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Abstract: Hybridizing chaotic evolutionary algorithms with support vector regression (SVR) to
improve forecasting accuracy is a hot topic in electricity load forecasting. Trapping at local optima
and premature convergence are critical shortcomings of the tabu search (TS) algorithm. This paper
investigates potential improvements of the TS algorithm by applying quantum computing mechanics
to enhance the search information sharing mechanism (tabu memory) to improve the forecasting
accuracy. This article presents an SVR-based load forecasting model that integrates quantum
behaviors and the TS algorithm with the support vector regression model (namely SVRQTS) to
obtain a more satisfactory forecasting accuracy. Numerical examples demonstrate that the proposed
model outperforms the alternatives.

Keywords: support vector regression (SVR); quantum tabu search (QTS) algorithm; quantum
computing mechanics; electric load forecasting

1. Introduction

A booming economy is dramatically increasing electric loads in every industry and those
associated with people’s daily lives. Meeting the demand of all has become an important goal
of electricity providers. However, as mentioned by Bunn and Farmer [1], a 1% increase in the
error in an electricity demand forecast corresponds to a £10 million increase in operating costs.
Therefore, decision-makers seek accurate load forecasting to set effective energy policies, such as those
concerning new power plants and investment in facilities [2]. Importing or exporting electricity in
energy-limited developing economies, such as that of Taiwan, is almost impossible [3,4]. Unfortunately,
electric load data have various characteristics, including nonlinearity and chaos. Moreover, many
exogenous factors interact with each other, affecting forecasting, such as economic activities, weather
conditions, population, industrial production, and others. These effects increase the difficulty of load
forecasting [5].

In the last few decades, models for improving the accuracy of load forecasting have included
the well-known Box–Jenkins’ ARIMA model [6], exponential smoothing model [7], Kalman filtering/
linear quadratic estimation model [8–10], the Bayesian estimation model [11–13], and regression
models [14–16]. However, most of these models are theoretically based on assumed linear relationships
between historical data and exogenous variables and so cannot effectively capture the complex
nonlinear characteristics of load series, or easily provide highly accurate load forecasting.

Since the 1980s, to improve the accuracy of load forecasting, many artificial intelligent (AI)
approaches have been used and been combined to develop powerful forecasting methods, such as
artificial neural networks (ANNs) [17–21], expert system-based methods [22–24], and fuzzy inference
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approaches [25–28]. Recently, these AI approaches have been hybridized with each other to provide
more accurate forecasting results [29–33], with the aforementioned linear models [34], or with
evolutionary algorithms [35,36]. However, the shortcomings of these AI approaches include the
need to determine the structural parameters [37,38], the time required for knowledge acquisition [39],
and a lack of correct and consistent heuristic rules to generate a complete domain knowledge base [40].
Extensive discussions of load forecasting models can be found elsewhere [41].

In the middle of the 1990s, support vector regression (SVR) [42] began to be used to solve
forecasting problems [43], and in the 2000s, Hong et al. [44–56] developed various SVR-based load
forecasting models by hybridizing evolutionary algorithms, chaotic mapping functions and cloud
theory with an SVR model, to effectively determine its three parameters to improve the forecasting
accuracy. Based on Hong’s research results, the accurate determination of three parameters of the SVR
model is critical to improving its forecasting performance. The drawbacks of evolutionary algorithms
cause the combination of parameters during the optimal modeling process, such as premature
convergence or trapping in a local optimum. Therefore, Hong and his colleagues investigated
the possibility of using chaotic mapping functions to increase the ergodicity over the search space,
then transfer the three parameters into chaotic space to make the search more compact, and employ
the cloud theory to establish a cooling mechanism during annealing process to enrich the influent
effects of temperature decreasing mechanism, and eventually, improve the searching quality of SA
algorithm for better forecasting accuracy.

Inspired by the excellent work of Hong et al., the authors find that the tabu search (TS) [57,58]
algorithm is simply implemented to iteratively find a near-optimal solution, so it is powerful and has
been successfully used to solve various optimization problems [59–61]. The TS algorithm, even with
a flexible memory system to record recently visited solutions, and the ability to climb out of local
minima, suffers from the tuning of the tabu tenure, meaning that it still becomes stuck at local
minima and has a low convergence speed [62,63]. Also, the best solution is fixed for long iterations,
i.e., it takes a great deal of time to escape to near-global optima from current position [64]. Therefore,
both intensification and diversification strategies should be considered to improve the robustness,
effectiveness and efficiency of simple TS; a more powerful neighborhood structure can be feasibly
constructed by applying quantum computing concepts [65]. The same old problem, premature
convergence or trapping at local optima, causes the forecasting accuracy to be unsatisfactory. This paper
seeks to extend Hong’s exploration to overcome the shortcomings of the TS algorithm, and to use the
improved TS algorithm to forecast electric loads.

In this work, quantum computing concepts are utilized to improve the intensification and
diversification of the simple TS algorithm; to improve its searching performance, and thus to
improve its forecasting accuracy. The forecasting performance of the proposed hybrid quantum
TS algorithm with an SVR model—the support vector regression quantum tabu search (SVRQTS)
model—is compared with that of four other forecasting methods that were proposed by Hong [56] and
Huang [66]. This paper is organized as follows. Section 2 presents the detail processes of the proposed
SVRQTS model. The basic formulation of SVR and the quantum tabu search (QTS) algorithm are
introduced. Section 3 presents two numerical examples and compares published methods with respect
to forecasting accuracy. Finally, Section 4 draws conclusions.

2. Methodology of Support Vector Regression Quantum Tabu Search (SVRQTS) Model

2.1. Support Vector Regression (SVR) Model

A brief introduction of an SVR model is provided as follows. For a given training data set,
G = {(xi, yi)}n

i=1, where xi is a vector of fed-in data and yi is the corresponding actual values. G is then
mapped into a high dimensional feature space by a nonlinear mapping function, ϕ(·). Theoretically,
in the feature space, there should be an optimized linear function, f, to approximate the relationship
between xi and yi. This kind of optimized linear function is the so-called SVR function and is shown
as Equation (1),
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f (x) = wTϕ(x) + b (1)

where f (x) represents the forecasting values; the coefficients w and b are coefficients which are
estimated by minimizing the empirical risk function as shown in Equation (2),

R( f ) = 1
N

N
∑

i=1
Lε(yi, wTϕ(x) + b) + 1

2 wTw

Lε(y, f (x)) =

{
| f (x)− y| − ε, if | f (x)− y| ≥ ε
0, otherwise

(2)

where Lε(y, f (x)) is the ε-insensitive loss function. The ε-insensitive loss function is employed to
find out an optimum hyper plane on the high dimensional feature space to maximize the distance
separating the training data into two subsets. Thus, the SVR focuses on finding the optimum hyper
plane and minimizing the training error between the training data and the ε-insensitive loss function.
The SVR model then minimizes the overall errors as shown in Equation (3),

Min
w,b,ξ∗ ,ξ

R(w, ξ∗, ξ) = 1
2 wTw + C

N
∑

i=1
(ξ∗i +ξi) with the constraints :

yi − wTϕ(xi)− b ≤ ε+ ξ∗i , i = 1, 2, ..., N
−yi + wTϕ(xi) + b ≤ ε+ ξi, i = 1, 2, ..., N

ξ∗i ≥ 0, i = 1, 2, ..., N
ξi ≥ 0, i = 1, 2, ..., N

(3)

The first term of Equation (3), by employing the concept of maximizing the distance of two
separated training data, is used to regularize weight sizes, to penalize large weights, and to maintain
regression function flatness. The second term, to penalize the training errors of f (x) and y, decides
the balance between confidence risk and experience risk by using the ε-insensitive loss function. C is
a parameter to specify the trade-off between the empirical risk and the model flatness. Training errors
above ε are denoted as ξ∗i , whereas training errors below −ε are denoted as ξi, which are two positive
slack variables, representing the distance from actual values to the corresponding boundary values
of ε-tube.

After the quadratic optimization problem with inequality constraints is processed, the parameter
vector w in Equation (1) is obtained in Equation (4),

w =
N

∑
i=1

(β∗i − βi)ϕ(xi) (4)

where β∗i , βi, satisfying the equality βi∗ β∗i = 0, are the Lagrangian multipliers. Finally, the SVR
regression function is obtained as Equation (5) in the dual space,

f (x) =
N

∑
i=1

(β∗i − βi)K(xi, x) + b (5)

where K(xi, xj) is so-called the kernel function, and the value of the kernel equals the inner
product of two vectors, xi and xj, in the feature space ϕ(xi) and ϕ(xj), respectively; that is,
K(xi, xj) = ϕ(xi) ·ϕ(xj). However, the computation of the inner product in the high feature space
becomes a computationally complicated problem along with the increase in the input dimensions.
Such a problem of contradiction between high dimensions and computational complexity can be
overcome by using the kernel trick or defining appropriate kernel functions in place of the dot product
of the input vectors in high-dimensional feature space. The kernel function is used to directly compute
the inner product from the input space, rather than in the high dimensional feature space. Kernel
functions provide a way to avoid the curse of dimensionality. There are several types of kernel function,
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and it is hard to determine the type of kernel functions for specific data patterns [67]. The most
commonly used kernel functions include linear functions, polynomial functions, Gaussian functions,
sigmoid functions, splines, etc. The Gaussian function, K(xi, xj) = exp

(
−0.5‖xi − xj‖2/σ2

)
, is used

widely among all these various kernel functions as it can map the input space sample set into a high
dimensional feature space effectively and is good for representing the complex nonlinear relationship
between the input and output samples. Furthermore, only one variable (the width parameter, σ) is
there to be defined. Considering the above advantages, the Gaussian radial basis function (RBF) is
employed as the kernel function in this study.

The most important consideration in maximizing the forecasting accuracy of an SVR model
is the well determination of its three parameters, which are the hyper-parameters, C, ε, and the
kernel parameter, σ. Therefore, finding efficient algorithms for evaluating these three parameters is
critical. As indicated above, inspired by Hong’s hybridization of chaotic mapping functions with
evolutionary algorithms to find favorable combinations of parameters and to overcome the premature
convergence of the evolutionary algorithms, this work uses another (quantum-based) method to find
an effective hybrid algorithm without the drawbacks of the TS algorithm by, for example, improving
its intensification and diversification. Accordingly, the QTS algorithm is developed and improved
using the hybrid chaotic mapping function. The chaotic QTS (CQTS) algorithm is hybridized with
an SVR model, to develop the support vector regression chaotic quantum tabu search (SVRCQTS)
model, to optimize parameter selection to maximize forecasting accuracy.

2.2. Chaotic Quantum Tabu Search Algorithm

2.2.1. Tabu Search (TS) Algorithm and Quantum Tabu Search (QTS) Algorithm

In 1986, Glover and Laguna first developed a renowned meta-heuristic algorithm called tabu
Search (TS) [57,58]. TS is an iterative procedure designed for exploring in the solution space to find
the near optimal solution. TS starts with a random solution or a solution obtained by a constructive
and deterministic method and evaluates the fitness function. Then all possible neighbors of the given
solution are generated and evaluated. A neighbor is a solution which can be reached from the current
solution by a simple move. New solution is generated from the neighbors of the current one. To avoid
retracing the used steps, the method records recent moves in a tabu list. The tabu list keeps track of
previously explored solutions and forbids the search from returning to a previously visited solution.
If the best of these neighbors is not in the tabu list, pick it to be the new current solution. One of
the most important features of TS is that a new solution may be accepted even if the best neighbor
solution is worse than the current one. In this way it is possible to overcome trapping in local minima.
TS algorithm has been successfully used to lots of optimization problems [59–61].

However, in the TS algorithm, if a neighboring solution is not in the tabu list, TS sets it as the
new current solution, but this solution is commonly worse than the current best solution. TS typically
finds local minima and so do not change the best solution for many iterations; therefore, reaching
a near-global minimum takes a long time and its convergence speed is low [62]. To overcome this
shortcoming of the TS algorithm; to reduce its convergence time, to solve the similar old problem,
premature convergence or trapping at local optima, the qubit concept and the quantum rotation gate
mechanism can be used to construct a more powerful neighborhood structure by quantum computing
concepts [65].

In the traditional TS algorithm, an initial solution is randomly generated, and its fitness function
is evaluated to determine whether it should be set as the current best solution. However, in quantum
computing, the initial solution is generated by using the concept of qubit to assign a real value in the
interval (0,1), consistent with Equation (6). A qubit is the smallest unit of information for a quantum
representation, and is mathematically represented as a column vector (unit vector), which can be
identified in 2D Hilbert space. Equation (6) describes a quantum superposition between these two
states. In quantum measurement, the super-position between states collapses into either the “ground
state” or the “excited state”.
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|ψ〉 = c1 |0〉+ c2 |1〉 (6)

where |0〉 represents the “ground state”, |1〉 denotes the “excited state”; (c1, c2) ∈ ℵ; c1 and c2 are the
probability amplitudes of these two states; ℵ is the set of complex numbers.

The most popular quantum gate, the quantum rotation gate (given by Equation (7)), is used to
update the initial solution. [

α′i
β′i

]
=

[
cos(θi)− sin(θi)

sin(θi)− cos(θi)

] [
αi
βi

]
(7)

where (α′i,β
′
i) is the updated qubit; θi is the rotation angle.

The quantum orthogonality process (Equation (8)) is implemented to ensure that the
corresponding value exceeds rand(0,1). The tabu memory is introduced and set to null before the
process is executed. The QTS begins with a single vector, vbest, and terminates when it reaches the
predefined number of iterations. In each iteration, a new set of vectors, V(BS) is generated in the
neighborhood of vbest. For each vector in V(BS), if it is not in the tabu memory and has a higher
fitness value than vbest, then vbest is updated as the new vector. When the tabu memory is full,
the first-in-first-out (FIFO) rule is applied to eliminate a vector from the list.

|c1|2 + |c2|2 = 1 (8)

where |c1|2 and |c2|2 are the two probabilities that are required to transform the superposition between
the states (as in Equation (6)) into |0〉 and |1〉, respectively.

2.2.2. Chaotic Mapping Function for Quantum Tabu Search (QTS) Algorithm

As mentioned, the chaotic variable can be adopted by applying the chaotic phenomenon to
maintain diversity in the population to prevent premature convergence. The CQTS algorithm is based
on the QTS algorithm, but uses the chaotic strategy when premature convergence occurs during
the iterative searching process; at other times, the QTS algorithm is implemented, as described in
Section 2.2.1.

To strengthening the effect of chaotic characteristics, many studies have used the logistic mapping
function as a chaotic sequence generator. The greatest disadvantage of the logistic mapping function is
that its distribution is concentration at both ends, with little in the middle. The Cat mapping function
has a better chaotic distribution characteristic, so in this paper, the Cat mapping function is used as the
chaotic sequence generator.

The classical Cat mapping function is the two-dimensional Cat mapping function [68], shown as
Equation (9), {

xn+1 = (xn + yn) mod1
yn+1 = (xn + 2yn) mod1

(9)

where x mod 1 = x − [x], mod, the so-called modulo operation, is used for the fractional parts of a real
number x by subtracting an appropriate integer.

2.2.3. Implementation Steps of Chaotic Quantum Tabu Search (CQTS) Algorithm

The procedure of the hybrid CQTS algorithm with an SVR model is as follows; Figure 1 presents
the corresponding flowchart.

Step 1 Initialization. Randomly generate the initial solution, P, that includes the values of three
parameters in an SVR model.

Step 2 Objective value. Compute the objective values (forecasting errors) by using the initial
solution, P. The mean absolute percentage error (MAPE), given by Equation (10), is used to measure
the forecasting errors.
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MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣× 100% (10)

where N is the number of forecasting periods; yi is the actual value in period i; fi denotes the forecast
value in period i.

Step 3 Generate neighbors. Using the qubit concept, Equation (6) sets the initial solution, P,
to a real value between interval (0,1) and then obtains P′. Then, use the quantum rotation gate, given
by Equation (7), to generate the neighbor, P′ ′.

Step 4 Pick. Pick a new individual from the examined neighbors based on the quantum tabu
condition, which is determined by whether the corresponding value of P′ ′ exceeds rand(0,1).

Step 5 Update the best solution (objective value) and the tabu memory list. If P′ ′ > rand(0,1),
then update the solution to P* in the quantum tabu memory, vbest. Eventually, the objective value
is updated as the current best solution. If the tabu memory is full, then the FIFO rule is applied to
eliminate a P* from the list.

Step 6 Premature convergence test. Calculate the mean square error (MSE), given by
Equation (11), to evaluate the premature convergence status [69], and set the criteria, δ.

MSE =
1
S

S

∑
i=1

(
fi − favg

f

)2

(11)

where fi is the current objective value; favg is the mean of all previous objective values, and f is given
by Equation (12),

f = max
{

1, max
∀i∈S

{∣∣ fi − favg
∣∣}} (12)

An MSE of less than δ indicates premature convergence. Therefore, the Cat mapping function,
Equation (9), is used to find new optima, and the new optimal value is set as the best solution.

Step 7 Stopping criteria. If the stopping threshold (MAPE, which quantifies the forecasting
accuracy) or the maximum number of iterations is reached, then training is stopped and the results
output; otherwise, the process returns to step 3.

3. Numerical Examples

3.1. Data Set of Numerical Examples

3.1.1. The First Example: Taiwan Regional Load Data

In the first example, Taiwan’s regional electricity load data from a published paper [56,66] are
used to establish the proposed SVRCQTS forecasting model. The forecasting performances of this
proposed model is compared with that of alternatives. The data set comprises 20 years (from 1981 to
2000) of load values for four regions of Taiwan. This data set is divided into several subsets—a training
set (comprising 12 years of load data from 1981 to 1992), a validation set (comprising four years of data
from 1993 to 1996), and a testing set (comprising four years of data from 1997 to 2000). The forecasting
performances are measured using MAPE (Equation (10)).

In the training stage, the rolling forecasting procedure, proposed by Hong [56], is utilized to help
CQTS algorithm determining appropriate parameter values of an SVR model in the training stage,
and eventually, receive more satisfied results. For details, the training set is further divided into two
subsets, namely the fed-in (for example, n load data) and the fed-out (12 − n load data), respectively.
Firstly, the preceding n load data are used to minimize the training error by the structural risk principle;
then, receive one-step-ahead (in-sample) forecasting load, i.e., the (n + 1)th forecasting load. Secondly,
the next n load data, i.e., from 2nd to (n + 1)th data, are set as the new fed-in and similarly used to
minimize the training error again to receive the second one-step-ahead (in-sample) forecasting load,
named as the (n + 2)th forecasting load. Repeat this procedure until the 12nd (in-sample) forecasting
load is obtained with the training error. The training error can be obtained during each iteration, these
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parameters would be decided by QTS algorithm, and the validation error would be also calculated
in the meanwhile. Only with the smallest validation and testing errors will the adjusted parameter
combination be selected as the most appropriate parameter combination. The testing data set is only
used for examining the forecasting accuracy level. Eventually, the four-year forecasting electricity load
demands in each region are forecasted by the SVRCQTS model. The complete process is illustrated in
Figure 2.

3.1.2. The Second Example: Taiwan Annual Load Data

In the second example, Taiwan’s annual electricity load data from a published paper are
used [56,66]. The data set is composed of 59 years of load data (from 1945 to 2003), which are
divided into three subsets—a training set (40 years of load data from 1945 to 1984), a validation set
(10 ten of load data from 1985 to 1994), and a testing set (nine years of load data from 1995 to 2003).
The relevant modeling procedures are as in the first example.

3.1.3. The Third Example: 2014 Global Energy Forecasting Competition (GEFCOM 2014) Load Data

The third example involves the 744 h of load data from the 2014 Global Energy Forecasting
Competition [70] (from 00:00 1 December 2011 to 00:00 1 January 2012). The data set is divided into
three subsets—a training set (552 h of load data from 01:00 1 December 2011 to 00:00 24 December
2011), a validation set (96 h of load data from 01:00 24 December 2011 to 00:00 28 December 2011),
and testing set (96 h of load data from 01:00 28 December 2011 to 00:00 1 January 2012). The relevant
modeling procedures are as in the preceding two examples.

3.2. The SVRCQTS Load Forecasting Model

3.2.1. Parameters Setting in CQTS Algorithm

For some controlling parameters settings during modeling process, such as the total number of
iteration is all fixed as 10,000; σ ∈ [0, 15], ε ∈ [0, 100] in all examples, C ∈ [0, 20, 000] in Example 1,
C ∈

[
0, 3× 1010] in Examples 2 and 3; δ is all set to 0.001.

3.2.2. Forecasting Results and Analysis for Example 1

In Example 1, the combination of parameters of the most appropriate model are evaluated using
the QTS algorithm and the CQTS algorithm for each region, and almost has the smallest testing MAPE
value. Table 1 presents these well-determined parameters for each region.

Table 1. Parameters determination of SVRCQTS and SVRQTS models (example 1). SVRCQTS:
support vector regression chaotic quantum tabu search; SVRQTS: support vector regression quantum
Tabu search.

Regions
SVRCQTS Parameters

MAPE of Testing (%)
σ C ε

Northern 10.0000 0.8000× 1010 0.7200 1.0870
Central 6.0000 1.6000× 1010 0.5500 1.2650

Southern 8.0000 1.4000× 1010 0.6500 1.1720
Eastern 8.0000 0.8000× 1010 0.4300 1.5430

Regions
SVRQTS Parameters

MAPE of Testing (%)
σ C ε

Northern 4.0000 0.8000× 1010 0.2500 1.3260
Central 12.0000 1.0000× 1010 0.2800 1.6870

Southern 10.0000 0.8000× 1010 0.7200 1.3670
Eastern 8.0000 1.4000× 1010 0.4200 1.9720



Energies 2016, 9, 873 8 of 16

Energies 2016, 9, 873 8 of 16 

Eastern 8.0000 10101.4000  0.4200 1.9720 

Initialization

Randomly generate the initial 

solution, P, for these three 

parameters in an SVR model.

Pick 

Pick new individual from 

the examined neighbor 

according to the quantum 

tabu condition, i.e., 

whether P’’>rand(0,1).

Yes

Objective value 

Compute the objective values 

(forecasting errors) by using the 

initial solution, P.

Generate neighbors

1. Use qubit concepts (Eq. (6)) to 

    assign real value between 

    interval (0,1) to obtain P’.

2. Apply quantum rotation gate 

    (Eq.(7)) to generate the 

    neighbor, P’’.

Update objective value 

and Tabu memory list

If P’’>rand(0,1), update 

the solution as P* into the 

quantum tabu memory.

No; or maximum iteration is reached

No

No

Finished

Premature convergence 

test

Yes

Employ the Cat mapping 

function (Eq. (9)) toto look 

for new optima to revise the 

best solution.

Yes 

 

Figure 1. Quantum tabu search (QTS) algorithm flowchart. Figure 1. Quantum tabu search (QTS) algorithm flowchart.



Energies 2016, 9, 873 9 of 16
Energies 2016, 9, 873 9 of 16 

1981 

load

1982 

load

1983 

load

1988 

load

1989 

load

1990 

load

1991 

load

1992 

load
…

 

fed-in subset
 

fed-out subset

 

Actual load data (training stage)

First training rolling

 

Feeding into SVRCQTS 
1989 

forecast 

load

1981 

load

1982 

load

1983 

load

1988 

load

1989 

load

1990 

load

1991 

load

1992 

load
…

 

Feeding into SVRCQTS 1990 

forecast 

load

Second training rolling

1981 

load

1982 

load

1983 

load

1988 

load

1989 

load

1990 

load

1991 

load

1992 

load
…

 

Feeding into SVRCQTS 
1991 

forecast 

load

Third training rolling

1981 

load

1982 

load

1983 

load
…

1989 

load

1990 

load

1991 

load

1992 

load

1984 

load

 

Feeding into SVRCQTS 
1992 

forecast 

load

Fourth training rolling

1989 

forecast

load

1990 

forecast 

load

1991 

forecast 

load

1992 

forecast 

load

1989 

load

1990 

load

1991 

load

1992 

load

 

MAPE of Training 

 

Figure 2. The rolling-based forecasting procedure. 

Table 2 presents the forecasting accuracy index (MAPE) and electricity load values of each region 

that are forecast, under the same conditions, using alternative models, which were include SVRCQTS, 

SVRQTS, SVR with chaotic particle swarm optimization (SVRCQPSO), SVR with quantum PSO 

(SVRQPSO), and SVR with PSO (SVRPSO) models. Clearly, according to Table 2, the SVRCQTS 

model is superior to the other SVR-based models. Applying quantum computing mechanics to the 

TS algorithm is a feasible means of improving the satisfied, and thus improving the forecasting 

accuracy of the SVR model. The Cat mapping function has a critical role in finding an improved 

solution when the QTS algorithm becomes trapped in local optima or requires a long time to solve 

the problem of interest). For example, for the central region, the QTS algorithm is utilized to find the 

best solution, (σ, C, ε) = (12.0000, 1.0000 × 1010, 0.2800), with a forecasting error, MAPE, of 1.6870%. 

The solution can be further improved by using the CQTS algorithm with (σ, C, ε) = (6.0000, 1.6000 × 

1010, 0.5500), which has a smaller forecasting accuracy of 1.2650%. For other regions, the QTS 

algorithm yields an increased forecasting performance to 1.3260% (northern region), 1.3670% 

(southern region) and 1.9720% (eastern region). All of these models can also be further improved to 

increase the accuracy of the forecasting results by using the Cat mapping function (the CQTS 

algorithm), yielding a forecasting accuracy of 1.087% for the northern region, 1.1720% for the 

southern region, and 1.5430% for the eastern region. 

To verify that the proposed SVRCQTS and SVRQTS models offers an improved forecasting 

accuracy, the Wilcoxon signed-rank test, recommended by Diebold and Mariano [71], is used. In this 

work, the Wilcoxon signed-rank test is performed with two significance levels, α = 0.025 and α = 

0.005, by one-tail-tests. Table 3 presents the test results, which reveal that the SVRCQTS model 

significantly outperforms other models for the northern and eastern regions in terms of MAPE. 
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Table 2 presents the forecasting accuracy index (MAPE) and electricity load values of each region
that are forecast, under the same conditions, using alternative models, which were include SVRCQTS,
SVRQTS, SVR with chaotic particle swarm optimization (SVRCQPSO), SVR with quantum PSO
(SVRQPSO), and SVR with PSO (SVRPSO) models. Clearly, according to Table 2, the SVRCQTS
model is superior to the other SVR-based models. Applying quantum computing mechanics to the TS
algorithm is a feasible means of improving the satisfied, and thus improving the forecasting accuracy
of the SVR model. The Cat mapping function has a critical role in finding an improved solution when
the QTS algorithm becomes trapped in local optima or requires a long time to solve the problem of
interest). For example, for the central region, the QTS algorithm is utilized to find the best solution,
(σ, C, ε) = (12.0000, 1.0000 × 1010, 0.2800), with a forecasting error, MAPE, of 1.6870%. The solution
can be further improved by using the CQTS algorithm with (σ, C, ε) = (6.0000, 1.6000 × 1010, 0.5500),
which has a smaller forecasting accuracy of 1.2650%. For other regions, the QTS algorithm yields
an increased forecasting performance to 1.3260% (northern region), 1.3670% (southern region) and
1.9720% (eastern region). All of these models can also be further improved to increase the accuracy of
the forecasting results by using the Cat mapping function (the CQTS algorithm), yielding a forecasting
accuracy of 1.087% for the northern region, 1.1720% for the southern region, and 1.5430% for the
eastern region.

To verify that the proposed SVRCQTS and SVRQTS models offers an improved forecasting
accuracy, the Wilcoxon signed-rank test, recommended by Diebold and Mariano [71], is used. In this
work, the Wilcoxon signed-rank test is performed with two significance levels, α = 0.025 and α = 0.005,
by one-tail-tests. Table 3 presents the test results, which reveal that the SVRCQTS model significantly
outperforms other models for the northern and eastern regions in terms of MAPE.
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Table 2. Forecasting results (and absolute errors) of SVRCQTS, SVRQTS, and other models (example 1)
(unit: 106 Wh).

Year
Northern Region

SVRCQTS SVRQTS SVRCQPSO SVRQPSO SVRCPSO SVRPSO

1997 11,123 (101) 11,101 (121) 11,339 (117) 11,046 (176) 11,232 (10) 11,245 (23)
1998 11,491 (151) 11,458 (184) 11,779 (137) 11,787 (145) 11,628 (14) 11,621 (21)
1999 12,123 (142) 12,154 (173) 11,832 (149) 12,144 (163) 12,016 (35) 12,023 (42)
2000 13,052 (128) 13,080 (156) 12,798 (126) 12,772 (152) 12,306 (618) 12,306 (618)

MAPE (%) 1.0870 1.3260 1.1070 1.3370 1.3187 1.3786

Year
Central Region

SVRCQTS SVRQTS SVRCQPSO SVRQPSO SVRCPSO SVRPSO

1997 5009 (52) 5132 (71) 4987 (74) 5140 (79) 5066 (5) 5085 (24)
1998 5167 (79) 5142 (104) 5317 (71) 5342 (96) 5168 (78) 5141 (105)
1999 5301 (68) 5318 (85) 5172 (61) 5130 (103) 5232 (1) 5236 (3)
2000 5702 (69) 5732 (99) 5569 (64) 5554 (79) 5313 (320) 5343 (290)

MAPE (%) 1.2650 1.6870 1.2840 1.6890 1.8100 1.9173

Year
Southern Region

SVRCQTS SVRQTS SVRCQPSO SVRQPSO SVRCPSO SVRPSO

1997 6268 (68) 6436 (100) 6262 (74) 6265 (71) 6297 (39) 6272 (64)
1998 6398 (80) 6245 (73) 6401 (83) 6418 (100) 6311 (7) 6314 (4)
1999 6343 (84) 6338 (79) 6179 (80) 6178 (81) 6324 (65) 6327 (68)
2000 6735 (69) 6704 (100) 6738 (66) 6901 (97) 6516 (288) 6519 (285)

MAPE (%) 1.1720 1.3670 1.1840 1.3590 1.4937 1.5899

Year
Eastern Region

SVRCQTS SVRQTS SVRCQPSO SVRQPSO SVRCPSO SVRPSO

1997 362 (4) 364 (6) 353 (5) 350 (8) 370 (12) 367 (9)
1998 390 (7) 388 (9) 404 (7) 390 (7) 376 (21) 374 (23)
1999 395 (6) 394 (7) 394 (7) 410 (9) 411 (10) 409 (8)
2000 427 (7) 429 (9) 414 (6) 413 (7) 418 (2) 415 (5)

MAPE (%) 1.5430 1.9720 1.5940 1.9830 2.1860 2.3094

Note: *: The values in the parentheses are the absolute error, which is defined as: |yi − fi |, where yi is the
actual value in period i; fi denotes is the forecast value in period i. SVRCQPSO: support vector regression
chaotic quantum particle swarm optimization; SVRQPSO: support vector regression quantum particle swarm
optimization ; SVRCPSO: support vector regression chaotic particle swarm optimization; SVRPSO: support
vector regression particle swarm optimization.

Table 3. Wilcoxon signed-rank test (example 1).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 0 α = 0.005; W = 0 p-Value

Northern region

SVRCQTS vs. SVRPSO 0 a 0 a N/A
SVRCQTS vs. SVRCPSO 0 a 0 a N/A
SVRCQTS vs. SVRQPSO 0 a 0 a N/A
SVRCQTS vs. SVRCQPSO 0 a 0 a N/A
SVRCQTS vs. SVRQTS 1 1 N/A

Central region

SVRCQTS vs. SVRPSO 0 a 0 a N/A
SVRCQTS vs. SVRCPSO 0 a 0 a N/A
SVRCQTS vs. SVRQPSO 0 a 0 a N/A
SVRCQTS vs. SVRCQPSO 1 1 N/A
SVRCQTS vs. SVRQTS 0 a 0 a N/A

Southern region

SVRCQTS vs. SVRPSO 0 a 0 a N/A
SVRCQTS vs. SVRCPSO 0 a 0 a N/A
SVRCQTS vs. SVRQPSO 0 a 0 a N/A
SVRCQTS vs. SVRCQPSO 1 1 N/A
SVRCQTS vs. SVRQTS 0 a 0 a N/A

Eastern region

SVRCQTS vs. SVRPSO 0 a 0 a N/A
SVRCQTS vs. SVRCPSO 0 a 0 a N/A
SVRCQTS vs. SVRQPSO 0 a 0 a N/A
SVRCQTS vs. SVRCQPSO 1 1 N/A
SVRCQTS vs. SVRQTS 0 a 0 a N/A

Note: a denotes that the SVRCQTS model significantly outperforms other alternative models.
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3.2.3. Forecasting Results and Analysis for Example 2

In Example 2, the processing steps are those in the preceding example. The parameters in
an SVR model are computed using the QTS algorithm and the CQTS algorithm. The finalized
models exhibit the best forecasting performance with the smallest MAPE values. Table 4 presents the
well determined parameters for annual electricity load data. To compare with other benchmarking
algorithms, Table 4 presents all results from relevant papers on SVR-based modeling, such as those
of Hong [56], who proposed the SVRCPSO and SVR with PSO (SVRPSO) models and Huang [66],
who proposed the SVRCQPSO and SVRQPSO models.

Table 5 presents the MAPE values and forecasting results obtained using the alternative forecasting
models. The SVRCQTS model outperforms the other models, indicating quantum computing is an
ideal approach to improve the performance of any SVR-based model, and that the Cat mapping
function is very effective for solving the problem of premature convergence and the fact that it is
time-saving. Clearly, the QTS algorithm yields (σ, C, ε) = (5.0000, 1.3000 × 1011, 0.630) with a MAPE
of 1.3210%, whereas the CQTS algorithm provides a better solution, (σ, C, ε) = (6.0000, 1.8000 × 1011,
0.340) with a MAPE of 1.1540%. Figure 3 presents the real values and the forecast values obtained
using the various models.
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Figure 3. Actual values and forecasting values of SVRCQTS, SVRQTS, and other models (Example 2).
SVRCQTS: support vector regression chaotic quantum Tabu search; SVRQTS: support vector regression
quantum Tabu search.

Table 4. Parameters determination of SVRCQTS and SVRQTS models (Example 2). PSO: particle
swarm optimization; CPSO: chaotic particle swarm optimization; QPSO: quantum particle swarm
optimization; CQPSO: chaotic quantum particle swarm optimization.

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

PSO algorithm [56] 0.2293 1.7557× 1011 10.175 3.1429
CPSO algorithm [56] 0.2380 2.3365× 1011 39.296 1.6134
QPSO algorithm [66] 12.0000 0.8000× 1011 0.380 1.3460

CQPSO algorithm [66] 10.0000 1.5000× 1011 0.560 1.1850
QTS algorithm 5.0000 1.3000× 1011 0.630 1.3210

CQTS algorithm 6.0000 1.8000× 1011 0.340 1.1540
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Table 5. Forecasting results (and absolute errors) of SVRCQTS, SVRQTS, and other models (unit: 106 Wh).

Years SVRCQTS SVRQTS SVRCQPSO SVRQPSO SVRCPSO SVRPSO

1995 106,353 (985) 104,241 (1127) 106,379 (1011) 104,219 (1149) 105,960 (592) 102,770 (2598)
1996 110,127 (1013) 109,246 (1894) 109,573 (1567) 109,210 (1930) 112,120 (980) 109,800 (1340)
1997 117,180 (1119) 120,174 (1875) 117,149 (1150) 120,210 (1911) 118,450 (151) 115,570 (2729)
1998 130,023 (1893) 129,501 (1371) 129,466 (1336) 129,527 (1397) 123,400 (4730) 120,650 (7480)
1999 130,464 (1262) 133,275 (1549) 133,646 (1920) 133,304 (1578) 130,940 (786) 128,240 (3486)
2000 144,500 (2087) 140,099 (2314) 140,945 (1468) 140,055 (2358) 136,420 (5993) 137,250 (5163)
2001 144,884 (1260) 141,271 (2353) 145,734 (2110) 141,227 (2397) 142,910 (714) 140,230 (3394)
2002 149,099 (2094) 149,675 (1518) 149,652 (1541) 149,646 (1547) 150,210 (983) 151,150 (43)
2003 157,099 (2281) 161,001 (1621) 161,458 (2078) 161,032 (1652) 154,130 (5250) 146,940 (12,440)

MAPE (%) 1.1540 1.3210 1.1850 1.3460 1.6134 3.1429

Note: *: the value in the parentheses is the absolute error which is defined as: |yi − fi |, where yi is the actual
value in period i; fi denotes is the forecast value in period i.

To ensure the significance of the proposed SVRCQTS model in Example 2, the Wilcoxon
signed-rank test is again considered performed. Table 6 shows that the SVRCQTS model passes
the test and significantly improves on other alternatives.

Table 6. Wilcoxon signed-rank test (example 2).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 5 α = 0.005; W = 8 p-Value

SVRCQTS vs. SVRPSO 2 a 2 a N/A
SVRCQTS vs. SVRCPSO 3 a 3 a N/A
SVRCQTS vs. SVRQPSO 4 a 4 a N/A

SVRCQTS vs. SVRCQPSO 4 a 4 a N/A
SVRCQTS vs. SVRQTS 4 a 4 a N/A

Note: a denotes that the SVRCQTS model significantly outperforms other alternative models.

3.2.4. Forecasting Results and Analysis for Example 3

In Example 3, the modeling processes are the same as in the preceding two examples.
The parameters in the SVR model are calculated using the QTS algorithm and the CQTS algorithm.
Table 7 presents the details of the determined models and the alternatives models for the GEFCOM
2014 data set. Huang [66] used the GEFCOM 2014 load data to forecast the electric load, therefore,
the models of Huang [66] are included in this paper as the alternative models.

The alternative models of Huang [66]—ARIMA(0,1,1), back propagation neural networks (BPNN),
SVRPSO, SVRCPSO, SVRQPSO, SVRCQPSO, and SVRQTS models—are compared herein under fixed
conditions. Figure 4 displays the real values and the forecast results obtained using all compared
models, and demonstrates that the SVRCQTS model outperforms the SVRQTS and SVRQPSO models.
It also reveals that applying quantum computing mechanics to the TS algorithm improves the
forecasting accuracy level for any SVR-based models. The SVRCQTS model has a smaller MAPE value
than the SVRQTS model.

Table 7. Parameters determination of SVRCQTS, SVRQTS, and other models (Example 3).

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

PSO algorithm [66] 7.000 34.000 0.9400 3.1500
CPSO algorithm [66] 22.000 19.000 0.6900 2.8600
QPSO algorithm [66] 9.000 42.000 0.1800 1.9600

CQPSO algorithm [66] 19.000 35.000 0.8200 1.2900
QTS algorithm 25.000 67.000 0.0900 1.8900

CQTS algorithm 12.000 26.000 0.3200 1.3200
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Figure 4. Actual values and forecasting values of SVRCQTS, SVRQTS, and other models (Example 3).

Finally, Table 8 presents the results of the Wilcoxon signed-rank test. It indicates that the
proposed SVRCQTS model almost receives statistical significance in forecasting performances under
the significant level, α = 0.05. Therefore, the proposed SVRCQTS model significantly outperforms
other alternatives in terms of α = 0.05.

Table 8. Wilcoxon signed-rank test (Example 3).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 2328 α = 0.05; W = 2328 p-Value

SVRCQTS vs. ARIMA 1621 a 1621 a 0.00988
SVRCQTS vs. BPNN 1600 a 1600 a 0.00782

SVRCQTS vs. SVRPSO 2148 2148 a 0.04318
SVRCQTS vs. SVRCPSO 2163 2163 a 0.04763
SVRCQTS vs. SVRQPSO 1568 a 1568 a 0.00544

SVRCQTS vs. SVRCQPSO 1344 a 1344 a 0.00032
SVRCQTS vs. SVRQTS 1741 1741 a 0.03156

Note: a denotes that the SVRCQTS model significantly outperforms other alternative models.

4. Conclusions

This work proposes a hybrid model that incorporates an SVR-based model, the chaotic cat
mapping function, and the QTS algorithm for forecasting electricity load demand. Experimental
results reveal that the proposed model exhibits significantly better forecasting performance than
other SVR-based forecasting models. In this paper, quantum mechanics is utilized to improve the
intensification and diversification of the simple TS algorithm, and thereby to improve its forecasting
accuracy. Chaotic cat mapping is also used to help prevent the QTS algorithm from becoming trapped
in local optima in the modeling processes. This work marks a favorable beginning of the hybridization
of quantum computing mechanics and the chaotic mechanism to expand the search space, which is
typically limited by Newtonian dynamics.
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