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Abstract: EU regulations are gradually moving towards policies that reduce energy consumption
and its environmental impact. To reach this goal, improving energy efficiency in residential buildings
is a key action line. The European Parliament adopted the Near Zero-Energy Building (nZEB) as the
energy efficiency paradigm through Directive 2010/31/EU, but a common technical and legislative
framework for energy renovations is yet to be established. In this paper, the nZEB definition by
COHERENO was adopted to evaluate several energy renovation packages in a given building,
which is also representative of the Spanish building stock. Global costs are calculated for all of
them following EPBD prescriptions. Two economic scenarios are analysed: with entirely private
funding and with the current public financial incentives, respectively. The results show the divergence
between optimum solutions in terms of costs and of minimum CO2 footprint and maximum energy
saving. Moreover, in the absence of enough incentives, some inefficient renovations could achieve
a global cost close to the optimal cost. The optimum solution both in terms of energy performance
and global costs was carried out and described.

Keywords: energy efficiency; nZEB; buildings; renovation; cost-optimal

1. Introduction

In order to mitigate the adverse effects of climate change, the European Parliament laid down
an ambitious common framework to promote the improvement of energy efficiency in buildings
through Directive 2010/31/EU [1] (recast), entitled Energy Performance of Buildings Directive (EPBD).
It recapitulates the general objectives regarding energy savings and the support for the renewable
energy sources included in Renewable Energy Directive 2009/28/EU, as well as the commitment to
maintain the long-term global temperature rise below 2 ˝C. The last step in this direction was taken
during the climate change global conference, which ended with the Paris Agreement in December
2015, when 195 nations reached an agreement to set out a global action plan to limit global warming
below 2 ˝C again, but establishing 1.5 ˝C as the reference goal [2].

Buildings are among the most significant energy consumers and greenhouse gas emitters;
dwellings, offices, shops, and the rest of public and private buildings generate 36% of gas emissions
and represent 40% of energy consumption in the EU [3]. They constitute, consequently, one of the
main sources of pollution worldwide. The international models of certification that attest to the
environmental sustainability of buildings adopt the environmental impact of the building over its
life cycle as a key feature. Currently, these certificates meet local criteria (BREEAM, created in the
UK [4]; HQE, in France [5]; LIDERA, in Portugal [6]) or have a universal scope, as is the case of the
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American standard known as LEED [7]. These certificates take into account the energy performance
of the building as a key feature, nearly reaching 25% of the certification credits in the case of LEED.
The carbon footprint of the building stock in the EU can be significantly reduced, since most of it
was constructed according to regulations lacking energy efficiency guidelines; they were aimed at
ensuring comfort for users instead of establishing a legislative framework to develop a sustainable
construction industry.

In addition to the absence of binding regulations, the high investments that efficiency measures
require have resulted in a poor penetration of energy rehabilitations. There are scarce data on the
number of renovations being undertaken in Europe, their depth, or the trends in renovation rates.
However, given that construction and, therefore, changes in Buildings Codes are long-term processes,
the overall EU renovation rate of the building stock is probably not far from the 1% estimated in the
study conducted by the Fraunhofer Institute on the Energy Savings Potentials in EU Member States
in 2009 [3]. This opportunity for energy and environmental savings in buildings led the European
Parliament to develop regulation directives (Directive 2009/28/EU, Directive 2012/27/EU) that could
lay the foundations for promoting significant improvements in the energy performance of the European
building stock. In line with the EU objectives in this field, the European Alliance of Companies for
Energy Efficiency in Buildings (EuroACE) initiated the Renovate Europe Campaign. It aspires to
reduce the energy demand from the EU building stock by 80% by 2050, compared to 2005. This is
expected to be accomplished by encouraging major renovations in order to triple the EU average
renovation rate from the current 1% to 3% before 2020 [8].

The EPBD constitutes the main reference in the European building energy policy. It calls for
member states to develop national plans in order to encourage the improvement of the energy efficiency
of buildings, taking into account outdoor climatic and local conditions, as well as indoor climate
requirements and cost-effectiveness. Two fundamental concepts are introduced in the EPBD. One is
the Near Zero-Energy Building (nZEB), a building that achieves the benchmark efficiency by pursuing
or outperforming a list of technical requisites. On the other hand, and linked to the former, is the
concept of cost-optimal: the package of efficiency measures chosen must be the one that leads to the
minimum cost during the estimated economic life cycle of the building. The concept of cost-optimal
refers both to that minimum global cost and to the methodology prescribed.

The EPBD requires new buildings to be nZEBs by the end of 2018 or 2020, depending
on their ownership. Despite the fact that until 2014 several European countries had adopted
financial instruments such as financial subsidies, subsidised mortgage interest for efficient homes,
and low-interest loans for retrofitting [9], many studies still conclude that a greater effort is needed to
promote efficiency in both new and renovated buildings. For instance, according to Dineva et al. [10],
in the Netherlands, Sweden, and France the availability of public funds is insufficient, and alternative
measures such as credit lines providing soft loans, tax exemptions, or support schemes for third-party
financing are often scarce. Many examples across Europe are mentioned and discussed in [11–13].

This paper studies the feasibility of nZEB renovations by analysing their global cost. A real
refurbishment of a building from 1974 located on the northwest coast of Spain is described, for which
different viable packages of efficiency solutions were considered in order to be upgraded to the nZEB
category according to precise technical requirements. In this way, the rehabilitation costs and the
simulated energy demand and consumption can be properly validated. This article is organized as
follows: the next section analyses the term nZEB, the concept of “efficient building” set as a goal by
the EU, and the economic barriers that limit the penetration in the market of such efficient buildings.
Section 3 details the case study. The cost-optimal methodology is described in Section 4, as well as the
available financial support in Spain. In Section 5 the different renovation schemes are presented and
their feasibility is compared within two different scenarios: with private funding or public financial
support. Section 6 discusses the results obtained and, finally, the conclusions are presented in Section 7.
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2. Considerations about the nZEB Concept

The European Union EPBD introduced the concept of nZEB, which is described as a highly
efficient building, but not enough to reach the key feature of a sustainable building: the balance
between generated and consumed energy. The definition of nZEBs was intentionally open, as it is
the result of a political commitment acknowledging the variety of EU building traditions and the
discrepancies between the levels of development among its members [14].

The EPBD points out the energy elements and thermal characteristics to be taken into account,
but explicitly delegates the elaboration of a numerical magnitude of the primary energy used to
each European member state. In response to the directive’s vagueness, several governmental and
non-governmental organizations, as well as research groups, are trying to establish an internationalised
definition that facilitates all members in implementing the requirements for nZEBs in their own
regulations. To this end, it is necessary to describe the nZEB as a function of all the parameters that
cause divergence among the definitions: the function and size of the building, the location, the climate,
the cultural and economic background of the country, etc. Internationally adopted criteria would
eliminate barriers to public and private collaboration. Moreover, they would provide a basis for
developing a framework for inspections and certifications that would increase customer confidence
through quality assurance mechanisms.

According to the report ordered by the European Commission to a consortium led by Ecofys [15],
a large variety of concepts for nZEBs were conceived. Apart from the United Kingdom, where the aim
since 2016 is zero-carbon emissions in the national Level 6 of the Code for Sustainable Homes [16],
most European states do not set requirements for an energy rating or detail an energy performance
indicator. They calculate a yearly energy balance based on procedures that do not fit in every case into
the EPBD formulations: different metrics are used (site energy, primary energy, costs, or emissions),
different boundaries for the primary energy and renewable energy are taken into account, and the
house area is computed from different variables. In conclusion, a great deal of work is still necessary to
move towards a harmonized framework for the technical description of the nZEB concept in Europe.
After the publication of the report by Ecofys in 2013, D’Agostino [9] reviewed in 2014 the progress of
the nZEB normalisation. She concluded that progress is evident in many member states compared
to the first attempt to launch a national definition, but coherency could not yet be found: differences
regarding the metric of balance, the system boundary, the area of the building considered, the balance
period, etc. were still present. Figure 1 shows the technical aspects, the combination of which results in
the broad range of definitions.

Since the adoption of the EPBD, several papers have studied the efficiency of buildings from
the point of view of the nZEB benchmark. Some of them pointed out the need to define this
concept more precisely. In the research field, there are case studies of new constructed nZEB
dwellings [17], or the renovation of a single family house to achieve the nZEB level in the Mediterranean
region [18,19]. Lindkvist et al. [20] presented an extension of the nZEB concept to the near Zero-Energy
Neighbourhood; the authors concluded that, although this constitutes an area with opportunities for
intervention, the knowledge of nZEB renovations is not being transferred and financial and social
barriers should be addressed.

Alongside the complex task of standardising the nZEB concept all over Europe, an additional
difficulty arises when applying an energy standard to existing buildings. Adapting structural,
enclosure, and energy generation components requires a more detailed analysis than selecting
them for a new building. For this reason, it is worth emphasising the proposal conceived by
COHERENO, a panel made up of research institutes and advisory bodies from Austria, Belgium,
Germany, The Netherlands, and Norway. This organisation has defined the nZEB renovation of a house
as that which has any of the following characteristics [21]:

(1) The energy performance of the building after the renovation fulfils the nZEB requirements for
new buildings established by the Member State or Region.
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(2) The energy demand for heating/cooling, domestic hot water (DHW), and ventilation energy
consumption of auxiliary building’s systems is not more than 50–60 kWh/m2/year.

(3) The primary energy consumption of the building after the renovation is reduced by 75% compared
to the original performance.

(4) At least 50% of the energy demand is covered by renewable energy sources.
(5) The CO2 emissions associated with energy consumption remain below 3 kgCO2/m2/year.
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Since the definition provided by COHERENO for nZEBs is explicitly addressed to renovations
and is one of the most precise at the moment, it was chosen in this piece of work to compare the
packages of measures that make the building fall within the nZEB category with the packages that
imply the minimum cost according to the EPBD cost-optimal methodology [22].

3. Case Study

This paper assesses the energy performance and costs of several renovation schemes in different
economic scenarios for a representative case of the Spanish building stock. The majority of Spanish
residential buildings suffer from the deficiencies in energy performance previously pointed out.
Nearly 55% of buildings were constructed before 1979 (see Figure 2), the starting date when thermal
insulation was declared compulsory for buildings in accordance with the national Construction Code.
Apart from building envelope insulation, the other serious chronic deficiency resides in the heating
system. Until 2001, 46% of Spanish dwellings were using electric heating [23].

The building analysed is located in A Guarda, on the Atlantic coast of Spain (see Figure 3). It was
built in 1974. It consists of five storeys with two flats per floor; their combined living area is 568 m2.
Before the energy renovation, each flat was provided with electric heating and DHW was supplied by
lo-efficiency gas boilers. The most relevant data regarding the initial conditions are presented in Table 1.
The number of living floors, living area, and heating and DHW systems are common characteristics
among the buildings constructed in the same period.
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(source: www.zonu.com); (b) plan view after renovation; (c) façade before renovation.
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Table 1. Baseline data of the building.

Location A Guarda, Spain
Type of building Condominium

Year of construction 1974
Climate zone (Code HE-1) C1

Living area 568 m2

Number of living floors 5
Number of dwellings 10

Geometry of the building

N-W façade: 138 m2

N-E façade: 36 m2

S-W façade: 61 m2

S-E façade: 139 m2

Heating system Electric
DHW system Butane

4. Methodology

An energy model of the building is constructed through CE3X, the official tool recognised by
the Spanish Government to obtain the energy efficiency certificate for existing buildings. This tool
is based on the Energy Plus simulation engine. Table 2 compiles the energy parameters that outline
the performance of the original energy systems and thermal insulation of the analysed building.
This information provides an insight into the opportunities for improvement. Next, based on
this information, a set of renovation packages of efficiency improvement measures was considered
and evaluated.

Table 2. Technical and energy performance data of the building (from the CE3X software).

Variable Value

Primary Energy Demand 91.9 kWh/m2/year
Primary energy consumption 305.32 kWh/m2/year

Energy consumption in heating 266.43 kWh/m2/year
Energy consumption in DHW 38.89 kWh/m2/year

Carbon footprint 75.04 kgCO2/m2/year

The process that enables the identification of the optimum renovation packages, in economic and
energy terms, consists of the following steps:

(1) Identification of feasible renovation solutions from a technical point of view.
(2) Definition of the working packages resulting from the combination of the considered

renovation solutions.
(3) Calculation of the energy efficiency, in terms of energy demand and consumption, for every

working package. The fulfilment of COHERENO requirements is checked for each package.
(4) Calculation of the global cost for each package of renovation measures. The economic evaluation

is obtained for two scenarios: the first considers 100% private financing and the second considers
the available public financial support.

(5) Determination of the packages with the global cost that is closer to cost-optimal, obtained within
the calculation framework provided by the EU Delegated Regulation 244/2012 [22].

(6) Both the cost-optimal and the compliance with COHERENO for nZEB conditions are checked.

The reason to consider two scenarios, with and without supporting programmes, lies in the
results from different authors who have performed calculations for diverse nZEB. Different authors
have performed calculations for diverse nZEB case studies based on the NPV tool. For instance,
Kmet’ková et al. [24] obtained significant differences between scenarios depending on the availability
of tax incentives and funding support.
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4.1. Cost-Optimal Calculation

In order to determine the packages of renovation measures that achieve an optimum balance
between investment, energy savings, and environmental impact, a comprehensive study of their
economic viability is usually the first step to take. To this end, Life Cycle Costing (LCC) is a commonly
used decision criteria. LCC evaluates the cost-performance of a building throughout its life cycle,
including acquisition, development, operation, management, repair, disposal, and decommissioning.
To enable its practical use in the construction industry, ISO 15686-5 establishes a clear terminology
and a common methodology of LCC [25,26]. LCC was applied, for example, to point out the
higher cost-effectiveness of energy-saving measures compared to on-site PV energy sources [27,28].
A comparison between LCC and different life cycle methodologies aimed at estimating the economic
feasibility of nZEBs was carried out by Sesana et al. [29].

Among cost methodologies, the Net Present Value (NPV) is the traditional equation to manage
the initial and future costs incurred in a project. It consists in determining the present value of
an investment through the sum of future cash flows discounted yearly. Since it is a fundamental tool
for investment appraisal, it is widely applied in the field of energy renovations of buildings [30,31].
Once again, the method can be adapted to the field of building renovation, for instance by considering
the increase in the property value after completing the renovation [32]. Nonetheless, NPV and,
consequently, LCC present some limitations because of the lack of reliable information and the difficulty
in establishing predictions regarding the interest rate, the costs of available energies, and, even,
the estimation of the life cycle of a building [29]. For instance, a small change in the interest rate
can dramatically modify the calculated NPV, given the variation of cash value over time. In the
case of building renovation, NPV is frequently negative, i.e., the renovation becomes economically
unfeasible. Nonetheless, and apart from the economic criteria, the most relevant models of certification
consider the social and environmental criteria by means of parameters regarding comfort, health,
personal preferences, or the increased global value increase of the building. Since there is still no
internationally accepted technical guidance on requirements and calculations of energy renovations,
in this paper we have followed the cost-optimal methodology established by the EU Delegated
Regulation 244/2012 [22], which complements the EPBD. It takes for granted certain simplifications,
such as adopting a fixed period of calculation.

The “cost-optimal level” is defined in the EPBD as the energy performance level which leads
to the lowest cost during the estimated economic life cycle. The cost-optimal framework comprises
two different approaches to cost calculations: one from a macroeconomic level and another one from
a financial point of view. In our case, the financial calculation is the most suitable tool because it is
based on the consumer’s perspective. The cost-optimal approach comprises all the costs charged to
the client, including all applicable taxes, and is expressed as the sum of the following categories [22]:

‚ Initial investment costs;
‚ Energy costs and savings and earnings from surplus of renewable energy, where applicable;
‚ Maintenance costs;
‚ Replacement costs for periodic replacement of building elements and disposal costs where applicable.

All costs and savings are discounted at the beginning of the calculation period using the
NPV method, i.e., using a discount rate. The residual value shall be determined by a straight-line
depreciation of the investment in building elements until the end of the calculation period; alternatively,
the disposal costs will be taken into account. The calculation period established for residential buildings
is 30 years. In the financial approach the cost-optimal is expressed as the global cost Cg, for each
working package j, through the following expression:

Cg “ Cj `
ÿ

j

”

ÿ

i

`

Ca, i pjq ˆ Rd piq
˘

´Vf ,τ pjq
ı

, (1)
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where:

‚ Cj means initial investment costs,
‚ Ca, i pjq are the net annual costs,

‚ Rd is the discount factor for year i based on the discount rate r: Rd piq “
´

1
1` r

100

¯i
,

‚ Vf ,τ pjqmeans the residual value of the set of measures j at the end of the calculation period.

In order to evaluate the economic feasibility of the considered packages for energy renovation
solutions, and to identify the cost-optimal option, two groups of input parameters are needed:
the prices of available energies and the economic parameters. They are presented in Table 3.

Table 3. Input parameters.

Energy Costs Financing Parameters

Energy Source Price (VAT Included) €/kWh Increase (%) Parameter Value

Electricity 1 0.15 4.50 annual Inflation rate 2.00%
LPG (butane) 2 0.079 (January–April) ´1.6 bimonthly Bank interest rate 6.80%
Natural gas 1 0.051 3.00 annual Discount rate 3.00%

Biomass (pellets) 3 0.057 2.00 annual Period of calculation (years) 30

Notes: 1 Source: Official Spanish Gazette; 2 Source: Spanish Institute for Energy Diversification and Saving;
3 Source: AVEBIOM.

4.2. Current Public Financial Scheme for Energy Renovation of Buildings in Spain

The European Parliament established that the states might develop economic incentives to
promote energy renovation of buildings. In the Spanish case, the financial scheme is known as
PAREER-CRECE [33]. It will be active up to the end of 2016. It is aimed at promoting renovations that
improve energy savings, energy efficiency, the use of renewable energy sources, and the reduction of
CO2 emissions. The plan focuses on the following lines of action:

(1) Improving the energy efficiency of the thermal envelope.
(2) Improving the energy efficiency of the thermal installations and the lighting system.
(3) Replacing conventional energy sources with biomass energy for thermal installations.
(4) Replacing conventional energy sources with geothermal energy for thermal installations.

In our case study, the applicable lines of action are items 1 and 3; their eligible amounts are
presented in Table 4. The amount of public funding slightly depends on the energy certificate. Concepts
are cumulative. Consequently, if two or more measures are accomplished, 90% of funding can
be achieved.

Table 4. Eligible amounts of the Spanish scheme PAREER-CRECE for the promotion of
energy renovations.

Typology

Non-Refundable Subsidy

Refundable
Subsidy 1Base

Subsidy

Extra Funding

Certificate after Renovation Complete
RenovationA B +2 Letters

Thermal envelope 30% 15% 10% 5% 20% 60%
Replacement with biomass 2 25% 0% 0% 0% 10% 65%

Notes: 1 Interest rate is EURIBOR. Maximum repayment term is 12 years; 2 For the purposes of calculating the
financial contribution for line of action No. 3, the maximum eligible cost would be deducted from expression:
C “ 880 ˆ P0.87 (€), where P is the power of the biomass boiler in kW.
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5. Results

5.1. Rehabilitation Solutions and Working Packages

For the analysed case, five energy rehabilitation solutions were both economically and technically
viable. They are listed in Table 5, together with the initial conditions, which represent package No. 0.
Three measures are active and two of them are passive. By combining these variables, 18 working
packages were obtained.

Table 5. Renovation solutions in terms of working packages.

Working Package INS 1 FRA 2 GAS 3 BIO 4 SOLAR 5

0 - - - - -
1 X
2 X X
3 X
4 X X
5 X
6 X X
7 X X X
8 X X
9 X X X

10 X
11 X X
12 X X X
13 X X
14 X X X
15 X X X
16 X X X X
17 X X X
18 X X X X

Notes: 1 INS: Upgrade of the thermal envelope. External insulation (ETICS) and roof insulation
(Passive measure); 2 FRA: Upgrade to aluminium window frames with thermal break and low emissivity
glass (Passive measure); 3 GAS: A central standard natural gas boiler; power: 56 kW. Installation of radiant floor
heating (Active measure); 4 BIO: A central standard biomass boiler; power: 56 kW. Installation of radiant floor
heating (Active measure); 5 SOLAR: Installation of solar thermal panels that cover 30% of the demand for DHW
(Active measure).

5.2. Evaluation of Energy Performance for Renovation Packages

The effects on primary energy demanded and consumed by each renovation package are
summarised in Table 6 below, where those working packages that fulfil the COHERENO requirements
are highlighted in green. Calculations were made with the CE3X tool. It should be emphasised that
despite the fact that packages No. 3 and 4 satisfy the COHERENO condition regarding emissions,
the demand for primary energy has not been reduced at all compared to the initial condition.
Only packages No. 17 and 18 satisfy the 75% energy saving requirement; additionally, these two
packages satisfy the other four COHERENO conditions, so they can be considered the optimum from
the energy point of view.
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Table 6. Energy performance of working packages. Fulfilment of COHERENO requirements is
highlighted in green.

Working Package Primary Energy
Demand (kWh/m2/year)

Primary Energy
Consumption (kWh/m2/year)

CO2 Emissions
(kgCO2/m2/year)

0 91.5 350 53.3
1 91.5 175 36.9
2 91.5 164 34.6
3 91.5 143 2.4
4 91.5 134 2.3
5 62.5 258 40.5
6 62.5 131 27.6
7 62.5 120 25.3
8 62.5 107 1.8
9 62.5 98 1.7

10 78.3 308 47.5
11 78.3 155 32.7
12 78.3 144 30.4
13 78.3 127 2.6
14 78.3 118 2.2
15 45.7 106 20.0
16 45.7 95 17.7
17 45.7 76.39 1.6
18 45.7 77.43 1.4

5.3. Economic Evaluation in the Absence of Financial Incentives

The initial economic conditions that are assumed for this case consist of private funding through
a loan at 6.8% interest rate for 10 years. The overall costs of each renovation package are presented
in Table 7 and the representation of primary energy consumption in comparison with overall costs is
shown in Figure 4.

Table 7. Global costs of the 18 working packages with no financial support (€/m2).

Working Package Global Costs (€/m2) Working Package Global Costs (€/m2)

1 429 10 529
2 480 11 750
3 469 12 573
4 521 13 521
5 522 14 479
6 572 15 529
7 576 16 831
8 525 17 571
9 479 18 622
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The cost-optimal can be easily identified in renovation package No. 1, which consists of replacing
the original heating and DHW sources with a central standard gas boiler of 56 kW. This boiler would
supply underfloor heating. Energy demand would not be reduced at all since the thermal envelop
would not be upgraded. Primary energy consumption would be reduced to 175 kWh/m2/year and
the global cost would be 429 €/m2. The repayment period would be approximately eight years, one of
the shortest among the 18 alternative renovations. However, package No. 1 does not comply with any
of the COHERENO prerequisites to be considered a nZEB renovation.

5.4. Economic Evaluation in a Scenario with Financial Incentives

The analogous calculation process to the previous scenario is carried out, but in this case the
available funding incentives described in Section 5.1 are considered for each package. Results are
shown in Table 8. The comparison between Tables 7 and 8 reveals that costs are significantly lower
in the incentives scenario. Figure 5 represents primary energy consumption in comparison with the
new global costs. In this case, package No. 17 would represent the cost-optimal. This package consists
of renovating the thermal envelope and the window carpentry, retrofitting the heating system with
underfloor heating, and supplying the heating and DHW through a high-efficiency biomass boiler.
This solution would cost 412 €/m2 and it would comply with all COHERENO requisites to become
an nZEB renovated home. Thus, package No. 17 was chosen to upgrade the energy performance of
the building studied in this paper.

Table 8. Global costs of the 18 working packages with financial support (€/m2).

Working Package Global Costs (€/m2) Working Package Global Costs (€/m2)

1 429 10 478
2 480 11 702
3 444 12 489
4 495 13 438
5 434 14 442
6 484 15 492
7 471 16 795
8 419 17 412
9 428 18 463
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5.5. Execution of the Optimum nZEB Renovation

The building underwent a complete renovation, which corresponds to package No. 17. It started
with the modification of the interior partitions to improve accessibility, in line with sustainability
targets. Thermal improvements consisted of the installation of a thermal shell along its entire perimeter
and the upgrade to new windows with aluminium frames, a thermal break, and low-emissivity
glass. Energy coverage switched from individual electric heaters to a central biomass boiler of 56 kW,
which provides floor heating and DHW. Once the renovation project was finished and all the flats were
rented, the energy performance of the building was tested and the theoretical results were verified.

Insulation was verified through thermographic inspection, considering the twin building next to
the analysed one as a reference. Figure 6 gives thermographies of both façades, resulting in a difference
of 1.7 ˝C between the surfaces’ temperatures. It shows the reduction of the thermal transmittance
value provided by the ETICS façade solution.
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6. Discussion of the Results

Once the EPBD global costs have been obtained, they can be compared to the initial investment
costs. Several packages have a similar global cost to package No. 17, which is the optimum in terms of
energy saving. However, their initial investment costs are substantially lower. The initial investments
for packages No. 1, 6, and 17 are shown in Figure 7. Renovation package No. 17 requires an initial
investment of 182 €/m2, i.e., 32% higher than the 123 €/m2 of package No. 1, which corresponds to the
minimum investment with no economic incentives. This package and package No. 6 would probably
attract the attention of potential property developers, who focus primarily on the initial investment,
thus choosing solutions that are environmentally inefficient or can be significantly improved.
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This comparison leads, therefore, to a need for redefining the quantity and the allocation method
of financial incentives in such a way that the financial support discriminates between the renovation
alternatives more precisely based on their environmental impact. Another option consists of imposing
additional taxes on non-renewable energies such as piped gas, thus raising the energy cost and,
consequently, the global cost of renovations that do not meet nZEB conditions. A simulation has
been carried out considering an additional tax on piped gas of 32% in order to raise the global cost
of No. 1 and 6 from 429 and 428 €/m2 to 489 and 472 €/m2, respectively. As can be seen in Figure 8,
these values are further from the 412 €/m2 of No. 17, so cost-optimal methodology would also help to
choose the most efficient option.
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In order to take a decision based on more precise information, a deeper analysis of potential
building renovations is recommended. To this end, one factor that should be considered in future
research is the increase in the property value after being renovated [34,35]. Popescu et al. [36] calculated
an average increase of 2%–3% after thermal retrofitting, according to the results from a survey on
Romanian condominiums. Another valuable input would be the comfort parameters inside the
buildings, such as temperature, humidity, noise, illumination levels, and air speed. Some of them are
not easy to gather, as the perception of most of them greatly varies from user to user. Nevertheless,
this information is still relevant to be aware of the real energy demand and consumption.
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The possible extrapolation of the results obtained in this article is limited by the analysis of a real
case, which corresponds to a building constructed in the 1970s. Future analysis should focus on the
modifications needed by buildings constructed during the other periods listed in Figure 2.

7. Conclusions

EU regulations are gradually moving towards policies that reduce energy consumption and its
environmental impact. To reach this goal, improving energy efficiency in residential buildings is a key
action line. Given that the majority of building stock is obsolete in terms of energy performance and that
the renovation rate is roughly 1% per year, energy renovation becomes a sector that should be promoted.
The European Parliament adopted the Near Zero-Energy Building as the energy efficiency paradigm,
but a common technical and legislative framework for energy renovations is yet to be established.

In this paper the nZEB definition by COHERENO was adopted to evaluate several energy
renovation packages in a given building, which is also representative of the Spanish building stock.
Global costs are calculated for all of them following EPBD prescriptions. Two economic scenarios are
analysed: one that is 100% privately funded and another that is partly financed by public financial
incentives. The optimum solution, both in terms of energy performance and global costs, was carried
out and described.

The global cost computation within the existing plan of financial support in Spain permitted
us to detect the insufficiency of current economic incentives for energy renovations. This kind of
programme is essential for the economic feasibility of nZEB renovations, so they should be kept
after 2016 and even increased. The programme currently in force contributes to reduce global costs,
but it is not enough to reduce the gap between the optimum solution in terms of energy savings and
emissions and the optimum solution in terms of global costs. Furthermore, more active financial
support, together with the dissemination of the technical requirements and the benefits obtained from
energy renovations, would attract the attention of construction firms, property developers, and clients,
still heavily focused on newly constructed buildings or unaware of the available technologies and
benefits from energy renovations.

One possible line of action consists of directly reducing the initial investment by increasing
non-refundable subsidies. A second approach consists of indirectly modifying the taxation of the
least energy-efficient elements in buildings, in such a way that the economic interest of a package of
energy renovation measures would be proportional to the improvement in the energy performance
achieved. This can be accomplished, for instance, by increasing property taxes proportionally to
the energy efficiency of the building, or by increasing taxes on energy sources depending on their
environmental impact. These measures would contribute to reducing the current gap between the
most energy-efficient solutions and cost-optimal renovations.
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