 9, 919 20 of 26 
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Similarly, the effects of adjusting the EF on performance for the 3 × ECE cycle are shown in
Figure 18. The effect on performance is not as strong as for the 2 × CHA cycle because the deviation of
SoC is small during the whole cycle. Thus, using the Fuzzy PI controller, the changes in EF are small.
In contrast, the solution is charge-increasing using a constant EF. This indicates that the proposed
adaptation law can adjust the EF according to variation of the SoC rather than remaining constant
over the entire cycle. In conclusion, the proposed adaptation law using Fuzzy PI achieves better
performance in terms of fuel economy and charge-sustainability.

To further evaluate the advantage of ECMS compared to RB, the engine operation point for
two control strategies for a 2 × CHA cycle are shown in Figures 19 and 20. It can be seen from
Figures 19 and 20 that most engine operating points are concentrated in the lower fuel consumption
region for ECMS while part of that is located beyond the lowest fuel consumption region for RB. This
is because the power is distributed by minimizing the instantaneous fuel consumption for ECMS to
ensure the engine is operating in its lowest fuel consumption region, but the RB cannot guarantee
optimality at each time step.

Figures 21 and 22 present the motor operation point for ECMS and for the rule-based control
strategy, respectively. It may be observed that most of the motor operation points are concentrated in
higher efficiency region for ECMS; however, fewer points are located in that region for the RB. This also
confirms that ECMS would be capable of providing better fuel economy than RB due to its optimality.
The red and pink circles represent the motor operation points in Figures 21 and 22.Energies 2016, 9, 919 21 of 26 
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Figure 19. Distribution of the engine operating point (Rule-based).
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5.4. Robustness to Driving Cycles

To further evaluate the robustness of the proposed Fuzzy PI adaptation law, simulations are
conducted using the optimal EF applied in ECMS by adding variation to the driving cycle. In this
paper, two kinds of noise signal are considered, as shown in Figures 23 and 24. The comparison of
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fuel consumption along with final SoC over the 2 × CHA cycle is shown in Figure 25. We compare the
performance of the approximate optimal EF applied in ECMS (ECMS-con) and the Fuzzy-PI adaptation
law in ECMS (ECMS-Fuzzy-PI).
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PI adaptation law; ECMS-Fuzzy-PI: ECMS with Fuzzy PI adaptation law.

As shown in Figure 25, the deviation between the final SoC and the reference value is almost the
same when no noise signal is added to the driving cycle, reaching 0.0015 and 0.0017 for ECMS-con and
ECMS-Fuzzy-PI, respectively. Both ECMS-con and ECMS can achieve better performance in terms
of fuel economy and charge-sustainability. In contrast, the SoC deviation of ECMS-con increases,
with values of 0.0059 and 0.0052 for Noise1 and Noise2, respectively, when variations are added to
the driving cycle. However, the final SoC can be better guaranteed with ECMS-Fuzzy-PI, resulting
in smaller SoC deviation. On the other hand, the fuel consumption of ECMS-Fuzzy-PI is slightly
higher than that with ECMS-con, with values of 3.126 km/L and 3.0855 km/L for Noise1 and Noise2,



Energies 2016, 9, 919 24 of 26

respectively. These results verify that the final SoC using ECMS-con cannot better converge to the
reference value due to the variation of driving cycle and the ECMS-Fuzzy-PI controller provides a better
performance in terms of charge-sustainability and fuel economy. In conclusion, ECMS-Fuzzy-PI is more
robust than ECMS-con and it better adapts to the driving cycle. The proposed energy management
system is more feasible for real-time control than ECMS with constant EF.

To better demonstrate the adjustability of the proposed Fuzzy PI adaptation law, simulation of
the PI controller and the Fuzzy PI controller applied in ECMS to adjust the EF are also conducted.
The comparison of the final SoC as well as the fuel consumption over a 2 × CHA cycle is shown in
Figure 26. Note the parameter of PI (Kp0 = 5, Ki0 = 0.05) remains the same for the three cases.Energies 2016, 9, 919 24 of 26 
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As can be seen from Figure 26, the solution of ECMS-PI is charge-increasing and SoC deviation
is 0.0086 when no noise is added to the driving cycle, but the SoC deviation is only 0.0023 using
ECMS-Fuzzy-PI. On the other hand, the fuel consumption is lower than one with ECMS-PI. In addition,
SoC deviations using ECMS-Fuzzy-PI, which are only 0.0019 and 0.0043 for Noise1 and Noise2,
respectively, are smaller than those with ECMS-con, (0.0051 and 0.0057 for Noise1 and Noise2,
respectively). Similarly, the fuel economy is better compared to ECMS-PI, though the noise signal is
added to driving cycle. This demonstrates that ECMS-Fuzzy-PI is more robust than ECMS-PI and it
can better guarantee the final constraint of SoC even though velocity noise is added to driving cycle.
Moreover, the ECMS-Fuzzy-PI controller can effectively adjust the parameters of the PI adaptation law
applied in ECMS. In conclusion, ECMS-Fuzzy-PI is capable of imposing the SoC charge-sustaining
condition and improving the fuel economy, even if variations are added to driving cycle.

6. Conclusions

A new energy management system for parallel hybrid electric vehicles is proposed based on
the Fuzzy PI adaptation law of equivalent factor (EF) used by ECMS. The adaptation law of EF is
derived by analyzing the relationship between ECMS and PMP. Simulations are performed over two
driving cycles to demonstrate the effectiveness of the proposed energy management system. Results
show that the new adaptation law based on Fuzzy PI controller can provide a better adjustability
and is more robust than ECMS with constant EF due to the variation of the driving cycle as well as
EF. The proposed control strategy can provide a better performance to adjust EF, especially when
the optimal EF is not selected. Moreover, ECMS with Fuzzy PI gives better adjustability for the
parameters of the PI adaptation law to impose SoC charge-sustainability and improve fuel economy.
In addition, the proposed control strategy is more feasible for real-time control compared to the ECMS
with constant EF. The proposed energy management system can also achieve better fuel economy,
which is improved by 4.44% and 14.7% compared with the rule-based control strategy in china city bus
cycles and ECE, respectively. This study can provide a better understanding of the adaptive ECMS.

The optimization of membership function will be conducted in the future work.
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The following abbreviations are used in this manuscript:

ECMS equivalent consumption minimization strategy
EF equivalent factor
PMP pontryagin’s minimum principle
PI proportional plus integral
RB rule-based control strategy
ECE economic commission of Europe
HEVs hybrid electric vehicles
DP dynamic programming
SDP stochastic dynamic programming
ICE internal combustion engine
CS charge-sustaining
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