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Abstract: The operation of a domestic induction cooktop is based on the wireless energy transfer
from the inductor to the pot. In such systems, the induction efficiency is defined as the
ratio between the power delivered to the pot and the consumed power from the supplying
converter. The non-transferred power is dissipated in the inductor, raising its temperature. Most
efficiency-measuring methods are based on measuring the effective power (pot) and the total power
(converter output). While the converter output power is directly measurable, the measurement of the
power dissipation in the pot is usually a cause of inaccuracy. In this work, an alternative method to
measure the system’s efficiency is proposed and implemented. The method is based on a pot with a
reversible base to which the inductor is attached. In the standard configuration, the inductor is placed
below the pot in such a way that the delivered power is used to boil water, and the power losses are
dissipated to the air. When the pot base is flipped, the inductor is immersed into the water. In this
case the losses in the inductor also contribute to heating up and boiling the water. The induction
efficiency is calculated from the boiling rates in both configurations. A commercial inductor was
tested under real working conditions with consistent results.

Keywords: efficiency measurement; induction heating; efficient power transfer; measurement station

1. Introduction

Energetic efficiency is, nowadays, a major concern in the manufacturing industry [1,2] and among
household appliances producers in particular [3–5]. In this direction, resistive cooktops and gas fueled
burners are being replaced by induction cooktops as a general trend in many areas. Over the years,
important efforts have been undertaken in order to optimize not only the efficiency, but also the heating
speed and safety of domestic induction heating appliances [5,6].

An induction cooktop is powered by the mains (50/60 Hz), which is rectified and filtered. Then,
an inverter is employed to generate a 20 to 100 kHz square wave voltage which acts as excitation for the
inductor. The resulting current through the inductor generates a magnetic field that reaches the base of
the pot and dissipates power due to induced currents and hysteresis. This system is represented in
Figure 1. Throughout the process, losses take place at every conversion stage. Intensive research has
been carried out in the optimization of the converter with new topologies [7] and digital modulation
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strategies [8,9]. The efficiency in the converter is defined, as usual, as the output power divided by the
input power. This efficiency can be measured by using conventional instruments as oscilloscopes or
power analyzers.

In the case of the inductor-pot system, an expression of the energy transfer efficiency can be
derived in terms of electrical resistances. Each resistance represents the dissipated power in a different
element (winding, pot, etc.). In the past, efforts were focused on achieving an electromagnetic model to
obtain an equivalent impedance of the inductor-pot pair, including the aforementioned resistances [10].
The model was successfully verified by means of small-signal analyzers, however, such measurements
do not reflect the actual impedance under real working conditions due to the signal-level dependence
of the pot material (5 to 15 Amperes) and the temperature rise (up to 150 ◦C). As a consequence,
efficiency measurement in real working conditions still presents an important challenge [11–13].

Figure 1. Schematic of a domestic induction heating system and its related partial efficiencies.

Due to the significant inaccuracy inherent to high-frequency power measurement, calorimetric
methods are widely used to measure the efficiency of power applications and devices [14–17]. In this
work, a calorimetric method is proposed in order to measure the efficiency of an induction system. The
main definitions and concepts regarding induction efficiency and energy balance in induction systems
are presented in Section 2. In Section 3 the calorimetric method is proposed. Section 4 presents the
design and implementation of the measurement station. The calibration of the test-bench is presented
in Section 5. Section 6 shows the experimental results and the efficiency measurements under real
working conditions. Finally, in Section 7 the main conclusions are drawn.

2. Induction Efficiency and Energy Balance

2.1. Induction Efficiency

As commented above, the inductor-pot system is usually modeled by an equivalent impedance,
which acts as the load of the resonant inverter. This impedance, as shown in Figure 2, consists of a
series connection of a resistance, Req, and an inductance, Leq. The equivalent resistance, in turn, can be
divided into the winding resistance, R0, and the resistive contribution of the pot caused by the strong
coupling, ∆R. While the first represents the power losses in the winding, the second represents the
power dissipation in the pot.

Figure 2. Inductor-pot system and equivalent impedance.
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According to the previous definitions, the efficiency of the induction system is given by

ηind =
∆R
Req

=
∆R

∆R + Ro
(1)

The main challenge to perform this calculation lies on the strong relation between the variables
R0 and ∆R, as they both depend on the magnitude and direction of the magnetic field [18]. As a
consequence, R0 varies depending on the absence or presence of a pot and its material. From this, a
clear conclusion can be drawn: both variables cannot be measured independently.

2.2. Energy Balance

As the variables involved in the induction efficiency are not separable from the electromagnetic
point of view, a calorimetric approach becomes of interest in order to separate the delivered power
from the wasted power. Figure 3 represents the energy balance in an induction system, where Pac

denotes the converter output power, Pind is the power dissipated in the base of the pot and P0 is the
wasted power, which is dissipated in the inductor. Therefore,

Pac = Pind + Po (2)

Following with the defined variables, the induction efficiency can be calculated as a ratio of
powers which are related to their corresponding resistances.

ηind =
Pind
Pac

=
∆R
Req

=
∆R

∆R + Ro
(3)
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Figure 3. Energy balance in an induction system.

Moreover, not all the power delivered to the pot is effectively transferred to the water. As
shown in Figure 3, Pw represents the power that reaches the water while Pp is the power lost into the
surroundings due to conduction and convection. This can be expressed as:

Pind = Pw + Pp (4)

and consequently, the thermal efficiency of the pot is given by

ηw =
Pw

Pind
=

Pw

Pw + Pp
(5)

The power which actually heats up the water, Pw, can be obtained by two different methods.
On the one hand, the temperature rise can be measured and used to calculate the causing power. On the
other hand, the water can be brought to boiling point, and then the boiled mass can be measured.
For convenience, steady state boiling conditions are preferred as they keep a constant temperature
(373 K), and, therefore, the heat flowing to the environment Pp can be assumed constant.
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In such conditions, Pw can by calculated as

Pw = ṁLe (6)

where ṁ = ∂m/
∂t is the boiled mass rate and Le = 2.272 kJ/g is the heat of vaporization of water.

Introducing in Equation (6) the relationships contained in Equations (3) and (4), the following
relationship is obtained:

∂m
∂t

Le = ηindPac − Pp (7)

It is important to note that, except for the induction efficiency, all the involved variables in
Equation (7) are measurable. The boiled mass rate, ∂m

∂t , can be directly weighted with load cells, Pac

can be obtained with a conventional power analyzer, and Pp is the necessary power to keep the water
boiling. At this point, ηind can be calculated as the slope when representing the boiled mass rate with
respect to the consumed electric power. This is graphically represented in Figure 4.

e
m L
t

∂
∂

acP

indη

pP

Figure 4. Representation of ηind as the slope in Equation (7).

2.3. Accuracy in Power Measurements

As seen in the previous sections, the converter output power, Pac needs to be measured. This can
be achieved with a conventional power analyzer. However, induction cooktops work with high
currents and voltages, which can reach hundreds of volts and tens of amps respectively, at switching
frequencies, fs, ranging from 20 to 100 kHz. Moreover, signals are composed of several harmonics and
a dv

dt over 1 kV/µs. Besides, low-signal measurements and large signal simulations of usual litz-wire
windings show efficiencies above 94% [10]. Therefore, the accuracy of the method needs to be high
enough to compare windings and pots with an efficiency in the range of 94 to 99%.

Is this assembly, the Yokogawa PZ400 power analyzer has been tested as an alternative to measure
Pac. The accuracy of the instrument is given by the manufacturer [19]:

ε (W) = ±
(

2 · 10−7 · tan ϕ · f · Pshown + 6 · 10−3 · Pshown +2 · 10−6 · I2
shown · Pshown + 10−3 · Prange

)
(8)

where Ishown and Pshown are the current and power shown in the display, Prange is the selected
measurement range, f is the frequency of the first harmonic and ϕ is the angle between the voltage
and current waveforms. A typical situation is shown in the following example: for an induction
system working at f = 59 kHz, Pshown = 1302 W and cosϕ = 0.53, the error given by Equation (8) is
ε = ± 39.1 W. In this case, the error is around 3% which is a limiting factor for the global accuracy
when calculating ηind, and therefore, the method based on Equation (7) should be avoided.

3. Differential Method: Boiling Rate as Measurable Comparator

Due to the high-accuracy requirements of the problem, the error introduced by Equation (8) must
be bypassed. Alternatively, a differential method is proposed: the method consists on comparing
the boiled mass rate in two different situations. In the first scenario, which will be referred as (out),
the inductor is placed, as usually, beneath the pot. In this case, ηind · Pac reaches the pot, while
(1 − ηind) · Pac is dissipated in the inductor and evacuated to the air. In the second scenario (in), the
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inductor is placed inside the pot. As the winding is immersed in water, the power losses are also
transferred to the water. In this case, the efficiency of the system is ηind = 1.

According to Equation (7), the energy balance for scenarios out and in an be expressed as

(ṁLe)out = (ηind)outPac − Pp (9)

(ṁLe)in = Pac − Pp (10)

where Pp is assumed constant as steady state conditions are preserved.
By combining Equations (9) and (10), Pac can be eliminated leading to

(ηind)out =
(ṁ)out +

PP
Le

(ṁ)in +
PP
Le

(11)

where PP
Le

is a constant of extremely small value as compared to the boiling rates, i.e.,

(ṁ)out, (ṁ)in � PP
Le

. Moreover, the value of PP
Le

is beyond the resolution of the measuring system.
For these reasons, this term was neglected leading to the simplified expression

(ηind)out =
(ṁ)out
(ṁ)in

(12)

At this point, the efficiency can be obtained by representing the boiling rate in scenario out, (ṁ)out,
with respect to the boiling rate in scenario in, (ṁ)in. This is graphically represented in Figure 5.
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Figure 5. Representation of ηind as a function of the boiling rates in both scenarios.

The proposed method requires identical conditions in both scenarios, i.e., steady state conditions
(water is continuously boiling), the same switching frequency and system geometry. In order to fulfill
these conditions, a specific setup has been designed and assembled.

4. Design of the Test-Bench

The test-bench consists of an inductor-pot system, a weight measurement system, a half bridge
resonant inverter, and a control system including the acquisition unit.

4.1. Inductor-Pot System

The designed pot has a reversible base to which the inductor is attached. This allows to flip the
base in order to immerse the winding in the water in a way that the distance between the inductor and
the pot remains constant. Moreover, in order to preserve the same thermal boundary conditions in
both scenarios, two inductors are attached to the base, one at each side. The base is sealed to the pot’s
body by a ring-shaped rubber. Additionally, a DC-fed 17 Ω resistor is placed inside the pot in order to
keep the water boiling when Pac is not sufficient and serves as calibration reference. This resistor is
supplied by an Argantix XDS 100-100 DC source. The aforementioned elements are shown in Figure 6.
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(a) (b) (c)

Figure 6. Main elements of the pot. (a) Body (b) Reversible base with attached inductor; (c) Resistance
and thermometer.

The 300 mm diameter pot base is made of ferromagnetic steel while the body is made of aluminum.
The tested winding has a diameter of φw = 210 mm and it is intended to work from 40 kHz to 70 kHz
with a maximum power of 3500 W. Other accessory elements are the ferrites, which increase the
coupling between the inductor and the pot, and an aluminum shielding tray. The whole set was
extracted from a commercial cooktop and installed on the test-bench in their original positions.

4.2. Sensors

In order to accurately measure the weight, the inductor-pot system and the accessory elements
were placed on a polycarbonate panel. The panel rested over three load cells which were screwed to
the measuring station in such a way that the pot mass is given by the sum of the three measurements.
The load cells were equipped with soft absorbers significantly reducing vibrations. The assembly is
shown in Figure 7.

Figure 7. Assembled weighting system: three load cells with their respective vibration absorbers.

A Yokogawa MW100 acquisition unit registered the measured data which, according to the
manufacturers manual, has an accuracy of at least 1 g. The temperature was sensed by a Pt100/3W
thermometer (Figure 6c) which was also connected to the acquisition unit.

4.3. Power Supply

As seen before, the method requires of several measurements at different power levels while
keeping a constant frequency. This collides with the standard power control strategies in commercial
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cooktops, which use a resonant series half-bridge inverter to control the power by varying the switching
frequency. In this case, a variable-frequency power control strategy must be ruled out.

Alternatively, a California 5001 ix AC source was employed to power the system instead of the
mains. This provides a variable and controllable vi voltage, with which the supplied power Pac can be
controlled. The schematic including the AC source, the diode rectifier, bus capacitor and the half-bridge
inverter is shown in Figure 8.

Figure 8. Rectifier, filter and half-bridge resonant inverter.

4.4. Control Unit

The measuring station is controlled by a MATLAB script with its respective interface. The measured
data is sent in real time to the computer, which processes them and controls the delivered power and
the inverter switching frequency. This allows to pre-set a number of tests to be run autonomously
while the process can be monitored and supervised on the computer interface. The complete test-bench
is shown in Figure 9.

Figure 9. Test-bench for efficiency evaluation with labeled main components.

5. Test-Bench Calibration

An important part of the efficiency estimation relies on the weight measurements accuracy.
Therefore, the correct calibration of the load cells before every set of experiments becomes essential.
For calibration purposes, a particular scenario with known solution will be measured.

Lets consider the inductor-pot system with the external resistance immersed in the water.
The inductor is turned off, i.e., Pac = 0, so the only input power in the system comes from the
resistor, Pel . Under such conditions, Pel keeps the water boiling and Pp is lost by convection to the air.
This can be expressed as:

∂m
∂t

Le = Pel − Pp (13)
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Several experiments were carried out at different power levels in order to obtain the boiling rate.
For instance, Figure 10 shows the weight of the system with respect to time when supplying 592 W.
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Linear regression

Figure 10. Weight measurement with respect to time for system calibration (592 W).

By repeating this experiment with several power levels, ∂m
∂t Le can be represented with respect

to Pel . Analogously to Figure 4, the slope of the linear regression is the efficiency, which in this case
is known. As the resistance is immersed in the water, the efficiency must be equal to 1. This known
solution serves as calibrating reference. The results of a calibration test are shown in Figure 11. In this
example, an efficiency of 100.28% is measured, which indicates a 0.28% error. Moreover, the value of
the heat flow to the air is given by the linear regression offset, Pp = 82.14 W. After several calibration
tests with similar results, we can conclude that an accuracy of at least ±1% is ensured as the calibration
experiments show high reproducibility with small errors.
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Figure 11. Calibration test: ∂m
∂t Le with respect to Pel showing a 100% efficiency.

6. Experimental Results

In this section, the main experimental results will be presented. The differential method will be
applied on a commercial induction system in order to obtain the induction efficiency ηind = Pind/Pac

at different excitation frequencies. With this purpose, four sets of measurements will be carried out,
one for each explored frequency: 40 kHz, 50 kHz, 60 kHz, 70 kHz. Firstly, the partial results for each
frequency will be presented and then, the resulting induction efficiency will be shown.

Induction Efficiency

Losses in AC-fed windings largerly depend on the frequency of the driven current [20]. Therefore,
considering a specific application, the winding can be optimized for a certain frequency by the correct
choice of the number and diameter of strands [21]. For this set of measurements a commercial inductor
has been employed. The winding was designed to work between 35 and 75 kHz with optimal operation
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at 40 kHz. The inductor-pot system efficiency has been measured in this range of frequencies in order
to study its frequency dependence.

As seen above (Figure 8), the chosen converter topology for this setup is a half-bridge inverter
with a variable voltage source, vi. With such arrangement, the switching frequency can remain constant
while supplying different power levels. Several experiments have been run feeding the inverter with
different voltage levels at each frequency. The obtained boiling rates in both scenarios (in and out)
are shown in Figure 12. As expected, the results fall onto a straight line whose slope represents the
efficiency at the tested switching frequency. The resulting frequency-dependent efficiency is shown in
Figure 13.
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Figure 12. Measured boiling rates and linear regression at different switching frequencies.
(a) fs = 40 kHz; (b) fs = 50 kHz; (c) fs = 60 kHz; (d) fs = 70 kHz.

The measured efficiencies are consistent as they fall within the expected range (95% to 99%) and
have a decreasing trend with frequency since the tested winding is optimized for a frequency of 40 kHz.
The measurement of lower frequencies is limited by the commercial inverter.
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Figure 13. Frequency-dependent measured efficiency.

7. Conclusions

In this work, a method for measuring the efficiency in domestic induction heating appliances
is proposed. The method is based on the energy balance in an inductor-pot system in steady-state
operation and avoids the use of electrical power analyzers which, at high frequencies, produce a
significant error in the measurements. Alternatively, a differential method is proposed. This procedure
compares the boiling rate of a certain induction system to the boiling rate of a 100% efficient system. The
boiling rate of the commercial induction system is always smaller, and the lower efficiency (less power
reaches the water) is the underlying reason for this.



Energies 2016, 9, 636 10 of 11

An experimental setup was designed, built and tested. The test-bench consists on a inductor-pot
system in which the pot base can be reversed, immersing the inductor in water. This provides a 100%
efficient system as the losses in the winding are also transmitted to the water. The system is assembled
on a weighting system formed by three load cells and an acquisition unit, which records the boiling
rate. Moreover, the whole setup is automatized and run autonomously by a control unit.

The measuring station was tested with a commercial cooktop. The converter and inductor were
integrated into the test-bench and measured. The obtained efficiency is consistent with the expected
results and are proven to have an accuracy of at least ±1%, while the avoided electrical power analyzers
add a ±3% error at the range of frequencies of the application.

The constructed setup constitutes a useful tool for the efficiency characterization of inductors
for domestic induction heating appliances. The method is systematic and provides a rigorous
measurement of the designed inductors in the same conditions in order to find the most efficient
design in early stages of the product development process.
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