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Abstract: The present paper aims at defining a simplified but effective model of a thermal network
that links the thermal power generation with the resulting temperature time profile in a heated
or refrigerated environment. For this purpose, an equivalent electric circuit is proposed together
with an experimental procedure to evaluate its input parameters. The paper also highlights the
simplicity of implementation of the proposed model into a microgrid Energy Management System.
This allows the optimal operation of the thermal network to be achieved on the basis of available
data (desired temperature profile) instead of a less realistic basis (such as the desired thermal
power profile). The validation of the proposed model is performed on the Savona Campus Smart
Polygeneration Microgrid (SPM) with the following steps: (i) identification of the parameters involved
in the equivalent circuit (performed by minimizing the difference between the temperature profile,
as calculated with the proposed model, and the measured one in a set of training days); (ii) test of
the model accuracy on a set of testing days (comparing the measured temperature profiles with the
calculated ones); (iii) implementation of the model into an Energy Management System in order to
optimize the thermal generation starting from a desired temperature hourly profile.

Keywords: energy management; optimization algorithm; parameter identification; smart grids;
thermal network

1. Introduction

One of the main focuses of microgrid research has been the development of optimal operational
strategies to reach the maximum potential of their promising features in the energy management
context. Such strategies are typically implemented in so-called Energy Management Systems (EMS).

Due to their importance, EMSs have been deeply investigated in various forms and
architectures [1,2]. The most common architecture for EMSs is the multilevel hierarchical
architecture [3], in which the higher level accounts for the dispatch of active and reactive power of the
programmable production units, while the lower ones perform a more detailed control of the single
units. The highest level of this architecture recalls the principles of optimization of traditional electricity
transmission networks, achieved by classical Optimal Power Flow (OPF) algorithms. However,
the presence of dynamic components such as storage devices, together with the uncertainties that
characterize load request and renewable energy sources (RES), and the combined presence of electric
and thermal infrastructure make this optimization problem a very hard task from a computational
point of view. To overcome this difficulty, many different papers have been published with the aim of
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developing accurate and efficient algorithms for microgrid EMSs, addressing either the integration of
RES and storage devices, the so-called demand side management (DSM), or again the satisfaction of
electric network constraints [4–6].

In a recent paper [7], the attention of the authors has been concentrated on efficient electric
network modeling for optimization purposes that has reached a good compromise between accuracy
and reduction in the Computer Processing Unit (CPU) effort. However, the thermal network model
consisted only of a pure thermal power balance equation. This is quite unrealistic, as it assumes
knowledge of the current and future thermal load request expressed in terms of a thermal power rather
than a temperature profile and does not consider the dynamic transients between the instant in which
the thermal source is switched on and the moment in which the temperature reaches the desired value.
The proposed paper aims at bridging this gap by defining an equivalent electric circuit for a thermal
network that is able to account for both these issues.

In the literature, many studies have dealt with the modeling of thermal networks from
different point of views (as an example [8–10]) focusing either on optimization or simulation aspects.
The advantages of district heating networks based on combined heating and power (CHP) technologies
have been shown in [11,12] and, especially in [11], a model for the optimal daily operation of a district
system with a CHP plant has been proposed.

As highlighted by Larsen et al. [13], models including a full physical representation of thermal
networks, in terms of mass flow rates, pressure drops and pipe dimensions, are computationally
intensive and, as a consequence, are not suitable to be inserted into EMSs; to this end, they propose a
simplified method which permits them to study a district heating network by reducing its topological
complexity. On the other hand, Kuosa et al. [14] focus their attention on the differences between
radial and meshed networks and compare a traditional network with a ring one characterized by an
innovative flow rate control method. Furthermore, the same authors introduced in [8] an equivalent
thermal circuit to represent the heat transfer process in a heat exchanger and applied this methodology
to study a district heating system.

More simplified models of thermal networks are usually implemented within Mixed-Integer
Linear Programming (MILP) tools [15–17], where district heating networks are optimally designed
and operated in order to minimize different objectives, such as capital and daily operational costs.
In the aforementioned models, energy balance equations, operational constraints and correlations
for the calculation of heat losses and pressure drops are reported. In any case, what is necessary
for an EMS is basically to provide a relationship between the thermal power generation (which is
typically a decisional variable) and the temperature time profile along the district fed by the thermal
network (which is typically the desired output). Such a relationship is inserted into the EMS as a
set of constraints in order to find the best thermal power generation profile that allows the desired
temperature to be reached.

As the physical relationship between power and temperature is complicated and involves
knowledge of many quantities and parameters, the present paper proposes a different strategy with
respect to the previous publications: it postulates that the thermal network can be represented by means
of an equivalent electric circuit and determines the numerical values of the circuit parameters by means
of an optimization algorithm that aims at minimizing the difference between the calculated temperature
time profile and the measured one starting from the measurement of the thermal power injection.

The equivalent electric circuit proposed in the present contribution is tailored on the thermal
network of the Savona Campus Smart Polygeneration Microgrid (SPM), but it is representative
of a general approach that can be adopted to study heat distribution systems in a simplified and
effective way.

The paper is structured as follows: Section 2 describes the theoretical part of the work with the
definition of the equivalent circuit of the thermal network, describing the meaning of all the terms in
detail and its dynamic behavior (Section 2.1) and the procedure for parameter estimation (Section 2.2),
while Section 2.3 describes the insertion of the proposed model into a microgrid EMS. Section 3
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performs a validation of the proposed model on the basis of the measurements acquired on field in
the SPM. Finally, Section 4 provides some conclusive remarks on the work done and possible future
developments on the topic.

2. Results

2.1. Equivalent Electric Circuit

In order to be integrated into the EMS, the proposed thermal network model must have the
following properties:

(1) It has to be “simple” in order to be used in synergy with an EMS. In other words, the equations
that constitute such a model have to be inserted as new constraints in the EMS. So, to limit the
computational effort of the optimisation algorithm encoded in the EMS, such a model must be
described by few and simple equations;

(2) It has to be accurate in modeling the delay time between the instant in which the thermal source
is switched on and the one in which the temperature reaches the desired value at the user side;

(3) It has to provide a reliable link between the desired temperature time profiles and the
corresponding thermal power that has to be produced by thermal power generators.

A simple schematic representation of the thermal circuit at the basis of this research work is
proposed in Figure 1. In order to meet all these goals, one can consider an equivalent linear electric
circuit since it is described by a linear dynamic system; the topology of such a circuit can be derived
starting from the well-known parallelism between electric and thermal devices. According to this
approach, typically resistors model the thermal losses, capacitors account for thermal inertias and
current (voltage) sources represent the power (temperature) generation. In order to meet the first
model requirement, the model accounts, as depicted in Figure 1, for a “thermal ring” (TR) and a
“user” (U). The first one involves the thermal sources and the thermal network until the buildings,
while the second one takes into account the buildings and their interface with the outdoor environment.
This latter represents the temperature mean request of an array of homologous end-users (a higher
number of rooms) to be considered unique to avoid a significant increase in the system complexity.
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The choice of using an equivalent electric representation instead of a purely thermal one is driven
by the fact that several EMS for microgrid applications are typically designed to manage the electric
part of the grid. For this reason, if an electric equivalent of the system is provided, its integration could
be performed in a larger set of EMS tools and would also allow the management of thermal power to
be upgraded by retrofitting existing EMS structures.

The proposed equivalent circuit is depicted in Figure 2 and the circuital elements can be described
as follows:

• The current source I0 represents the thermal power generation;
• The capacitance C0 accounts for the thermal inertia responsible for the time delay necessary to

obtain the desired temperature in the heat generator circuit;
• The conductance G0 models the heat generator circuit losses;
• The voltage source V0 models the fact that, without any thermal source, the heat generator

network temperature approaches the ground temperature;
• The switch B1 models the possible disconnection between the generation and the load (encoded in

a Boolean variable S, true when B1 is open);
• The diode D1 models the fact that the user cannot transfer heat to the water in the heat

generator circuit;
• The conductance G11 accounts for the pipe thermal losses in the thermal circuits of the buildings;
• The capacitance C1 accounts for the thermal inertia responsible for the time delay necessary to

obtain the desired temperature at the user side;
• The conductance G1 represents the thermal losses, which depend on the user insulation;
• The voltage V1 mimics the fact that, without any thermal source, the user temperature approaches

the outdoor ambient one.

In the proposed model, VC0 is the voltage between terminals A and B and represents the thermal
ring temperature, while VC1, which is the voltage between terminals A1 and B1, represents the user
mean temperature.
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thermal network (the green line denotes what has been labelled as TR and the blue one is the boundary
of the user U).

Applying the Kirchoff’s laws to the circuit of Figure 2, one obtains the following set of two
ordinary differential equations in the state variables VC0 and VC1:

dVC0 (t)
dt

= −G0 + G11

C0
VC0 (t) +

G11

C0
VC1 (t) +

1
C0

I0 (t) +
G11

C0
VB1 (t) +

G0

C0
V0 (t) (1)
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dVC1 (t)
dt

=
G11

C1
VC0 (t)−

G1 + G11

C1
VC1 (t)−

G11

C1
VB1 (t) +

G1

C1
V1 (t) (2)

with initial conditions VC0 (t0) = V∗C0 and VC1 (t0) = V∗C1 at time t0. Here the voltage VB1 at the switch
B1 is given by:

VB1 (t) =

{
VC0 (t)−VC1 (t) i f S (t) = true

0 i f S (t) = false
(3)

The switch is therefore simulated using the Boolean variable S which is equal to one if the switch
is open (e.g., during the night period when the TR is disconnected) and is equal to zero if the switch
is closed. The numerical solution of (1), (2) allows finding out the time profile of both the TR and U
temperatures, given the thermal power generation (which meets the aforementioned requirements of
the model).

2.2. Equivalent Electric Circuit Parameters Estimation

Once the topological layout of the network has been defined, it is necessary to define a procedure
to evaluate the five parameters proposed by the model: three resistances and two capacitances.
One possibility consists of considering the physical layout of the plant and proceeding with a
characterization of the elements that compose the system. Nevertheless, such a procedure is
computationally complex and affected by uncertainties on the phenomena to be considered. Moreover,
the model of the system varies in accordance to the specific thermal network, making difficult to
obtain a general procedure to be extended for a generic microgrid asset. To overcome these problems,
the methodology adopted in the present paper for parameters estimation relies on an optimization
procedure that aims at minimizing the difference between the temperature time profile calculated
with (1)–(3) and the measured one. Under this assumption, the only a priori hypothesis is the topology
of the circuit, which, by the way, can be judged in an ex-post evaluation comparing the calculated and
the measured outputs. The aim of the present section is to present the proposed optimization approach.

As measured temperatures and thermal powers are supposed to be known on a uniform sampling
of the interval [t1, t2] according to a step ∆t and resulting in N = (t2 − t1) /∆t + 1 samples, the whole
problem will be presented in a discrete form.

As far as the cost function is concerned, the χ2 function has been chosen, in order to have the
possibility of subjecting the obtained trends to a statistical evaluation (i.e., the so called chi-squared
test [18] typically used to establish if a theoretical model is incompatible with a set of experimental
observations). With specific reference to the available measurements, the cost function for the problem
under consideration can be written as:

χ2
calc =

N

∑
i=1

(Vmeas
C0 (ti)−VC0(ti))

2

σ2
i,C0

+
(Vmeas

C1 (ti)−VC1(ti))
2

σ2
i,C1

(4)

being σi,C0 and σi,C1 the standard deviation of the measured temperature of the thermal ring Vmeas
C0

and of the user Vmeas
C1 , respectively.

The constraints of the problem are the discretized versions of (1) and (2), i.e.,

VC0(ti+1)
∆t = VC0 (ti)

(
1

∆t −
G0+G11

C0

)
VC0 (ti) +

G11
C0

VC1 (ti) +
1

C0
I0 (ti) +

G11
C0

VB1 (ti) +
G0
C0

V0 (ti) (5)

and
VC1 (ti+1)

∆t
=

G11

C1
VC0 (ti) +

(
1

∆t
− G1 + G11

C1

)
VC1 (ti)−

G11

C1
VB1 (ti) +

G1

C1
V1 (ti) (6)

The five unknown parameters must belong to reasonable ranges that can be estimated with
physical considerations (e.g., the initial estimation of capacitance C0 can be obtained by the water
specific heat multiplied by the overall water mass flowing in the thermal ring).
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Moreover, the defined optimization procedure does not require the parameters to be time invariant.
As a matter of fact, it seems to be reasonable that they may vary with time in accordance with the
specific usage conditions of the rooms (e.g., the number of occupants in a room or the people flowing
from one place to another have an impact on the efficiency and inertia of the system). This suggests the
possibility of dividing the optimization horizon into time slots, according to the habits of the district
fed by the considered thermal network.

Once the optimization problem has been set up, it is necessary to define an algorithm to identify
the optimal solution (parameters) to fit the measured data with the proposed model. This is not an easy
task, as the cost function (4) that has to be minimized is not a polynomial (the two capacitances appear
at the denominator after having inserted (5) and (6) into (4)). To address this problem, a stochastic
optimization algorithm has to be preferred in order to avoid possible local minima: the Ant Colony
Optimization algorithm (ACO) [19] encodes this characteristic in its nature. In the ACO algorithm,
two degrees of freedom are left to the users in order to increase the velocity of convergence and/or
emphasize its accuracy. However, to reduce the effect of an inappropriate choice, a different version of
the ACO algorithm has here been adopted: the Multivariate Ant Colony Algorithm for Continuous
Optimization (MACACO) [20]. MACACO is an extension of ACO based on a covariance matrix
instead of a simple variance vector (adopted in ACO).

The updating step for each ant is made such that the new distribution of the solutions points at the
promising region is supposedly indicated by the candidate solutions at the previous iteration. This goal
can be achieved recalculating this matrix using just 70% of the best solutions found at the present
iteration (the 70% value is defined on empirical basis). By doing that, the obtained distribution will go
on until the covariance tends to almost zero and is going to be centered at the best optima found.

2.3. Equivalent Electric Circuit Parameters Estimation

The typical thermal network characterization inserted in a microgrid EMS consists of providing
the optimization procedure with a constraint stating that the overall thermal power generation must be
at least equal to the thermal request (expressed in terms of thermal power) over the optimization time
horizon. Unfortunately, this implies to know in advance the time profile of the thermal power request,
which is typically predicted by means of the persistency method [21]. This produces a significant
amount of uncertainty affecting the overall EMS result.

One of the most interesting applications of the proposed model, for a cogenerative microgrid,
is the possibility of integration into an EMS in order to make it able to process the request in terms
of temperature profile, which seems much easier to forecast. It is intuitive that for a given load
temperature profile, the optimal solution from an economic point of view is given by achieving the
minimum amount of primary energy (current in the equivalent modeling) able to guarantee that the
room temperature is equal or greater than the desired one.

Recalling the meaning of the electric-thermal equivalency of circuital quantities, it is possible to
express the cost function in terms of the I0 current. In other words, the optimal solution corresponds to
the values of I0(t) that minimize the overall thermal energy in a finite time horizon Nt, i.e.,

min
Nt

∑
i=1

I0 (ti)∆t (7)

constrained by (5) and (6) and such that:

VC1(ti) ≥ Vdes
C1 (ti) ∀i = 1, . . . , Nt (8)

Vdes
C1 (ti) being the desired value of the load temperature at time ti.
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3. Discussion

3.1. Model Validation in the SPM

This section reports the results obtained by applying the proposed model to the Savona Campus
SPM. A complete description of the SPM has been provided in [7,22], but, from a pure thermal point of
view, it is worth recalling the SPM’s main features:

• two Combined Heat and Power Gas Turbines (CHP-GT) Capstone C65 model, able to generate
65 kW (electric power) and 112 kW (thermal power);

• one CHP-GT Capstone C30 able to generate 30 kW (electric power) and 55 kW (thermal power);
• two gas boilers characterized by a rated thermal power of 500 kW per boiler.

Figure 3 sketches the SPM map, where a green line groups the TR (composed by the network
connections, in red, and the thermal sources, in orange) and the set of blue lines denotes the U
(the different buildings). The thermal network is fed by the three cogeneration gas turbines and two
gas boilers. The pipes are installed underground and are properly insulated in order to minimize
heat losses; the pipe diameters are in the range between DN80 and DN125. Figure 3 does not show
the pipes that distribute heat inside each building, where hot water is moved by on/off centrifugal
pumps and heat is transferred to the indoor air by means of radiators or fan coils. During winter
days, the Campus thermal load can be up to 900 kW of peak request and the thermal energy yearly
consumption is about 1300 MWh.
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and the thermal network) and the “user” (the set of buildings involved).

The heating network is monitored in real time by the SPM control room by means of on-field
sensors that allow the following variables to be measured: the water mass flow rate, the supply and
return lines temperatures, the thermal power output of each gas turbine and boiler and the outdoor
temperature. At present, the buildings (U) are not equipped with any sensor measuring the indoor
conditions as well as the water temperature and flow rate, so that it is possible to evaluate only the
overall thermal load of the Campus but not the single building ones. In the future, each building will
be equipped with sensors in order to develop more accurate analyses and to highlight criticalities of
the thermal network. However, the rooms’ temperatures have been recorded in the data collection
period by means of portable indoor temperature monitoring systems (Elitech RC-4 Mini Temperature
Data Logger by Jiangsu Jingchuang Electronics Co. Ltd., Xuzhou, China, 2015 [23]).
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As mentioned, in order to attain the goals of the work here presented, a proper set of experimental
data had to be collected, on the base of which identifying the model parameters and performing the
consistency estimation.

Furthermore, as specified before, the representation of the thermal network has been based on the
introduction of an “equivalent” unique end-user U, despite of the large number of actual physical loads.
As a consequence, the proper choice of the rooms in which to carry on the temperature measurements
had to be identified. In our case, the logic was that of performing the temperature survey within rooms
that, even if included in buildings with non-perfectly superimposable thermal characteristics, could be
considered as homologous under the temperature requirements of the occupants (offices, apartments,
classrooms). In the choice of the rooms to be monitored, particular attention has been devoted in
evaluating how the human behaviors (windows opening, room thermostat adjustments, etc.) could
affect the thermal profiles within the rooms, trying to minimize these uncontrollable variables.

Operatively, along the survey period the indoor temperature, within the selected rooms, has been
acquired continuously and the obtained trends have been recorded weekly. By averaging the data
collected in the selected users, a set of day-by-day temperature trends (and the related standard
deviations), each of which assumed as representative of the typical user (i.e., room) served by the
thermal network, has been obtained.

3.2. Parameter Characterization

The parameters characterization was conducted during the winter season in the period between
January 2016 and March 2016. Measurement campaigns were carried out three days per week
(Monday and Friday have been avoided because the thermal behavior of the system is influenced in
those days by the fact that during weekend the heating system of the whole campus is switched off).
The SPM thermal behavior was divided into three different time frames (each one object of parameter
identification):

(a) Time Frame 1: from 10 p.m. to 6 a.m. when the thermal ring stops working and people’s presence
inside the buildings is extremely reduced;

(b) Time Frame 2: from 6 a.m. to 5 p.m. when the building pumping system works and a significant
number of people are present inside the buildings;

(c) Time Frame 3: from 5 p.m. to 10 p.m. when some loads are disconnected from the thermal
network and gradually fewer people are present.

As explained before, this suggests considering the circuit parameters as piecewise constant
functions throughout the day, i.e.,

Gi (t) =


Gi,1 if 6 a.m. ≤ t < 5 p.m.

Gi,2 if 5 p.m. ≤ t < 10 p.m.

Gi,3 if 10 p.m. ≤ t ≤ 5 a.m.

i ∈ {0, 1, 2} (9)

Ci (t) =


Ci,1 if 6 a.m. ≤ t < 5 p.m.

Ci,2 if 5 p.m. ≤ t < 10 p.m.

Ci,3 if 10 p.m. ≤ t ≤ 5 a.m.

i ∈ {0, 1} (10)

Moreover, condition S(t) becomes true if:

• 0 a.m. ≤ t ≤ 6 a.m. or 10 p.m. ≤ t ≤ 12 p.m., in order to encode condition (a);
• VC0(t) < VC1(t), in order to encode the presence of the diode D1;
• VC1(t) > VC1,max(t), where VC1,max(t) is the user maximum temperature allowed at the instant t.

Once all the measurements were acquired, two thirds of the measurement data were used to train
the model (identifying the parameters) while the other third has been used to test the performances
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of the parameters found. In more detail, data acquired on Tuesday and Thursday of each week were
used to choose the optimal values of the parameters, while Wednesday’s data were used for the
verification. This choice was made in order to have uniformity in both the identification and validation
on the results. The tests have been performed taking the input measurements (ground temperature,
environmental temperature and thermal power from the heating ring), calculating the U temperature
using the model and then comparing the calculated results with the measured ones.

The optimal values of the circuit parameter (which minimize the cost function) are reported in
Table 1 (all the data used to find the parameter reported in Table 1 are available at Savona Campus and
can be provided at request).

Table 1. Optimal Parameters Values.

Parameter 6 a.m.–5 p.m. 5 p.m.–10 p.m. 10 p.m.–6 a.m.

G0 (kW/K) 2.58 3.72 0.40
C0 (kJ/K) 0.93 × 105 2.26 × 105 1.73 × 105

G1 (kW/K) 28.76 24.03 50.01
C1 (kJ/K) 3.91 × 106 3.17 × 106 3.11 × 106

G11 (kW/K) 3.62 20.00 4.01

As one can see from Table 1, the results are sensibly different from frame to frame, highlighting
the importance of defining a suitable differentiation of the operation assets of the network. Figures 4–9
report the results of the tests performed on Wednesday, 20 January 2016. In particular, Figures 4 and 5
plot the user and thermal ring temperature time profiles during nighttime showing an excellent
agreement between calculations and measurements. Figures 6 and 7 report the comparison of the
user and thermal ring temperature during the daytime period, from 6 a.m. to 10 p.m. Once again,
the estimated temperature is very close to the measured one with some deviations, especially in the
early morning in the graph of the ring temperature. Nevertheless, the maximum error is around 13%,
which is anyway a good approximation. It should be observed that for the EMS integration, the most
important quantity to be identified is the user temperature, as this is the real user request. Finally,
Figures 8 and 9 provide the model validation in the last time frame, from 5 p.m. to 10 p.m. As one
can see, the thermal ring temperature is slightly over estimated but the relative error is always lower
than 10%.
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Figure 7. Ring temperature (VC0) profile: measured data against model results from 6 a.m. to 5 p.m.
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In order to have an overall evaluation of the accuracy of the proposed model, the value of
the chi-squared function has been calculated for the shown testing period and compared to the
chi-squared distribution at level α for determining the goodness of fit [15]. To determine the degrees of
freedom (d.o.f.) of the chi-squared distribution, it is necessary to consider the total number of acquired
measurements (n) and subtracts the number of estimated parameters (in our case 5). The test statistic
follows, approximately, a chi-square distribution with (n − 5) degrees of freedom. The more the
chi-squared calculated is lower than the chi-squared distribution at level α = 0.95, the more accurate is
the result. Moreover, deciding whether a model is in accordance with the data is often summarized
by the p-value. According to [24], the more the p-value is close to 1 the more the model is accurate.
In Table 2 the numerical values of all the introduced indicators are reported: the fact that the reference
chi-square value is always greater than the calculated one and, in particular, that the p-value extremely
close to 1 indicates the high accuracy of the model in describing the thermal phenomena.

Table 2. Statistics on the testing period.

Timeslot χ2
calc p-Value χ2 (95%) dof

6 a.m.–5 p.m. 14.8 ~1 39.8 56
5 p.m.–10 p.m. 7.42 ~1 92.1 116
10 p.m.–6 a.m. 9.00 ~1 68.3 89
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3.3. Validation of the EMS Integration

Finally, the proposed model has been implemented in the SPM control system in order to integrate
it into the microgrid EMS. The experiment has been performed providing the EMS with the measured
temperature and assuming it as the desired temperature; the EMS produced, as output, the thermal
power to be provided by the heating units in order to meet the temperature request and minimizing
the overall energy over the time horizon. The power request profile is then compared to the real
power generation recorded by the SPM Supervisory Control And Data Acquisition (SCADA) system,
managed in accordance to the following rules based on the ring temperature T:

• if T < 49 ◦C, then both boilers switch on
• if 49 ◦C < T < 53 ◦C, then only one boiler switches on
• if T > 53 ◦C, then both boilers switch off

Figure 10 provides the comparison of the thermal power obtained by the EMS (black one) and the
actual thermal power profile (red dashed line). As can be noted, the optimal power profile is smother
and more constant, providing a saving equal to 1400 kWh along the analyzed 24 h, corresponding to
the 12.7% of the total thermal energy requested in the whole day (integrating the thermal power red
curve of Figure 10 one obtains 11,050 kWh). From an economical point of view, considering a mean cost
of the thermal energy of 0.096 €/kWh (which is the case of the SPM), it is possible to calculate the daily
savings as €134 against a total € cost of the non-optimized scenario of €1061. Finally, Figure 11 shows:

i. the measured temperature (red dotted line);
ii. the temperature calculated feeding the model (1)–(3) with the optimal thermal power profile

(black solid line);
iii. the temperature calculated feeding the model (1)–(3) with the measured thermal power profile

(blue dash-dotted line).
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This allows us to draw the following conclusions: (a) the comparison between (i) and (ii) shows
that the optimal solution is able to reproduce the desired temperature; (b) the good superposition
between (i) and (iii) validates once again the effectiveness of the equivalent circuit, as, when fed by the
real power, it is able to predict the correct time profile of the temperature; finally, (c) the comparative
analysis of (ii) and (iii) states that there can be many different power injections that produce very
similar temperature profiles, thus supporting the need to determine the most convenient one.
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4. Conclusions

The aim of this contribution has been to propose a simple but general model of a thermal network
by means of an equivalent electric circuit. The aim of the present model is to be sufficiently accurate
but also simple in order to be integrated into cogenerative microgrid EMSs. The main task of this
model is that of linking the thermal power request of the load (usually provided as an input the EMS)
to the user temperature (a more meaningful desired parameter for the user). The model proposed
is based on a linear equivalent electric circuit whose main parameters can be determined through a
measurement campaign applying a parameter identification optimal procedure. The proposed model
has been tested in the Savona Campus Smart Polygeneration Microgrid thermal network, in order to
show the actual applicability and robustness of the procedure. The values of the parameters involved
have been computed by means of an optimization procedure that, in practice, minimizes the difference
between the temperature profiles of the thermal circuit and of the user as calculated with the proposed
model and the measured ones. The obtained numerical results show that the model describes in a very
accurate way the set of measured temperatures and, at the same time, can be easily used as a procedure
to optimally schedule the thermal power production leading, to significant thermal energy savings.
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electric modeling of the thermal network; Andrea Bonfiglio and Massimo Brignone performed the experimental
validation and the EMS integration; Andrea Bonfiglio wrote the paper.
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