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Abstract: In the context of the liberalization of electricity markets, forecasting prices is essential.
With this aim, research has evolved to model the particularities of electricity prices. In particular,
dynamic factor models have been quite successful in the task, both in the short and long run. However,
specifying a single model for the unobserved factors is difficult, and it cannot be guaranteed that
such a model exists. In this paper, model averaging is employed to overcome this difficulty, with the
expectation that electricity prices would be better forecast by a combination of models for the factors
than by a single model. Although our procedure is applicable in other markets, it is illustrated
with an application to forecasting spot prices of the Iberian Market, MIBEL (The Iberian Electricity
Market). Three combinations of forecasts are successful in providing improved results for alternative
forecasting horizons.

Keywords: dimensionality reduction; electricity prices; Bayesian model averaging; forecast combination

1. Introduction

Nowadays, electricity trading is liberalized in most countries of the Western world. Due to the
particular characteristics of supply and demand, the prediction of electricity prices in this context is
complex. Notwithstanding the difficulties, forecasts are necessary for several reasons:

• this is a strategic sector of the economy;
• there are financial implications due to the trading of forwards and options;
• forecasts help optimize and plan consumption and production.

As with other commodities, there are various ways to operate in this market (see [1] for a detailed
market description and a thorough literature review). We focus on prices that result from a pool in
which there is a central auction. In this pool, prices could be settled for each hour of the day, or every
half hour, depending on the market.

In the first case, the 24 hourly prices for day t are cleared at the same instant in day t − 1,
with the same common information for all of the hours. Therefore, for each day, a 24-dimensional
vector is generated (p1,t, p2,t, . . . , p24,t); where ph,t represents the price of hour h = 1, 2, . . . , 24 at day t.
Consequently, prices can be presented in a T × 24 dimensional matrix, where T is the number of days
in the sample, and modeling should be multivariate (as in [2–5]).
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In several fields, there has been an increasing interest in the development of a methodology to deal
with multivariate time series or a high dimensional vector of series. By the end of the 1970s, [6] (these
authors presented a factor model for stationary time series vectors) and [7] were the first to propose a
dynamic factor model. Later, [8] contributed by extending the idea of principal components to the
dynamic case. More recently, dimensionality reduction techniques have gained popularity, in particular
since the work by [9]. For example, [10,11] extended [6]’s model for the non-stationary case.

Regarding applications in electricity markets, [12] extended [8,13] to prices with seasonality.
Working with data for the Iberian market for 2007–2009, they propose extracting common factors from
the 24-dimensional price vector and modeling such factors as univariate seasonal AutoRegressive
Integrated Moving Average (ARIMA) processes. The work in [5] proposes a technique called Seasonal
Dynamic Factor Analysis (SeaDFA), which involves the estimation of a Vector AutoRegressive
Integrated Moving Average (VARIMA) model for unobserved common factors having seasonal
patterns. The work in [14] also uses a factor model, including not only hours, but also locations.

In an independent path, forecast combination or model averaging has been developed as a
technique to take advantage of the availability of alternative forecasting approaches. This methodology
consists of weighting a set of forecasts corresponding to alternative models and combining them to
obtain a single forecast. In this way, model selection uncertainty is incorporated. According to [15],
“the idea of combining forecasts implicitly assumed that one could not identify the underlying
process, but that different forecasting models were able to capture different aspects of the information
available for prediction”. Other justifications for model averaging are: doubts of the existence of a
“best model” [16], “portfolio diversification”, a better adaptation to structural breaks or to average out
omitted variables’ bias [17].

Applications of model averaging in electricity markets are given by [18] (for the British market)
and [19] (for European and USA markets). Furthermore, [20] obtain forecasts for the daily average price
employing dimensionality reduction techniques, as well as the forecast combination of several models
for hourly prices. Other references are [21], who use averaging to obtain wind speed, solar irradiation
and temperature forecasts, which are employed to estimate prices; and [22], who forecast hourly
electricity prices for the Spanish market by weighting seasonal ARIMA (with exogenous variables)
and seasonal dynamic factor models of similar performance.

A major drawback of dimensionality reduction techniques is the uncertainty regarding the
“correct” model: how many factors to include, and what models they follow. The literature is not
definite in regards to the best technique for estimating the number of underlying factors that would
contain enough information to make accurate predictions, considering that, as the number of factors
included increases, so does estimation complexity and computational burden. As previously indicated,
there is no unique model for these factors that outperforms all other models in all circumstances [1].

In this work, it is hypothesized that the major decisions attached to forecasting by using
dimensionality reduction techniques may be resolved in a less arbitrary way if forecast combination is
included. In order to follow this course, alternative models, including different numbers of common
factors, are estimated. Forecasts are obtained by transforming the factors’ forecasts back to the data
units, according to the relations established in the dimensionality technique employed. Subsequently,
forecast combination approaches are used to weight each of the forecasts obtained and, thus, to provide
a single prediction.

Summing up, factor models extract information ex ante (before any forecast is obtained), while
forecast combination works ex post (after forecasts are available). The contribution of this work is to
amalgamate both techniques. A reduced number of latent unobserved variables is estimated, and their
forecasts are combined in order to obtain a single prediction.

We apply these techniques to one-day-ahead electricity prices for the Iberian spot market for a
period of five years. Several ARIMA specifications (for each one of the common factors included in the
analysis, 36 choices of parameters are available: p = 1, 2, 3, d = 0, q = 1, 2, 3, P = 0, 1, D = 1, Q = 0, 1,
s = 7; these pre-defined models are all automatically estimated with the software TRAMO, by its
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MATLAB interface, intervening outliers.) are estimated for the factors and used to obtain forecasts
of the prices for each hour, which makes the task computationally intensive. Next, these forecasts
are combined. We study alternative ways to combine forecasts because their performance may vary
depending on the dataset. The predictions concern mainly the short- and medium-term (one and
two months), but a one-year extension is presented to illustrate the potential accomplishments in
long-term forecasting.

The rest of the paper is organized as follows. Fundamentals containing a mathematical description
of the proposed methodology are presented in Section 2, which includes definitions on dynamic factor
models, classical techniques for forecasts combination and Bayesian model averaging. Section 3
describes the methodology for this paper. In Section 4 , we present the results of the empirical
application. This section is divided into sub-sections presenting the data, an analysis of variance
(ANOVA) comparing specifications, and forecasting results. Finally, Section 5 concludes with remarks,
limitations and possible extensions.

2. Fundamentals

An outline of the methodology used in this proposal is presented below, as are the drawbacks of
other approaches, which we attempt to resolve.

2.1. Dynamic Factor Model (DFM)

Dynamic Factor Models (DFM) are a widely-applied dimensionality reduction technique. It is
employed when the researcher believes there are fundamental factors driving several variables in a
dataset. These factors, like the variables, evolve through time and allow one to obtain information
about the larger dataset with a simpler model. The explanation here follows [12]. As there, once the
common factors are obtained, univariate seasonal ARIMA models are fitted to them. The forecasts of
these models are then combined to obtain one improved forecast.

Let yt be an m-dimensional observed time series vector, generated by an r-dimensional vector
of unobserved common factors r � m. In the Iberian electricity market m = 24, and the matrix of
observed series has as many rows as days are considered in the historic dataset. As in [8], it is assumed
that vector yt can be written as a linear combination of the unobserved common factors Ft, plus a
vector of specific components or factors εt:

yt = ΩFt + εt (1)

where Ω is an m× r matrix of loads relating the set of r common unobserved factors with the vector of
observed series yt (the vector of the 24 hourly prices for our application) and εt is an m-dimensional
vector of specific components.

To estimate the factors Ft, singular value decomposition (SVD) is used (as in [8]) for the covariance
of the 24 dimensional vectors of centered prices [12]. This consists of calculating the eigenvalues, and
their associated eigenvectors, for the sample covariance matrix, and thereupon calculating the matrix of
common factors, F̂, as a linear combination of the time series: F̂T×r = YT×mΩ̂m×r. F̂ = [F̂′1, F̂′2, ..., F̂′T ]
has dimension T× r, where T is the length of the period employed in estimation and r the number of
common factors in the analysis.

Ft may be non-stationary, including regular or seasonal unit roots in addition to auto-regressive
and moving average (regular and seasonal) components. These ARIMA(p, d, q)× (P, D, Q)s models
are used to obtain factors’ forecasts and from them, prices’ forecasts. For instance, the i-th factor at
date t, F̂it, would be modeled by:

(1− B)d(1− Bs)Dφi(B)Φi(Bs)F̂it = ci + θi(B)Θi(Bs)wit (2)

where i = 1, 2, . . . , r is the i-th factor, φi(B) = (1− φi1B− φi2B2− . . .− φipi B
pi ), Φi(Bs) = (1−Φi1Bs−

Φi2B2s − . . .−ΦiPi B
Pis), θi(B) = (1− θi1B− θi2B2 − . . .− θiqi B

qi ) and Θi(Bs) = (1−Θi1B−Θi2B2s −
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. . .−ΘiQi B
Qis) are polynomials; B is the lag operator, such that Byt = yt−1. The roots of |φi(B)| = 0,

|Φi(Bs)| = 0, |θi(B)| = 0, |Θi(Bs)| = 0, satisfy the usual stationarity and invertibility conditions, and
wit∼N(0, Wi) are uncorrelated E(witw′it−h) = 0, h 6= 0. It is also assumed that the error term of the
common factors wit is uncorrelated with the specific components E(witε

′
t−h) = 0, ∀h. ci is the constant

of the model for the common factors, and its inclusion in the common factors model in Equation (2) can
be particularly relevant to calculate long-term forecasts in the non-stationary case (which is the case of
electricity prices). Furthermore, in this work, the specific components are assumed to be independent
and have no dynamic structure along them (e.g., [11]).

It should be noticed that the procedure of estimating the factors is independent of the procedure
of estimating the ARIMA models. That is, first the factors’ estimates F̂ are obtained, and afterwards,
the ARIMA models are estimated (φ̂, Φ̂, θ̂, Θ̂). Moreover, the estimation of the first factor is the same
when r = 1 or r > 1, which is a natural consequence of the SVD procedure. Nevertheless, the selection
of r acts on the value of the forecasting errors for the series. The more factors are included (greater r),
the greater the variability of the data explained by the model. The cost of incorporating more factors is
an increase in the number of parameters to estimate.

To summarize, a key stage when estimating this kind of model is the selection of the number of
common factors, r, as well as the model they follow, which implies selecting the orders: p, d, q, P, D, Q.
r could be obtained using the test proposed in [11] and could also be selected such that diagnostic
checking results (specific factors and errors of the observation equation must be uncorrelated between
them, and specific factors without any cross correlation) are reasonable [5]. However, alternative
values could satisfy these criteria. Because selecting one value for r and the other parameters will
likely not render the best results in every scenario, we will instead keep the alternatives and combine
their forecasts. Forecast combination is presented in the following Subsection 2.2.

2.2. Forecast Combination

Empirically, the improvements of using forecast combination instead of a “best” model have been
shown for different types of models (for instance, see [23–25]) and in various research areas [15,26].
However, [1] points out that forecast combination techniques have not been fully exploited for
electricity prices.

In general, we can think of the combination equation as follows:

ŷC
t+h|t =

K

∑
i=1

w(h)
ti ŷ(i)t+h|t (3)

where w(h)
ti is the i -th model weight at time t for the forecast horizon h, K the total number of models

considered and ŷ(i)t+h|t the forecast obtained with the i -th model for the forecast horizon h.
Combinations will vary depending on the weights they use and the set of models they include.

There are classical and Bayesian techniques. In the next subsections, we briefly summarize the
literature on both the classical approach and an approximation to Bayesian combination, mentioning
their drawbacks and advantages. This will help us justify our methodological proposal presented in
Section 3.

2.2.1. Classical Techniques for Forecast Combination

One easy way to obtain forecast combination is the simple average, in which all alternative
forecasts are given the same weight. This approach often works very well in comparison with more
complex ones. One possible reason is that “complicated combining methods pursuing “optimal”
behavior often lead to unstable weights and the combined forecast even performs significantly worse
than the individual forecasts” [27]. Alternatively, a simple combination method outperforming more
complex ones might be explained by a larger variability of the latter [27]. In this regard, [17] advise to
use a simple average when the alternative models to combine have similar forecast error variance.
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A different approach to assign weights consists of estimating weights that minimize a loss function
with the forecast error of the models to combine as explanatory variables [28].

A further option is a combination using only the dm best models. The possible advantages of
this approach are: to reduce the variability of the combination [27] and to avoid under-weighting
independent information when the models are correlated [17]. The set dm could change through
time depending on the most recent performance of the models [17] (these authors evaluate model
performance based on the sum squared errors; the results they obtain with a time-varying subgroup of
models outperform those of the simple average of all of the models) or it could be fixed [29].

Another way to combine forecasts would be to employ the median prediction [24]. Alternatively,
some authors employ a combination regression of the form:

yt+h = α0 +
P

∑
i=1

αi pi,t + εt+1

where yt+h is the forecast resulting from the combination and pi,t are the predictions of the alternative
models. The work in [29] uses the Bayesian information criterion (BIC) [30] or the Akaike information
criterion (AIC) to select the best combination. There are also some drawbacks to this regression-based
approach. The work in [29] indicates collinearity in the competing forecasts and over-fitting due to
outliers; [31] adds that while in-sample fit is improved, out-of-sample prediction tends to be worse
than using the average to combine.

Even using complex combinations, the empirical findings in [29] suggest that in some cases,
the difference between alternative combination methods is not significant, a result that will also be
obtained at points in this work.

2.2.2. Bayesian Techniques for Forecast Combination (BMA)

With this approach, the predictive distribution of a new observation is obtained by averaging
with different weights the predictive distribution of each model considered. The idea was initially
introduced by [32] and allows one to incorporate the uncertainty regarding the variety of available
models [32]. It has been applied in statistics [33–35] and econometrics [36,37].

According to [31], an advantage of Bayesian Model Averaging (BMA) is that “One does not have
to be a subjectivist Bayesian to believe in the usefulness of BMA, or of Bayesian shrinkage techniques
more generally. A frequentist econometrician can interpret these methods as pragmatic devices that
may be useful for out-of-sample forecasting in the face of model and parameter uncertainty”.

As [31] explains, the procedure takes under consideration a large number of alternative models’
forecasts, assuming one of them is the “true” data-generating model; however, the researcher is
unaware of which one is this. A prior regarding which model is the correct one is set, and then, a
posteriori probabilities of the different models being the true one are obtained to weight the predictions.

Alternative models’ weights can be time evolving. For instance, [38] work with weights that
change depending on the predictive densities past performance and learning mechanisms.

Following [31]: let K be the total number of models M1, . . . , MK. The i-th model is related to the
vector of parameters θi. The researcher has a priori knowledge of the probability that the i-th model is
the true one, p(Mi). Then, the data, D, are observed, and the probability is updated by calculating the
a posteriori probability that model i-th is the true one:

p(Mi|D) =
p(D|Mi)p(Mi)

K
∑

i=1
p(D|Mj)p(Mj)

(4)
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where p(D|Mi) =
∫

p(D|θi, Mi)p(θi|Mi)dθi is the marginal likelihood of the i-th model, p(θi|Mi) is
the a priori density of that model parameters’ vector and p(D|θi, Mi) is the likelihood. Inference about
a “future” quantity ∆ is based on:

p(∆|D) =
K

∑
i=1

p(∆|D, Mi)p(Mi|D) (5)

In particular, the mean of this posterior distribution is used as the forecast. This procedure
minimizes the mean squared forecast error (MSFE). It is only necessary to specify the set of models,
their priors p(Mi) and the parameters’ priors p(θi|Mi).

A disadvantage of this approach, though, is that the conditional probabilities are, in general,
unknown. Therefore, they should be estimated from the data, which could mean that any benefits of
forecast combination are lost.

Often, all models will have equal a priori probabilities, i.e., p(Mi) = 1/K. In this case,
as [33] indicates, the posterior probability p(D|Mi) is proportional to exp(−(1/2)BICi). Therefore,
Equation (4) can be written as follows,

p(Mi|D) ≈ exp(−(1/2)BICi)
K
∑

i=1
exp(−(1/2)BICi)

(6)

Equation (6) is easy to calculate, and no prior densities need to be set [33]. In this paper, one of
the forecast combinations will use weights obtained as indicated in equation (6).

Notice that the selection of equal a priori probabilities is motivated by the approach of using
non-informative a priori probabilities. However, other a priori probabilities can be considered, and
in such cases, Equation (6) would be:

p(Mi|D) ≈ exp(−(1/2)BICi)p(Mi)
K
∑

i=1
exp(−(1/2)BICi)p(Mi)

(7)

In this paper, the goal is to derive some feasible and reasonable weights, not to estimate conditional
probabilities. Of course, it is to be expected that clever a priori probabilities produce better weights in
the sense of better forecast performance.

3. Methodology

Taking into account the limitations of existent approaches in dimensionality reduction, most
importantly the issue of selecting a number of common underlying factors r, as well deciding for a
“best” model for them, and given the advantages of forecast combination revisited in the previous
sections, our methodological proposal consists of averaging the forecasts of alternative models for
each factor.

This allows capturing the factors underlying the behavior of large datasets, avoiding the risk of
committing to a particularly “bad” specification for them. That is why we consider that this approach
improves previously-mentioned solutions to open problems described along Sections 1 and 2.

The complete prediction procedure can be summarized in the following steps, repeated for each
window of time in the dataset. Notice that each window of time provides a historical dataset, as well
as out of sample data with which the forecasts will be compared.
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Select a window of time (considering a historical length)

Use SVD to extract estimates of the common factors, F̂1 and
F̂2 (we work with models of one and two common factors)

Estimate 36 alternative seasonal ARIMA models for each factor

Calculate forecasts employing the estimated
seasonal ARIMA models, F̂1,t+h and F̂2,t+h

Transform to competing forecasts of hourly prices using either one factor
(ŷT+h = ω1 F̂1,T+h) or two factors (ŷT+h = ω1 F̂1,T+h + ω2 F̂2,T+h)

Combine forecasts according to Equation (3)

For each window of time, the factors underlying the data are estimated by means of SVD,
as explained in Section 2.1. There are as many common factors as time series in the dataset, m.
However, the purpose of applying dimensionality reduction techniques is to be able to describe the
data by means of a much smaller number of variables, thus r << m. There are many criteria for
estimating the value r that would best represent the underlying trends in the data. In this regard, a
contribution of this work is that, instead of committing to one of them, the possibility of estimating
several models is explored. For this reason, two settings are estimated: on the one hand, r = 1, which
means that only the underlying factor most representative of the data variability is used to forecast;
and on the other hand, r = 2, which means that the first and second most important underlying factors
are estimated and employed to obtain forecasts.

As indicated in the flowchart, the next step consists of estimating models for the factors.
The literature review performed in this work reveals that it is difficult, if not impossible, to find
a model that by all criteria would outperform all others. Even more, a good fit does not guarantee
an accurate forecasting performance. To overcome these difficulties, our proposal consists of fitting
36 ARIMA specifications for each estimated factor, in lieu of selecting a “best” set of parameters.
These specifications result from the following parameters: p = 1, 2, 3, d = 0, q = 1, 2, 3, P = 0, 1, D = 1,
Q = 0, 1, s = 7. Additional values of the parameters (for example, p > 3) are excluded because they
increase the computational burden, but do not provide a relevant improvement in results.

After forecasts are estimated for all of the options of factors (either one or two) and ARIMA
models, they are transformed to forecasts for the original variables, by means of a multiplication by
the matrix of weights following Equation (1). This will render many forecasts for the data, which will
be combined to present a single forecast for each variable of the original dataset.

Forecast Combinations and Accuracy Metrics

We consider five alternative combinations (2–6 below) and compare them to a benchmark
(1 in the next enumeration):

1. Forecast resulting from the benchmark model (the ‘BIC-selected model’). This is the best model
according to the BIC (has the lowest BIC). Selecting only one model is equivalent to assigning it
a weight wi = 1 (Equation (3); superscript (h) has been eliminated because weights will not be
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adaptive to the forecasting horizons, and subscript t has also been omitted to avoid confusion
with time-varying weights), and wi = 0 for all other models.

2. Forecast calculated as the median of the forecasts of all of the models (the “median-based
combination”). This is also a case of weights w(h)

i = 1, for the model with the median forecast,

and w(h)
i = 0 for all other models.

3. Forecast equal to the mean of all forecasts (“mean-based combination”). In this case, Equation
(3)’s weights are all equal wi = 1/K, where K is the total number of models in the analysis.

4. Forecast obtained using BIC-based weights as in Equation (6) (“BIC-based combination”).
This approach involves equal a priori probabilities. Other sensible sets of a priori probabilities
were considered, and similar results were obtained. For the sake of concreteness, those results are
not presented hereby, but are available upon request to the authors.

5. Forecast obtained with BIC-based weights for the top 50% models (“BIC-50% combination”).
In other words, half of the models are included according to their BIC criterion wi = p(Mi|D) of
Equation (6), and for the half that has the largest BIC values, wi = 0. Let us recall that the BIC
evaluates the fit of the model, not how accurate it is when used to forecast.

6. Forecast calculated as the mean of the forecasts of the top 50% models (“mean BIC-based
combination”). Only half of the models are included (the “best” half of the models depending
on their BIC), and the forecast combination is simply their average. In other words, the 50% of
models with the lowest BIC are assigned weights wi = 2/K, and the 50% of models with the
greatest BIC are assigned weights wi = 0.

In order to evaluate forecasts and to assess the most appropriate combination, we need to define
a forecasting accuracy metric. We can evaluate the forecasts’ accuracy by means of several alternative
metrics (see [1,39,40] for a detailed review). Some of them are the relative forecast error, and the mean
(and median) average percentage error (MAPE). However, these measures are not valid when the data
have negative and/or positive, but close to zero, values [40], a frequent occurrence for many electricity
prices ([21,41] deal with the issue of forecasting extreme prices in the Spanish electricity market).

Therefore, we use the mean absolute error (MAE) and median absolute error (MedAE). They can
be obtained as follows:

MAEi
τ =

1
m

τ+m

∑
z=τ+1

(
1

24

24

∑
h=1
|(yh,z − ŷi

h,z)|) (8)

and:

MedAEi
τ =

1
m

τ+m

∑
z=τ+1

(median(|yh,z − ŷi
h,z)|)) (9)

where m is the number of days in the out-of-sample period and τ is the last observation of the rolling
window employed to estimate the model used to compute the forecasts.

4. Results

4.1. Data

We study a dataset of spot prices for the Iberian (Spain and Portugal) electricity market from
July 2006 to December 2012. The dataset is presented in Figure 1. There is a common pattern in the
evolution of the hourly series. The period before 2008 (Figure 1 to the left of the dashed line) is only
used as historical data; the first predicted day is 1 January 2008 and the last one 31 December 2012.
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Figure 1. Prices for the Iberian market from July 2006 to December 2012. The vertical dashed line
separates the period only used as historic data (to the left) from the period in which out of sample
predictions are obtained by using rolling windows (to the right of the dashed line).

4.2. ANOVA for a Comparison of Alternatives for Modeling

When modeling, some characteristics should be considered:

• Whether to use prices or the logarithm of prices (factor “LOG” or logarithm, with two levels, zero
and one, when not taking logarithm or when doing so, respectively).

• The length of historical data for the rolling windows (44 weeks [12] or 1.5 years).
• Are common factors best fit by auto-regressive (AR) or auto-regressive-moving-average (ARMA)?

The factor “MA” has two levels, zero (not including MA component) and one (including the
MA component).

• Are there statistically-significant differences between the six possible forecasts combinations?

To compare these features, we have computed forecasts for every hour and day from
1 January 2008 until the end of 2012. This involves estimations for every hour of every day during five
years, a long period that allows validating the results. There are 2× 2× 2× 6 = 48 cases resulting
from combining all of the levels of the aforementioned factors (two values for LOG, two values for
length, two values for MA and six combinations) that could affect the forecasting error. We analyze
separately the results for different forecasting horizons: one-day-ahead (forecasting horizon h = 1),
one-week-ahead (h = 7), one-month-ahead (h = 30) and two-months-ahead (h = 60).

Furthermore, and given the fact that forecasts have been computed for a large number of days,
the particular ‘day’ could also explain some significant part of the variability of the response variable
(in this case, the response variable is the accuracy metric MAE). For instance, if the prices in one day
are rather unexpected (for being too low or high), the MAEs will be large, whatever historical length,
combination of forecasts, logs or levels and using common factors with the MA component or not. This
is the reason why the day is considered as a block in the computational experiment and the subsequent
ANOVA performed. A complete reference on ANOVA and design of experiments is [42].
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The equation of the model estimated (an ANOVA with four factors and one block (when including
interactions, they were not significant, and the F-statistic is smaller than one, so they were removed
from the model) for detecting which levels of the factors LOG, length, MA and combination previously
described are preferred in terms of forecasting accuracy is the following:

MAEijkld = µ + (α)i + (β)j + (γ)k + (δ)l + (ε)d + uijkld

uijkld ∼ NIID(0, σ2
u) (10)

where µ is the grand mean and (α)i, (β)i, (γ)i, (δ)i and (ε)i are the main effects of the factors
LOG, length, MA, combination and the block “day”, respectively. The main effect (δ)l measures
the increase/decrease of the average response of the combination of forecasts l = 1, 2, 3, 4, 5, 6 with
respect to the average level; and similarly for the rest of the main effects. The noise term uijkld includes
all that is not explicitly taken into account in the model, but that somehow is able to explain some of
the variability of the response variable MAEijkld.

Since we assume that the error term uijkld is Gaussian, independently and identically distributed,
with zero mean and variance σ2

u , once the model has been estimated, a diagnostic check must be
performed, testing that the eijkld are homoskedastic, Gaussian and independent, where:

eijkld = ûijkld = MAEijkld − µ̂− (α̂)i − (β̂)j − (γ̂)k − (δ̂)l − (ε̂)d

The results obtained for each forecast horizon are summarized and illustrated below. In all of
the cases, the response variable was transformed after a first attempt to fit a model to the MAEijkld
because the residuals were heteroskedastic. The results shown hereafter consider the log(MAEijkld) as
the response variable. Given that the logarithm is a monotonically-increasing function, the results can
be interpreted directly, and the best model corresponds to the smallest log(MAEijkld), while the worst
model to the largest log(MAEijkld).

Summarizing the Conclusions from the ANOVAs

For all of the forecasting horizons considered, taking the logarithm of prices does not make
a difference in performance. Regarding the length of the historic dataset, the shortest window is
preferred for the forecasting horizons of one and seven-days-ahead (forecasts for the short term),
while the long window of 1.5 years is preferred for the forecasting horizons of 30- and 60-days-ahead
(long-term forecasts); this is consistent with the results in [5]. Furthermore, the MA terms for the
factor models are statistically significant for all forecasting horizons, which means that modeling the
common factors as ARMA reduces the error in comparison to modeling them as AR.

Regarding the combinations, the median-based combination, mean-based combination and mean
BIC-based combination result in better forecasts than the benchmark BIC-selected model and the other
combinations available for most forecasting horizons (h = 7 onward). However, it is not clear that one
of these three is always better: the confidence intervals for the median-based combination, mean-based
combination and mean BIC-based combination usually overlap, indicating no significant difference
between them.

For details of the results for each forecasting horizon, see the Appendix A.

4.3. Electricity Price Forecasting

In this section, the results of the forecast combinations are presented, in comparison with the best
model selected with the BIC information criterion (this model may have one or two common factors,
and each factor is modeled with an ARIMA model with parameters selected by BIC; the model is
selected anew in each window) Forecasts are calculated for a long period, for each day and hour. The
next paragraphs describe the technical details involved in estimation; Subsection 4.3.1 sheds light on
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the results involved in the estimation of each rolling window, and Subsection 4.3.2 presents the results
for all days and hours.

Prices are transformed using logarithms to mitigate the existing heteroskedasticity, present in
most commodity prices’ time series. Therefore, the series modeled are yt = log(Pt + k), where Pt is
the vector of 24 prices for day t, and k = 1000 is a constant included to avoid a value of log(0), which
would happen when prices are equal to zero.

For medium- and long-term forecasting, forecasts of specific components are negligible. Therefore,
we do not model these, but only the unobserved common factors, which explain the larger portion of
the variability and capture the trend of the series in the long-run. This is consistent with the results
in [5]. The prediction horizon will vary from 1 to 60 days, and once the factor(s) are modeled and
predicted, the loading matrix is used to obtain the forecasts of the original 24-dimensional vector of
prices. Then, the out-of-sample performance of the forecasts is evaluated.

We work with rolling windows of a length of 1.5 years (the best length for medium- and long-term
forecasts according to the previous section); and estimate one and two common factors.

In each window, 36 alternative seasonal ARIMA(p, d, q)× (P, D, Q)s models (p = 1, 2, 3, d = 0,
q = 1, 2, 3, P = 0, 1, D = 1, Q = 0, 1, s = 7) are estimated for each factor. Weekly seasonality is included
in the model (s = 7), but yearly seasonality is not. This follows [5], who found no improvement in the
prediction error when modeling yearly seasonality in the Iberian market, using a similar length of time
for the estimation.

Therefore, there are 36 models that use only one factor, and 1296 models that use two factors;
a total of 1332 different models, depending on how many factors they include and the parameters of the
ARIMA(p, d, q)× (P, D, Q)s (in a total of 1767 time rolling windows). This makes it unfeasible to check
the residuals behavior for each ARIMA model estimated (notwithstanding, TRAMO (the software
employed to estimate the ARIMA models) calculates the p-value of the Ljung–Box statistic for each
model and shows acceptable values for most cases). However, three of the five forecast combinations
under consideration are based on BIC, so “badly”-behaved models (poor fit will be associated with a
high residuals variance) will be assigned small or negligible weights in the final forecast. Furthermore,
the median-based combination is not affected by outliers due to “badly”-behaved models. Only the
mean combination may be affected by them, but based on Table 1, median and mean combinations
reveal similar results. If there were fewer models or the analysis were limited to a shorter period,
residual checking could be performed before forecast averaging. In this case, it would be reasonable to
obtain slightly better results.

Notwithstanding the large number of models, the estimation for each individual window of time
takes only a few minutes; therefore, the procedure could be used in real time. Furthermore, even
though with such a large number of models, some will be superfluous, the combinations that use
weights depending on the BIC will assign them nearly null weights.

4.3.1. Illustration for a Single Forecasting Window

Before proceeding with the presentation of the results, this subsection is used to gain insight into
the role of the common factors, as well as the forecasting combinations. With this aim, the estimation
for one window of the dataset is analyzed in further detail.

The role of the underlying factors is hereby clarified. Considering as an example the first rolling
window in the estimation, Figure 2 presents the first and second common factors, as well as the weights
assigned to them for each of the 24 h. For the first factor, which explains 64.6% of the data variability,
weights are heavy from Hours 8–24, when most people are awake. Then, it is possible to interpret
that this factor mainly records the general behavior of prices during hours when people are awake.
On the other hand, the weights of the second factor are positive from 9–18 and negative otherwise.
This coincides with usual working hours (or, alternatively, sunlight hours). Therefore, the second factor,
which accounts for 13.8% of the data variability, would capture changes in the price relation of working
vs. non-working hours. Notice that some models would include only the first factor, while others will
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include the first and second common factors. Models with more factors have been excluded from the
analysis (setting r ≤ 2) because already around 80% of the data variability is explained by two factors,
and it should be noted that there is a computational burden of incorporating an additional factor.
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Figure 2. Common factors and their weights corresponding to the first rolling window of the dataset
for Spain starting 1 January 2008, with a historical length of 1.5 years. (a) First and second estimated
common factors; (b) Estimated loads.

The massive estimations performed make it unfeasible to provide the estimation results for each
of the 1336 models and for each of the 1767 rolling windows of time. However, as an illustration, for
the first rolling window, taking for example the first factor and the ARIMA model of order p = 1, q = 1,
P = 0, Q = 0, the coefficients would be the following: φ = 0.7145, θ = −0.1319 (both significant).
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Figure 3. BIC criteria corresponding to the first rolling window of the dataset for Spain starting
1 January 2008, with a historical length of 1.5 years.
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To shed some light on how the alternative models enter the combinations, Figure 3 presents the
BIC values for the 1332 previously-mentioned models. For illustrative purposes, also the first rolling
window of the data is employed. The horizontal axis corresponds to the indexes of the models. The
first 36 values (X axis 1–36) represent models with only one factor (r = 1), starting with parameters
p = 1, q = 1, P = 0, Q = 0 for X axis = 1, then p = 1, q = 1, P = 0, Q = 1 for X axis = 2, until p = 3,
q = 3, P = 1, Q = 1 for X axis = 36. X axis 37–1336 correspond to models with two factors (r = 2). In X
axis = 1336, the order of the ARIMA models for the two factors coincide, p = 3, q = 3, P = 1, Q = 1.
For BIC-dependent combinations, the smaller the BIC value, the greater that model’s weight. In this
way, better performing models are rewarded. It is clear that there are some models with predominant
low BIC (i.e., high weights). Of course, if all considered models had a poor goodness of fit, then it
would be reasonable that the combinations would inherit that bad performance. The claim in this
work is that those combinations would be, at least, as good as the best considered model.

4.3.2. Forecasting Results

In Table 1, the MAE and MedAE for the BIC-selected model and for the alternative combinations
are presented for weekly, monthly and bi-monthly forecasts. The same exercise was performed
employing the root mean squared error (see [40] for an explanation of how to calculate this measure of
the error) and similar results were obtained.

In conclusion, there is an improvement in prediction when using forecast combinations,
in comparison with the best model selected according to the BIC criterion. In this case, the
improvement of the mean-based forecast combinations is clear, while for the BIC-based combination,
the improvement in the forecasting errors is smaller. Even though the decrease in the errors is small
when we compare the benchmark to the combinations, it is steady, supporting the conclusion obtained
in the ANOVA in which some combinations are statistically significantly better than the benchmark.

As an illustration of long-run performance, we also obtained forecasts for up to one-year-ahead,
considering the period to forecast between 1 January 2012 and 30 December 2012 (2012 is a leap year).
In this case, the annual MAE and MedAE (values comparable to Table 1) are 8.0669 and 7.2699,
respectively, for the best combination for the one-year-ahead horizon: the mean-based combination.
Even though the mean-based combination presents the smallest errors for the annualized forecast,
it has greater volatility than the BIC-based combination. A similar situation is recorded for the rest of
the combinations in comparison to the BIC-based one.

Furthermore, there is practically no deterioration of these long-run forecasts with respect to shorter
forecast horizons. Table 2 supports this conclusion. In this table, the values of the MAE and MedAE for
each month of 2012 are presented for the benchmark and the alternative combinations. When taking
into account the average of each month, the mean-based combination is the best performer (presents the
smallest errors most months), followed by the mean-BIC combination. This performance is better in
the medium and long run than in the short term: for the first two months, the BIC-selected model
provides a smaller error. Similarly, [28] obtain that the relative performance of the combinations in
comparison to the best model improve as the forecasting horizon is extended. All in all, the mean-based
combination is competitive when compared to other combinations, a conclusion also supported by [18].
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Table 1. Weekly, monthly and bi-monthly MAE and median absolute error (MedAE) for the Iberian market for the period 1 January 2008–31 December 2012.

BIC-Selected Median-Based Mean-Based BIC-Based BIC 50% Mean BIC-Based
Model Combination Combination Combination Combination Combination

Weekly
MAE 5.9455 5.8690 5.8965 5.9384 5.9384 5.8397

MedAE 5.3515 5.2433 5.2677 5.3444 5.3444 5.2275
Monthly

MAE 6.9069 6.6952 6.7097 6.8934 6.8934 6.6526
MedAE 6.3635 6.1179 6.1367 6.3484 6.3484 6.0882

Bi-Monthly
MAE 7.8184 7.5456 7.5512 7.8014 7.8014 7.4867

MedAE 7.3047 7.0081 7.0157 7.2844 7.2844 6.9539

Table 2. MAE and MedAE for the Iberian market: predictions for 2012.

BIC-Selected Median-Based Mean-Based BIC-Based BIC 50% Mean BIC-Based
Model Combination Combination Combination Combination Combination

January MAE 5.9914 6.7577 6.8780 6.0130 6.0130 6.4687
2012 MedAE 5.3622 6.4678 6.7260 5.2593 5.2593 6.0601

February MAE 6.4675 7.2435 7.4060 6.4906 6.4906 6.9594
2012 MedAE 6.5416 7.4396 7.5021 6.6464 6.6464 7.2376

March MAE 6.9734 6.1102 6.0922 6.8243 6.8243 6.1867
2012 MedAE 6.0546 5.3264 5.256 6.0065 6.0065 5.2017
April MAE 13.5490 12.4104 12.2801 13.3762 13.3762 12.5287
2012 MedAE 13.2217 10.7761 10.0235 13.1850 13.1850 11.2624
May MAE 10.8668 9.3332 9.1965 10.6543 10.6543 9.5498
2012 MedAE 9.3751 7.5543 7.4841 9.1088 9.1088 7.7359
June MAE 6.0767 6.3919 6.6578 6.1280 6.1280 6.2612
2012 MedAE 5.5188 5.8455 6.3053 5.5588 5.5588 5.8795
July MAE 5.9894 5.5998 5.7148 5.9188 5.9188 5.5693
2012 MedAE 5.8066 5.6251 5.7086 5.8096 5.8096 5.4504

August MAE 6.3186 5.6453 5.7619 6.2278 6.2278 5.7026
2012 MedAE 5.9970 5.4338 5.6871 5.8635 5.8635 5.0984

September MAE 8.1682 7.4471 7.4487 8.0259 8.0259 7.4593
2012 MedAE 6.9071 6.3828 6.9140 6.8746 6.8746 6.3112

October MAE 9.1325 7.9165 7.8303 8.9732 8.9732 8.1128
2012 MedAE 6.6286 6.2065 6.4013 6.4605 6.4605 5.3778

November MAE 11.4100 9.7935 9.5407 11.1893 11.1893 10.1087
2012 MedAE 9.2314 6.9678 6.3402 9.1100 9.1100 7.6911

December MAE 13.1200 12.2841 12.1081 12.9827 12.9827 12.3144
2012 MedAE 9.3700 9.9895 9.2326 9.7346 9.7346 9.7757
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5. Conclusions and Further Lines of Research

In this paper, dynamic factor models and forecast combination techniques have been jointly
employed to obtain predictions of spot market electricity prices in the Iberian market. The main
contribution consists, therefore, of combining two streams of literature in order to obtain forecasts that
outperform those resulting from the individual models. In this respect, there are three combinations
that clearly outperform the benchmark: the median-based combination, the mean-based combination
and the mean BIC-based combination. This conclusion is supported by the ANOVA of the combinations
for forecast horizons one-day-ahead, seven-days-ahead, 30-days-ahead and 60-days-ahead. For the
extended prediction (up to one-year-ahead, taking the case of the year 2012), the results point out that
the benefit of forecast combinations is greater for the medium/large forecast horizon than for the short
term.

In the process of trying to obtain the best possible results, different aspects of the available models
were compared. In this regard, the main conclusions are that longer historic datasets benefit longer
forecasting horizons, and the error is reduced by the inclusion of MA terms when modeling the
unobserved factors (vs. AR models).

This application reflects how the methodology works for a current dataset. The numerical results
for electricity prices, which is a difficult to predict series, are good. An effort has been made to
obtain the results for many time horizons (h = 1 to h = 60), for every day and hour for 1 January
2008–31 December 2012 and considering several models for the factors, enhancing the validity of
our proposal. In other words, forecasts are obtained for the very short (one day) and short term (a
few days ahead), like most of other works, as well as for the medium term, which is an extension
not customary in the literature. As previously explained, this approach can be employed to obtain
long-term forecasts (even up to a year) not experiencing a degradation of accuracy, which is a drawback
that most applications suffer from.

Numerous lines of research remain open in relation to this topic. For instance, in this work, few
techniques for combining forecasts are employed besides the mean, and weights depend on the overall
performance of the particular model to be used in the combination in terms of the BIC information
criterion. However, there are several other, Bayesian and classical techniques to determine such
weights. In particular, it would be interesting to compare the performance of both types of techniques.
Furthermore, in this article, we have mostly worked with fixed weights; however, these could change
in a predefined way for different forecasting horizons. Furthermore, weights could be adaptive to the
performance of the models (as in [16]).

The use of ARIMA models for the common factors allows one to maintain the number of
parameters to estimate low, but it may also signify a constraint in the improvement that can be
achieved from the combinations of forecasts. A future line of work is including other models for
the factors, such as the SeaDFA of [5] (when employing the SeaDFA formulation, it is assumed
that Ft follows a VARIMA model) or the Generalized AutoRegressive Conditionally Heteroscedastic
(GARCH)-SeaDFA.

It is also left for future work to incorporate in the forecast combination other forecasting methods
(not necessarily involving DFM); for example, the predictions obtained by the mixed model in [4],
which presents extremely accurate short-term predictions for the Iberian market. With weights evolving
for different time-horizons, including this model for short-term predictions could improve the results.

A further improvement could consist of employing explanatory variables that drive spot prices in
the models. Some examples of these variables are demand, weather conditions, fuel prices, production
by technology and excess capacity. Interesting references are [21,41]. However, for this, it would be
necessary to assess if the uncertainty in the prediction of the explanatory variables does not outweigh
the improvement in the forecast of the price. In a similar line of research, regime switching models
could be employed to deal with spikes in the price series.

Last, bootstrap procedures could be used to obtain confidence intervals of the predictions and, in
this way, assess the uncertainty involved in the forecasts.
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Appendix A

Appendix A.1. Details of ANOVA for the Comparison of Alternatives for Modeling

Appendix A.1.1. Minimizing Forecasting Error for One-Day-Ahead Forecasts (h = 1)

To assess the combinations for one-day-ahead forecasts (h = 1), see Figure A1 and Table A1.
The Bonferroni correction applies given the relatively large number of levels for the factor of interest
(six levels). In the horizontal axis, we present the alternative combinations in the order they were
described in Section 3, and in the vertical axis, the logarithm of MAE. We present the means and
90% confidence intervals. Notice that for the first five combinations (including the benchmark) the
intervals overlap, meaning no significance difference. However, Combination 6 (Mean BIC 50%)
outperforms most of the others.

Figure A1. Comparison of alternative forecast combinations. Forecast horizon, h = 1 day.

Table A1. Analysis of variance for log(MAE). Main effects. Forecast horizon, h = 1 day.

Source Sum of Squares DF a Mean Square F-Ratio b p-Value

A: day to predict 22167.4 1766 12.5523 478.47 0.0000
B: combination 0.352927 5 0.0705854 2.69 0.0195

C: MA 111.204 1 111.204 4238.87 0.0000
D: length history 1.55697 1 1.55697 59.35 0.0000

E: logarithm 0.0176442 1 0.0176442 0.67 0.4122
Residual 2178.52 83,041 0.0262343 - -

Total (corrected) 24,459.1 84,815 - - -
a DF stands for Degrees of Freedom. b All F-ratios are based on the residual mean square error.
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When considering the length of the historical data, we can see in Figure A2 a significant difference.
For one-day-ahead forecasts, using the last 44 weeks (308 days) gives significantly better forecasts
in terms of forecasting accuracy (a smaller MAE than using 1.5 years for the historical dataset in
each window).

Figure A2. Comparison of historic length. Three hundred and eight days correspond to 44 weeks; 548
days correspond to 1.5 years. Forecast horizon, h = 1 day.

Regarding the MA component, significantly better results are obtained when incorporating
an MA term in the model of the unobserved common factors (the alternative being modeled as AR);
see Figure A3.

Last, the effect of logarithms is not significant.

Figure A3. Comparison of the MA factor. Zero corresponds to no MA component; 1 corresponds to the
MA component. Forecast horizon, h = 1 day.

Appendix A.1.2. Minimizing Forecasting Error for Seven-Day-Ahead Forecasts (h = 7)

For seven-day-ahead forecasts (h = 7), there are three combination results that outperform the
rest: numbered as Combinations 2, 3 and 6. This result is presented in Figure A4. As with the one-day
forecast horizon, the Bonferroni correction applies here given the relatively large number of levels for
the factors.
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Figure A4. Comparison of alternative forecast combinations. Forecast horizon, h = 7 days.

Furthermore, there is a significant difference between the two historical lengths considered. Using
the last 44 weeks (308 days) provides significantly better forecasts than the longer length considered.
Significantly better results are obtained when incorporating an MA component in the unobserved
common factors’ models. Last, the effect of taking logarithms is not significant. See more details in
Table A2.

Table A2. Analysis of variance for log(MAE). Main effects. Forecast horizon, h = 7 days.

Source Sum of Squares DF a Mean Square F-Ratio b p-Value

A: day to predict 25,361.8 1766 14.3612 550.56 0.0000
B: combination 8.36877 5 1.67375 64.17 0.0000

C: MA 7.70108 1 7.70108 295.23 0.0000
D: length history 0.60067 1 0.60067 23.03 0.0000

E: logarithm 0.0699315 1 0.0699315 2.68 0.1016
Residual 2166.11 83,041 0.0260848 - -

Total (corrected) 27,544.7 84,815 - - -
a DF stands for Degrees of Freedom. b All F-ratios are based on the residual mean square error.

Appendix A.1.3. Minimizing Forecasting Error for One-Month-Ahead Forecasts (h = 30)

For thirty-days-ahead forecasts (h = 30), the best combinations of forecasts repeat the result as for
seven-days-ahead forecasts. This can be appreciated in Figure A5.

Contrary to the previous results, the historic dataset of a length of one year and a half gives
significantly better forecasts than the shorter window, an intuitive result. Again, significantly better
results are obtained with an MA component in the model for unobserved common factors; this means
it is better to use ARMA models instead of AR models. As before, the effect of logarithms is not
statistically significant. See more details in Table A3.
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Figure A5. Comparison of alternative forecast combinations. Forecast horizon, h = 30 days.

Table A3. Analysis of variance for log(MAE). Main effects. Forecast horizon, h = 30 days.

Source Sum of Squares DF a Mean Square F-Ratio b p-Value

A: day to predict 24,319.1 1766 13.7707 317.31 0.0000
B: combination 11.3659 5 2.27317 52.38 0.0000

C: MA 10.3354 1 10.3354 238.15 0.0000
D: length history 19.8807 1 19.8807 458.10 0.0000

E: logarithm 0.0147844 1 0.0147844 0.34 0.5594
Residual 3603.82 83,041 0.0433981 - -

Total (corrected) 27,964.5 84,815 - - -
a DF stands for Degrees of Freedom. b All F-ratios are based on the residual mean square error.

Appendix A.1.4. Minimizing Forecasting Error for Two-Months-Ahead Forecasts (h = 60)

The longest forecasting horizon considered in this assessment is sixty-days-ahead forecasts
(h = 60). We also obtain that there are three most successful combinations: 2, 3 and 6. This results from
Figure A6.

Employing the last year and a half historic dataset provides significantly better forecasts in terms
of forecasting accuracy than using the shorter option. Additionally, significantly better results are
obtained when incorporating an MA component in the unobserved common factors. Last, there is no
change with respect to the conclusions for logarithms in comparison with the previous forecasting
horizons considered. See the details in Table A4.

Table A4. Analysis of variance for log(MAE). Main effects. Forecast horizon, h = 60 days.

Source Sum of Squares DF a Mean Square F-Ratio b p-Value

A: day to predict 25,659.5 1766 14.52970 269.97 0.0000
B: combination 20.8166 5 4.16332 77.36 0.0000

C: MA 6.73218 1 6.73218 125.09 0.0000
D: length history 126.922 1 126.922 2358.28 0.0000

E: logarithm 0.0075782 1 0.0075782 0.14 0.7075
Residual 4669.23 83,041 0.0538196 - -

Total (corrected) 30,283.2 84,815 - - -
a DF stands for Degrees of Freedom. b All F-ratios are based on the residual mean square error.
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Figure A6. Comparison of alternative forecast combinations. Forecast horizon, h = 60 days.
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