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Abstract: In this paper, we present an energy optimization technique to schedule three types of
household appliances (user dependent, interactive schedulable and unschedulable) in response to
the dynamic behaviours of customers, electricity prices and weather conditions. Our optimization
technique schedules household appliances in real time to optimally control their energy consumption,
such that the electricity bills of end users are reduced while not compromising on user comfort.
More specifically, we use the binary multiple knapsack problem formulation technique to design
an objective function, which is solved via the constraint optimization technique. Simulation results
show that average aggregated energy savings with and without considering the human presence
control system are 11.77% and 5.91%, respectively.

Keywords: demand response; peak load avoidance; energy optimization; time of use pricing; binary
knapsack; smart grid

1. Introduction

In order to meet the ever-increasing energy demand, researchers investigate new research areas [1]:
discovering new energy sources, distributed and renewable energy integration and energy saving
programs by encouraging customers through demand side management (DSM) and demand response
(DR) programs. Utilities participate in DSM programs to improve power system stability. On the other
hand, end users participate in DR programs to minimize their electricity bills. Cost-sensitive customers
can take monetary benefits by taking into consideration time varying prices and efficient scheduling
techniques [2,3]. DR-based load shifting is helpful in reducing the electricity cost of end users, however,
at the cost of user comfort. Similarly, the utility-based direct load control (DLC) technique improves
power system stability [4], while disturbing user comfort. Thus, both cost reduction and comfort
maximization cannot be achieved at the same time.

We identify that inconsideration of user activities in DSM and DR programs is the major cause of
the earlier-mentioned trade-off. Furthermore, to utilize the available energy efficiently, unnecessary
energy consumption must be reduced. Motivated by these considerations, this paper presents a new
energy optimization technique to minimize the end user electricity bill while not compromising user
comfort. In this paper, our contributions are listed as follows:
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1. Initially, we categorize different homes and appliances by considering electricity prices,
person occupancies and environmental conditions to manage energy consumption. Then, we
propose mathematical optimization models of major household appliances to manage the energy
consumption of all types of appliances. To maximize end user comfort, user-dependent appliances
are introduced, which take into consideration human activities.

2. We propose a centralized energy optimization algorithm, which considers different constraints
to minimize the overall energy consumption and electricity bill up-to h̄ homes (Section 4,
Figure 1). However, prior to the selection and implementation of an optimization algorithm,
different algorithms are tested and validated using the fmincon and lsqnonlin solvers (Table 3).

3. The influence of external temperature and variations in energy demand on DR programs is
also analysed (details are given in Section 5.3). From this analysis, it is concluded that weather
has a great impact on the energy consumption and DR programs based on which utilities and
consumers manage their schedules.

4. Finally, extensive simulations have been performed to evaluate the effectiveness of the proposed
algorithm in different scenarios.

The rest of the paper is organized as follows. Section 2 discusses the related work along with
in-depth analysis of the state of the art work. The system model and appliance classification are
discussed in Section 3. We then present the energy demand optimization in Section 4. Simulation
results are discussed in Section 5. Initially, the simulation set-up and the solver users are discussed.
Then, in-depth discussions of the obtained results and seasonal impacts on the energy consumption
are discussed. Conclusions and future work are given at the end of the paper.

2. Related Work

In this section, we discuss the latest and relevant research work in two broader categories:
(i) price based DR programs; and (ii) comfort-aware DR programs.

• Price-based DR programs: Most of the published articles focus on DSM and direct load
control (DLC) strategies to manage the energy demand during critical peak hours [2–5].
In these techniques, users may pause or turn-off unnecessary load to reduce their electricity cost.
However, these techniques may disturb end user comfort. In [6], the authors have proposed a
DR model under a dynamic pricing environment to reduce electricity cost and user discomfort.
To maximize end user comfort, appliances are divided into different categories, such as deferrable,
curtailable, thermal and critical. To reduce high peaks during low pricing hours, maximum energy
consumption limits to restrict the customers to consume energy under the given limits are imposed.
Users consuming more energy beyond these limits are charged high prices. In this work,
again, the trade-off between user comfort and electricity cost reduction is found. However,
the utility gains the benefit in terms of increased system stability. In another similar work, the
authors introduce energy consumption limits in each time slot to reduce the electricity cost of end
users [7,8]. Although this technique has shown a remarkable impact in terms of cost saving, the
major drawback associated with this scheme are frequent disconnections and discouragement of
consumers in participating in DR programs. In addition, users may feel discomfort while doing
their daily life activities, because most of the DR programs are designed for grid stability and
peak reduction [5–9].

In [10,11], the authors consider only deferrable appliances, whereas [12] is limited to thermal
loads only. In [13], a hybrid technique is proposed, which jointly controls the working of all,
thermal, deferrable and non-interruptible, loads. In [14], mathematical models of various
types of home appliances are proposed based on their energy demand and operating modes.
After appliance classification, the energy management problem is formulated as a mixed
integer nonlinear programming (MINLP) problem, which later on is solved using Benders’
decomposition approach. This scheme reduces the electricity cost with maximum appliance
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utility. However, user comfort has not been modelled in an effective way. In [15,16], the
energy consumption of different types of appliances is managed, such that the major focus
is on appliance scheduling, Peak to Average Ratio (PAR). and electricity cost reduction, as well
as comfort management. However, a significant amount of energy is wasted due to unnecessary
appliance operation. In [17,18], appliance scheduling schemes based on customer reward (CR) are
proposed to avoid high peaks; customers are given incentives to shift load from on-peak hours to
off-peak hours. However, comfort-aware customers cannot take full advantage of these types of
schemes due to energy limits imposed by utilities. In conclusion, price based DR programs are
efficient in reducing the electricity cost of end users along with PAR reduction, however at the
cost of user comfort. The reason is the inconsideration of user behaviour in DSM programs.

• Comfort-aware DR programs: In [19], a user comfort-aware load management algorithm is
proposed to schedule the aggregate load of a household. The game theoretic approach is used to
solve the optimization problem, aiming at minimizing end user cost while preserving end user
comfort. Unlike the other schemes, this scheme gives users the choice to prioritize either comfort
or electricity cost reduction. In [20], the authors present a user-aware game theoretic approach
for demand management, which considers user preferences. Both hard and soft appliances are
considered, including deferrable and non-deferrable categories, where users have options to
either choose comfort or cost saving. For this purpose, the authors introduce a weight factor to
prioritize comfort over cost. However, users cannot achieve both objectives at the same time.
Moreover, appliance scheduling for minimum electricity cost may lead to high peaks during low
pricing hours and may disturb user comfort [21]. In [22,23], the Markov chain is used to model a
very limited set of user activities; using a personal computer, cooking activity and performing no
activity. Based on these activities, total energy demand is calculated. Although these schemes
prove to be efficient in terms of energy management, without the DR program, it is difficult
to reduce end user cost. In [9], the authors schedule background loads, like refrigerator and
humidifiers, by using the early deadline first technique. Non-background loads are not involved
in the scheduling process, because these may affect user comfort. Each disconnected appliance is
assigned a slack time, which is the maximum time for which any appliance remains disconnected
from the power source. Afterwards, appliances with minimum slack time are turned-on. The
authors also impose a power limit on aggregated power consumed by the background load.
Although this scheme is efficient in terms of cost reduction, end user comfort is disturbed due to
the high slack time of appliances and energy consumption limits.

Table 1 summarizes the work done by different authors along with their achievements
and limitations. In conclusion, the techniques given in Table 1 are efficient in terms of cost reduction,
but there management of energy with low electricity cost and high user comfort is not properly
considered. These techniques do not consider both active human participation and environmental
constraints, which are necessary for realistic scheduling and energy saving mechanisms. Keeping
these limitations and trade-offs in view, we propose a demand side energy management algorithm,
which takes into consideration dynamic prices, users preferences, weather conditions and active
human participation.
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Table 1. Limitations in the state of the art work. DSM, demand side management; DR, demand-response; CR, customer reward; NG, not given; C Min, cost
minimization; TOU, time of use; DP, dynamic pricing; RTP, real time pricing; IBR, inclining block rate; FRM, flat rate model; FPM, five-tier pricing model; DAP,
day ahead pricing; LC, load categorization; BPSO, binary particle swarm optimization; BWDO, binary wind driven optimization; MINOP, mixed integer nonlinear
optimization problem; MIP. mixed integer programming; HEM, home energy management; LSF, least slack first; EDF, early deadline first; NILM, nonintrusive load
monitoring; NSGA-II, nondominated sorting genetic algorithm-II.

Technique Domain Achievements Limitations hp E Min. LC C Min. Pricing Scheme

Game theory [2] DSM, various home
appliances are considered

Minimize PAR, CO2, power
generation electricity cost

User comfort is not considered,
focus is towards cost and PAR
reductions, environmental
conditions are not considered

7 7 7 3 NG

BPSO and BWDO [3] DSM Minimize electricity cost,
PAR, user comfort

User comfort is considered for
few appliances, environmental
conditions are not considered

3 7 3 3 TOU

Monte Carlo [4] Load control Minimize end user bill,
maximize user comfort

User comfort is affected when users
consume more energy, environmental
conditions are not considered

7 7 7 7 NG

MINOP [6] DR-based controller for DSM Minimize end user cost

User comfort is affected due to
energy consumption limits, dynamic
prices and environmental conditions
are not considered

7 7 3 3 DP

MIP [7] Layered architecture for
DSM in smart buildings

Minimize end user cost
with integration of various
energy sources

Due to capacity limit, user comfort is
affected, appliances are not categorized
based on user preferences

7 7 3 3 DP

Simulation tool
for DR [8]

An intelligent HEM
algorithm for power
intensive appliances

Minimize end user cost with energy
consumption reduction, user
comfort with load prioritization

Due to capacity limit, user comfort is
affected, appliances are not
categorized based on user preferences

3 3 7 3 NG

LSF [9] EDF
-based HEM algorithm

for heavy loads

Only background load is scheduled,
cost and PAR are reduced through
energy consumption scheduling,
flexibility is also studied

Active human participation is not
involved, which can disturb comfort,
other appliances are not considered
in HEM

7 7 7 3 NG

GA [10] Home Energy Management Minimize electricity cost, PAR

Only high consumption appliances
are considered, other appliances are
neglected due to which it is infeasible
solution, temperature and user
preferences are not considered

7 7 7 3 RTP + IBR

Linear and stochastic
programming [11]

A new DSM algorithm for
home appliances

Monetary expenses are minimized,
uncertainties in appliance
operation time and renewable
energy are handled

Active user participation is
not considered, focus is towards
cost reduction

7 7 7 3 DAP

NILM and
multi-objective
NSGA-II [12]

Appliance scheduling in
response to DR for automated
HEM system, non-intrusive
load monitoring, comfort is
also considered

Electricity cost is minimized,
appliances are automatically
selected for operation

No user preferences are involved,
historical consumption data for
demand analysis, consumption trends
are uncertain

7 7 7 3 RTP
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Table 1. Cont.

Technique Domain Achievements Limitations hp E Min. LC C Min. Pricing Scheme

MPC [13] Energy management controller
for appliance scheduling Electricity cost is minimized

Two types of loads are considered,
thermal constraints are considered, but
without user preferences

3 7 3 3 TOU

MINLP, GBD [14] Appliance scheduling for
home energy management

Electricity cost is minimized,
appliance utility is improved

Only elastic appliances are considered for
user comfort, but without user
occupancies

3 7 3 3 TOU

MOOP based
HEMS [15]

HEM considering
PAR constraint

Electricity cost, PAR and user
discomfort are minimized

Users specify the feasible time for comfort,
but varying patterns are not tackled,
thermal constraints are not incorporated

3 7 3 3 FRM, FPM

BPSO for HEMS [16] RSMfor appliance scheduling
Reduces electricity cost, appliance
utility is improved, user comfort is
also improved

Trade-off between comfort and
appliance utility, environmental
constraints are not considered

3 7 3 3 TOU

Bi-level control
scheme [17]

CR-based DR program for
residential users

Reduces electricity cost,
PAR, improves network
voltage performance, comfort
is also improved

Trade-off between cost and comfort,
thermal parameters are not considered 7 7 7 3 TOU

MINLP [18] Appliance scheduling based
on CR scheme

Minimize electricity cost and
earn incentives

User comfort is not modelled, trade-off
between cost and comfort 7 7 7 3 TOU

Game theory [19,20] Appliance scheduling
for DSM

Minimize electricity cost and
user discomfort Trade-off between cost and comfort 3 7 3 3 TOU

Integrated and
self-organizing
algorithm [21]

DSM using load shifting
Peak load shifting and DR
improvement, run-time schedules
based on load prediction

Trade-off between cost and comfort due
to predefined comfort zones 3 7 3 3 TOU

Information theory [22] HEM through load shifting
Reduce high peaks, energy
consumption and cost of end users
through activity recognition

No DR program is used, more activities
can consume more energy and high peaks 3 3 7 3 TOU

Non-homogeneous
Markov chain [23] DSM through user activities

Reduce energy consumption and
cost of end users through activity
recognition and modelling

Dynamic prices are not considered, so
DR programs cannot be implemented here 3 3 7 3 NG

Proposed-Fmincon-SQP Home energy management
through appliance scheduling

Cost, energy and PAR reductions,
dynamic schedules based on user
activities, user comfort
maximization, environmental
constraints are considered

Greater No. of users at any particular time
can increase electricity cost and PAR 3 3 3 3 RTP, TOU
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3. System Model

We consider a home grid network, which consists of multiple residential units γ connected with
a central Energy Management Controller (EMC) (Figure 1). In each residential unit γ, h number of
homes is considered, such that each home is equipped with a smart meter to deliver the customer’s
energy demand and preferences to the utility. The utility provides back the DR signal necessary for
load scheduling and optimization. The smart meter can communicate directly with the centralized
EMC and the utility. In each house, various types of appliances (e.g., human dependent, interactive
schedulable and unschedulable) that have variable energy demand and operating time requirements
are considered. The EMC aggregates operating schedules of household appliances and communicates
with appliances using advanced communication technologies (e.g., Wi-Fi, ZigBee and Bluetooth). The
EMC receives the information about human presence, weather conditions, price signals and appliance
energy consumption requirements, based on which control decisions are made (Figure 2). In order
to better schedule the load, we categorize home appliances based on operating time and energy
consumption requirements (Table 2).

Figure 1. Energy management architecture for n-homes.

Table 2. Appliance data [24,25].

Total Appliances Appliance Name Power Rating (kWh)

1 Air Conditioner 1.6
2 Refrigerator 1.24
3 Washing Machine 3.4
4 Light with Controllable Brightness 0.1
5 Dish Washer 1.5
6 Light without Controllable Brightness 0.1
7 Entertainment Station 1.5
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Figure 2. Home energy management architecture.

3.1. User Dependent

Major requirements of user dependent xud appliances are to reduce end user cost, increase
user discomfort and minimize uneven energy consumption [26,27]. An important aspect of this
work is to control energy consumption of xud based on human presence, electricity prices, weather
conditions and operating time requirements. Example xud appliances are: refrigerator, lights with
controllable brightness, washing machine and Heating Ventilation and Air Conditioning (HVAC). In
xud, appliance utility function U(Eud(t)) denotes the overall performance when appliances consume
Et

ud amount of energy in time t. This is due to the fact that the electricity price in time interval t is a
function of aggregated energy demand. In order to fulfil energy demand of xud appliances, users have
the following requirements.

Eud =
tn

∑
t=1

n

∑
x=1

E(t,x)ψ(t,x), ∀ x ∈ xud. (1)

3.1.1. HVAC

In HVAC modelling, we aim to design an algorithm that takes into consideration human
presence/preference, temperature variations and maximum deviation in room temperature that
a customer can bear. In h1, the HVAC is turned ON based on temperature difference only. On
the other hand, the HVAC in h2 is turned ON when occupants are present in the house and room
temperature exceeds a threshold level (24 ◦C). In [23], the HVAC is turned on in low electricity pricing
hours without considering human occupancy and temperature variations. For realistic scheduling
(to achieve maximum user comfort), temperature difference and human occupancy parameters are
considered in the proposed algorithm (Figure 3). The temperature of New York City based on which
the proposed scheduling algorithm works is shown in Figure 4 [28]. Figure 4 shows that the maximum
temperature in the month of July is 37 ◦C. On the other hand, the maximum temperature in October is
26 ◦C. Thus, the HVAC needs a relatively greater number of duty cycles to maintain room temperature
in July due to the high temperature.

To model heat exchange between the HVAC and the outside, thermodynamic system modelling is
used. Inside room temperature tr is defined as a state variable that allows us to model the temperature



Energies 2016, 9, 593 8 of 25

difference of a room in a thermodynamic system. Change in outside temperature to leads to heat
exchange ( dQ(t)

dt )l between the outside and inside, which is shown in Figure 3. This heat exchange
disturbs internal room temperature tr. By using the energy management and control system in smart
homes, tr can be controlled by considering user preferences and comfort requirements besides to only,
as used in [3,29]. For a given tr, users can change and control the HVAC temperature ( dQ(t)

dt )h set
points through th and then control tr.

Losses

hdt

dQ
÷
ø

ö
ç
è

æ

ldt

dQ
÷
ø

ö
ç
è

æ
HVAC

temperature

Room

temperature

Outside

temperature

ht rt ot

SensorsEMC

Figure 3. Thermodynamics of room temperature.
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Figure 4. Temperature of New York City.

By using the classical thermodynamics set of equations [26]:(
dQ(t)

dt

)
h
= M× C

[
th(t)− tr(t)

]
, ∀ t ∈ T. (2)

(
dQ(t)

dt

)
l
=

tr(t)− t0(t)
req

, ∀ t ∈ T. (3)

Initially, req of the room is estimated based on the geometrical dimensions of the room, and
later on, it is refined based on inside/outside temperature difference tr(t)− t0(t). Because req can
change with varying material (walls and room) conductivity, the HVAC toggle condition is determined
by the following condition:

(
dQ(t)

dt

)
h
=

{∼= 0; if th(t)− tr(t) ≤ $

ON/OFF; if th(t)− tr(t) > $.
(4)
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where $ is a small quantity, whose value is 1 ◦C. In the first part of Equation (4), the
temperature difference in the room is stable, and the scheduling algorithm will turn OFF the HVAC at
time t and vice versa. The minimum and maximum temperature variations of th are set as follows:

tmin
h ≤ th ≤ tmax

h , ∀ t ∈ T. (5)

Our objective here is to minimize heat losses that may change the room temperature. Due to
more temperature variations inside the room, the HVAC needs a greater number of duty cycles to
keep the temperature within the desired set points. Therefore, by reducing heat losses, the energy
consumption of the HVAC can be significantly minimized. The heat losses minimization objective
function is formulated as follows:

Obj = min
tn

∑
t=1

(
dQ(t)

dt

)
l
, (6)

such that

hp = [0, 1], (6a)

0 < t ≤ T, (6b)

where hp denotes human presence in the room.

Remark 1. Referring to Algorithm 1, the HVAC turns on based on two conditions: (i) when there
is any occupant in the room; and (ii) when there is a deviation in the temperature threshold. The
only information required by the HVAC is the electricity price, which is obtained from New York
Independent System Operator (NYISO) via the smart meter, room temperature and human occupancy
through sensors.

Algorithm 1 Pseudo code of the HVAC working.

1: begin
2: Initialize parameters: tr, tth, φt
3: for all h = 1 : h̄ do
4: for all t = 1 : T do
5: if number of occupants > 0 and (td ≥ tth or td ≤ tth) then
6: solve objective Function (6)
7: calculate Et
8: else
9: if number of occupants ≤ 0 and (td

∼= tth) then
10: to f f h
11: t = t + 1, go to Step 4; till T
12: end if
13: end if
14: end for
15: end for
16: end

3.1.2. Refrigerator

We assume that the working of refrigerator can be scheduled throughout the day. In case of h1,
energy consumption is calculated based on the length of operation time without taking into account
the presence of a person [18,29]. In case of h2, the refrigerator performs on the bases of the total number
of ON/OFF cycles and the total number of times the door is opened. Here, the total ON/OFF working
cycles further depend on two factors: (i) heat losses when the refrigerator’s compressor is OFF; and
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(ii) the cooling effect when the refrigerator’s compressor is ON. On each attempt to open the door,
the refrigerator consumes 20 W/h surplus energy to maintain inside temperature. Whereas the open
and close operation of the refrigerator’s door do is a random variable normally distributed over time t,
so the objective is to maintain the refrigerator temperature within the comfort specified temperature
limits along with minimum electricity cost. To achieve the aforementioned objective, the operational
constraints of refrigerator are given as follows:

tr = hp
(
tr(t′) + τ[Ψr(t) + Φr(t) + Υrdo(t)]

)
, ∀t ∈ T. (7)

where:

tr = temperature of the refrigerator
t′ = time interval (t− 1)
τ = duty cycle

Ψr = heat losses during the OFF state
Φr = cooling effect during the ON state

Υrdo = heat loss due to do.

Equation (7) shows the relationship of the refrigerator’s temperature at time interval t with the
temperature at time interval t′ = (t − 1), hp, heat Ψr(t) losses and cooling Φr(t) effects when the
refrigerator is ON or OFF; where hp is calculated as follows:

hp =

{
1; if rand(i) ≥ 0.5

0; otherwise,
(8)

Heat losses during the OFF state of the refrigerator are calculated as follows:

Ψr =
$tr

$t
, (9)

where $tr is a small change in the refrigerator’s temperature in time interval t when the compressor is
turned OFF. The cooling effect of the ON state of the refrigerator is calculated as:

Φr =
$tr

$t
+ Ψr, (10)

Our objective function here is to minimize the heat losses that may increase or decrease the
refrigerator duty cycles.

Obj = min
tn

∑
t=1

Ψr, (11)

3.1.3. Washing Machine

It is assumed that the working of the washing machine can be scheduled in 24 h. In γ1, the
washing machine is turned ON once the low price time slot is found. In both homes, the scheduler
adjusts the operating time of the washing machine between 01:00 → 09:00 and 17:00 → 09:00. In
γ2, we assume that occupants stay home for the whole day. Therefore, the scheduler adjusts the
operating time of the washing machine based on the presence of a person, as well as the total number
of persons in the home. The following constraint is implemented while formulating the working of the
washing machine.

hp(1→6) = µs − µe, (12)

where µs and µe denote the start time and end time of the washing machine, respectively. hp(1→6)

denotes the total number of occupants in the home, which is a random variable from (1→6). The duty
cycles of the washing machine depend on the hp(1→6) parameter in the second unit.
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3.1.4. Lights with Controllable Brightness

The lighting of a house usually depends on the user occupancy/activity level and is modelled on
the basis of the hp parameter. In both units, lights are assumed to be turned ON only when occupants
are present in the home. The minimum and maximum energy consumption is 0 and 100 W, respectively.

lights =

{
ON; if hp = 1

OFF; otherwise,
(13)

3.2. Interactive Schedulable

These appliances, denoted by xis, can be flexibly scheduled during the whole time period T.
The energy consumption and user satisfaction of xis appliances can be measured by the total ET
amount of energy consumed in each time slot. The scheduler adjusts the working of xis appliances in
low price time slots. Appliances (dish washer and lights) without controllable brightness are kept in
this category. For each appliance in xis, users desire the following requirements to fulfil their needs.

tn

∑
t=1

n

∑
xis=1

E(t,xis)
≤ ζ(t,x), (14)

where Equation (14) shows that the total energy consumption of all appliances cannot exceed the given
limit ζ(t,x).

3.2.1. Dish Washer

This appliance operates once in time period t ∈ T. In the first home, it operates during 07:00→
12:00, because occupants are awake at this time. In order to reduce the electricity bill, the scheduler
adjusts the working of the dishwasher in low price hours. In the second home, occupants are assumed
to leave home from 09:00→ 05:00. The scheduler adjusts the working cycles of these appliances in
low pricing time slots. In Unit 2, occupants are assumed to stay home during the whole day, and
the scheduling algorithm calculates the working cycles (hours) of the dish washer based on the total
number of persons in the home. The EMC automatically adjusts the working of the dishwasher to low
pricing hours.

3.2.2. Lights without Controllable Brightness

For both households in Unit 1, the energy consumption of lights is 100 W. In the first home, the
occupants are assumed to be awake from 07:00→ 24:00. In the second home, occupants leave the
home from 09:00→ 05:00. In this case, EMC assigns time slots by considering electricity price and
user preferences. In Unit 2, we assume that the occupants are present for the whole day. The EMC
schedules the ON/OFF cycles based on the user presence at home.

3.3. Unschedulable

Appliances having fixed energy consumption, such as entertainment stations (TV, music
player, etc.), are kept in the unschedulable xu category. In Unit 1, the operating time of these appliances
is from 07:00 → 12:00 and from 05:00 → 07:00, respectively. In Unit 2, we assume that occupants
stay home for the whole day, and the EMC schedules the appliances according to their presence. The
minimum and maximum energy consumptions of these appliances are 0 and 1500 W, respectively.

4. Energy Demand Optimization

Our proposed algorithm takes into consideration the energy consumption of xud appliances
(HVAC and lights), such that these are controlled by considering user presence in the home. It
is very difficult to predict accurate energy consumption demand in a house. One solution to
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solve this problem is to consider the real-time activities of occupants, based on which energy
consumption can be calculated. The uncertain energy consumption patterns that depend on the
daily activities of different users may create complexities in designing dynamic and interactive energy
management algorithms. For example, the HVAC must be turned ON whenever the occupant is
present in the room. On the other hand, scheduling techniques that is based on the DR signal may
cause the wastage of energy. In the proposed work, xud appliances are activated based on human
presence, and the total cost during the ON time interval is calculated for these appliances. For xis
appliances, energy consumption is calculated in predefined schedules set by the users. However, these
appliances can be scheduled during time slots t ∈ T to reduce the total electricity cost. The dish washer
and lights with uncontrollable brightness are kept in this category. In the last category, xu has fixed
energy consumption, and users can turn it ON at any time.

4.1. The Proposed Scheduling Algorithm

In the proposed model, we consider h ∈ h̄ homes having different types of χ appliances, such
that χ = [1, 2, 3, ...N]. Energy consumption schedules for all χ appliances are managed by the EMC,
which takes price signals from the utility company via the smart meter (Figure 5). We use the Time
of Use (TOU) and Real Time Pricing (RTP) signals in our case and divide the total scheduling time
horizon T into time slots of the same length.

T = [t1, t2, t3, ..., tn], (15)

where tn is equal to 24. The EMC is responsible for determining the starting (ts) and ending (te) time
intervals, as well as the total energy consumption Et of χ appliances. Over a given sub-interval of time
t1, the energy consumption is assumed to be constant. Energy consumption scheduling vector Ex for
appliance x ∈ χ is given as:

Ex = [et1
x , et2

x , et3
x , ..., etn

x ], (16)

where Ex denotes the energy consumption of appliance x at tth time slot in kWh. Considering the TOU
price signal, as shown in Figure 5, and appliance classification, the energy consumption value is fixed
in each time slot. Each appliance x has a scheduling time interval tsch ∈ [ts, t f − tlot] in which it can
be scheduled.
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Figure 5. TOU signal.

When appliance x is ON, its energy consumption E is bounded between minimum and
maximum bounds, Emin

x and Emax
x , respectively.

Emin
(x,t)ψ(x,t) ≤ E(x,t) ≤ Emax

(x,t)ψ(x,t), (17)
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where ψ(x,t) denotes the ON/OFF status of appliance x at time slot t. The appliance ON/OFF
mechanism manages the scheduling process more realistically as compared to simple time-based
models discussed in [30,31]. For example, if a user wants to stop any appliance during high price
hours 08:00→ 10:00, the ON/OFF mechanism is easy to model. If a user in need models the time
horizon by introducing additional variables, this creates complexity.

ψ(x,t) =

{
1; if appliance x is ON at time slot t

0; otherwise
(18)

The energy consumed by χ number of appliances in time t is calculated as follows:

Et =
h̄

∑
h=1

tn

∑
t=1

n

∑
x=1

Eh̄
(t,x).ψ

h̄
(t,x). (19)

where Et is total energy consumed by x number of appliances in time t. It is also assumed that each
appliance has maximum energy consumption limit Et

max in time slot t. For example, the washing
machine may consume 3.4 kWh of energy in each hour, such that Et

x ≤ Et
maxx . Where Et

x denotes the
energy consumed by appliance x at time t. Additionally, there is also a total energy consumption limit
ζt on all types of appliances in each time slot tn, which is calculated by the following equation.

h̄

∑
h=1

tn

∑
t=1

n

∑
x=1

Eh̄
(t,x).ψ

h̄
(t,x) ≤ ζ h̄

(t,x). (20)

Violation of above constraint leads to the possibilities that high peaks will be generated, which may
damage the power grid. The scheduling algorithms must follow the capacity constraint (for smooth
gird operation) and the generation cost of electricity to fulfil the energy demand during low price
hours. After describing appliance energy consumption and capacity limits, we now formulate the
energy consumption cost. We use TOU and RTP pricing models in which electricity price varies in
each time interval t and is denoted by φt. We also assume that all electricity unit prices φt for the
scheduling intervals are known to the EMC in advance. The total energy consumption cost CT for all
types of appliances is given as:

CT =
h̄

∑
h=1

tn

∑
t=1

n

∑
x=1

Eh̄
(t,x).φ

h̄
(t,x). (21)

4.2. Load Scheduling

The main purpose of this model is to reduce the energy consumption by taking into consideration
human presence, weather conditions and energy prices. In order to reduce the electricity bill and
high peaks during low price hours, appliances are scheduled on the bases of energy prices and
capacity limits. The final optimization problem for energy consumption minimization is given
as follows:

Obj = min
h̄

∑
h=1

tn

∑
t=1

n

∑
x=1

Eh̄
(t,x).ψ

h̄
(t,x). (22)

such that:

0 ≤ t ≤ T, (22a)

tsch = [ts, t f − tlot], (22b)

Et ≤ ζt, (22c)

Emin
(x,t)ψ(x,t) ≤ E(x,t) ≤ Emax

(x,t)ψ(x,t), (22d)

ψ = [0, 1], (22e)
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where Constraint (22a) shows that ts and t f must be within the total time limit t ∈ T. Constraint (22b)
defines the total scheduling time horizon. Constraint (22c) bounds the total energy consumed by all
types of appliances not to exceed the available energy capacity. As per Constraint (22e), the appliance
has two possible states, ON and OFF. In the case of the ON state, its energy consumption follows (22d).

4.3. PAR Reduction

The daily energy consumption of the x-th appliance in time slot t is given as follows:

E =
tn

∑
t=1

n

∑
x=1

E(t,x).ψ(t,x). (23)

Given the maximum energy load demand vector Et,x, we formulate PAR in terms of average load
demand as follows:

PAR =
maxt∈tn ∑n

x=1 E(x)
1
T ∑n

x=1 E(x)
. (24)

The PAR reduction optimization problem can be formulated as follows:

Obj = min PAR. (25)

5. Performance Evaluation

In this section, we present the simulation results and discussions of the proposed energy
management algorithm. We first describe the simulation set-up and performance metrics and then
discuss the proposed algorithm used to solve the optimization problem. Finally, simulation results
considering different cases are discussed in terms of selected performance metrics.

5.1. Simulation Set-Up

The performance of the proposed energy optimization algorithm is evaluated under TOU and
RTP pricing environments. We consider two residential units having two homes in each unit. In
Unit 1, occupants stay home for the whole day in h1. In h2, occupants are assumed to leave for the
office from 07:00→ 05:00. In Unit 2, the occupants stay home for the whole day. In h1, the working
of appliances is scheduled without considering user presence. In h2, appliances are scheduled by
taking into consideration the customers presence, preferences, total number of persons in the home
and weather conditions.

In Scenario 1, we set γ = 2, h = 2 and χ = 7. Furthermore, winter and summer seasons
are also considered to evaluate the impact of variable energy demand on the DR program. In
Scenario 2, ten different users are considered, and the proposed algorithm is used to evaluate the
energy consumption variations based on its usage. In Scenario 3, the total number of houses and
appliances is increased to h = 40, and χ = 280, and the robustness of the proposed algorithm is
tested. Each appliance has different energy consumption requirements, which mainly depend on the
appliance type and power rating, as shown in Table 2. We consider a T = 24 h time horizon, which
is further subdivided into different time slots, each one of the same length tl . Alternatively, higher
energy demand is observed in the evening because most people return home from offices. On the other
hand, lower energy demand is observed at night because most of the people sleep during this interval.
We simulate the proposed model considering different scenarios where user preferences, weather
conditions and electricity prices vary. Electricity prices are taken directly from [32]. We use MATLAB to
implement the proposed model and evaluate the performance of the proposed algorithm. To perform
optimization, we use the MATLAB solver f mincon to solve the energy management problem. We
simulate and analyse the performance of different algorithms used in this solver as shown in Table 3.
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Table 3. Comparison of different solvers and algorithms.

Solver Algorithm Local Minimum Convergence Constraint Violation

fmincon Sequential quadratic programming Yes Yes No
lsqnonlin Levenberg–Marquardt Possible No No
fmincon Interior-point Yes Yes No

5.2. Results and Discussion

Figure 6a shows the comparison of the unscheduled energy consumption and electricity cost of
both homes. Here, the energy consumption of both homes is almost the same, except time slots 07:00
→ 08:00 and 12:00→ 17:00, in which h1 consumes 4.03% more energy. Figure 6b compares scheduled
energy consumption and electricity cost, where h1 consumes more energy during time slot 08:00→
11:00, which is comparatively 5.03% higher. In Figure 7b, h1 consumes more energy during time slot
15:00→ 18:00, because occupants return home after office 09:00→ 05:00, and they are supposed to
turn the maximum load ON, such as the HVAC, the TV, the oven, etc. (refer to Section 3). In general,
h2 consumes 23.14% less energy as compared to h1.
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Figure 6. Electricity cost and power consumption comparison in the TOU pricing environment (Unit 1).
(a) Unscheduled power and cost of Households 1 and 2; (b) Scheduled power and cost of Households
1 and 2.
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Figure 7. Electricity cost and power consumption comparison in the RTP pricing environment (Unit 1).
(a) Unscheduled power and cost of Households 1 and 2; (b) Scheduled power and cost of Households
1 and 2.

It is clear from Figure 8a that h1 consumes 14.73% more energy than h2 in the unscheduled case.
Because in Unit 2, appliances are randomly turned ON and OFF in the scheduling time horizon, the
EMC adjusts the working cycles of all appliances based on low electricity pricing time slots without
considering human occupancy and user preferences. Figure 8b shows the comparison of the scheduled
energy consumption and the electricity cost of both homes. During peak hours 09:00 → 11:00, h1

consumes 7 kW/h in the unscheduled case, and h2 consumes 5 kW/h in the scheduled case, which
is 7.42% less. However, h1 consumes 2.97% more energy as compared to h2. This is because some
appliances are turned ON during high price hours due to person presence. Electricity prices from
19:00→ 24:00 are very low. Due to critical peak hours 19:00→ 24:00, Figure 5, the EMC tries to schedule
most of its load during low price hours to save on the electricity bill. The low electricity bill in h2 is due
to the fact that the scheduler generates the appliances’ ON/OFF patterns on the basis of user presence,
the ts and t f parameters.

Figure 9 shows the comparison of the unscheduled and scheduled cost and power consumption
in the RTP environment. Unscheduled power consumption in both homes is almost 8 kW/h during
high price hours 07:00→ 11:00. The scheduled power consumption in h1 is from 6 to 7 kW/h, which is
23% less than h2. In h2, the scheduled power consumption during 16:00→ 18:00 is high, as compared
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to time slots 01:00→ 16:00 and 18:00→ 24:00. The total power consumption of h2 is 16.11% less than
h1. The unscheduled energy consumption of h1 is 5.74% more than h2, and the scheduled energy
consumption of h1 is 23.11% more than h2, respectively.
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Figure 8. Electricity cost and power consumption comparison in the TOU pricing environment (Unit 2).
(a) Unscheduled power and cost of Households 1 and 2; (b) scheduled power and cost of Households 1
and 2.

These savings reflect the effectiveness of human occupancy and user preference parameters,
as discussed in Section 3. In the RTP environment, prices vary in each time slot due to real-time
data exchanged between the utility and consumers. These variations may create complexities in
constructing a cost-effective energy management algorithm. Thus, our proposed algorithm is effective
in terms of energy and cost reduction. Tables 4 and 5 show the percentage of total electricity cost and
energy saving in both the TOU and RTP environments. The overall cost savings of h1 and h2 are 40.57%
and 60.92%, respectively. It is clear from the tables that the total electricity cost saving of h2 is 33.41%
more than h1 due to the incorporation of human presence control and weather condition parameters.
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Figure 9. Electricity cost and power consumption comparison in the RTP pricing environment (Unit 2).
(a) Unscheduled power and cost of Households 1 and 2; (b) Scheduled power and cost of Households
1 and 2.

Table 4. Energy saving comparison.

Unit Type House Type Pricing Scheme Unscheduled Power (W) Scheduled Power (W) % Saving

Unit 1 House 1 RTP 72,284 41,757 42.24
Unit 1 House 2 RTP 68,139 32,098 52.90
Unit 1 House 1 TOU 74,332 39,913 46.31
Unit 1 House 2 TOU 71,340 37,906 46.87
Unit 2 House 1 RTP 139,810 44,711 68.03
Unit 2 House 2 RTP 117,295 48,291 58.83
Unit 2 House 1 TOU 138,416 42,701 69.16
Unit 2 House 2 TOU 118,033 41,451 64.89
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Table 5. Cost saving comparison.

Unit Type House Type Pricing Scheme Unscheduled Cost ($) Scheduled Cost ($) % Saving

Unit 1 House 1 RTP 2.5148 1.9403 22.85
Unit 1 House 2 RTP 2.0243 1.8583 8.21
Unit 1 House 1 TOU 2.6467 2.2626 14.52
Unit 1 House 2 TOU 1.9384 1.5597 19.54
Unit 2 House 1 RTP 1.2210 1.2048 01.30
Unit 2 House 2 RTP 1.8909 1.5162 19.82
Unit 2 House 1 TOU 1.0167 0.9974 01.90
Unit 2 House 2 TOU 1.5323 1.3278 13.35

5.3. Impact of Seasons on the Energy Optimization

In order to analyse the impact of energy consumption trends on the DR program, we consider
summer and winter seasons. The average outside temperatures in the months of July and October 2015
are shown in Figure 4 [5]. The outside temperature has significant impact on DR programs due
to energy demand variations, especially due to HVAC systems, which consume almost 60% of the
overall energy. The energy consumption schedules of household appliances in summer are shown
in Figure 10. It is clear from Figure 10a that almost a constant amount of energy is consumed by
both households during 01:00→ 12:00. From 13:00→ 23:00, h1 consumes more energy as compared
to h2 due to energy demand variations. h2 consumes 14.69% less energy in comparison to h1. This
reduction is due to xud appliances, which are only turned ON when occupants stay home. Figure 10b
clearly shows that the EMC shifts some load from 13:00→ 19:00 to other time slots to reduce cost
and peak load due to capacity limits (Equation (13)). The energy consumption of h2 is relatively less
due to the activity recognition system. In h1, the working of the HVAC is controlled on the basis of
inside/outside room temperature differences given in [3,29–33]. In h2, human presence along with
outside/inside temperature difference is also incorporated in controlling the temperature set points
of the HVAC. Figure 11 shows the energy consumption analysis of different homes based on the DR
signal for October 2015. It can be analysed from Figures 12 and 13 that occupants consume 5.51%
more energy in October as compared to July. However, the total electricity cost in October is relatively
less (6.66%).
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Figure 10. Electricity cost and power consumption comparison in summer 2015. (a) Unscheduled
power and cost of h1 and h2 in summer 2015; (b) Scheduled power and cost of h1 and h2 in summer 2015.
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Figure 11. Electricity cost and power consumption comparison in winter 2015. (a) Unscheduled
power and cost of h1 and h2 in winter 2015; (b) Scheduled power and cost of households h1 and h2 in
winter 2015.

Figure 12. Electricity consumption variations in summer and winter seasons, 2015.

Figure 13. Electricity cost variations in summer and winter seasons, 2015.
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5.4. Impact of Number of Homes

In this sub-section, we extend our analysis from only one home to 40 homes. Firstly, the proposed
algorithm is implemented for 10 users, and its performance is analysed. Figure 14 shows varied
electricity cost as the number of homes is increased from one to 10. This is due to the fact that all
users have different energy consumption requirements and living patterns, so the electricity prices
are different. Secondly, the performance of the proposed algorithm is evaluated for 40 homes, where
Figures 15 and 16 show the total electricity cost and energy consumption. The aggregated bill reduction
of 40 homes with and without person presence control is 92.85% and 68%, respectively, which is shown
in Figures 17 and 18. On the other hand, 11.77% and 5.91% of the total energy consumption is reduced
with and without person presence control, respectively. It is clear that our proposed algorithm is able
to manage the energy consumption for a large number of homes and variable loads. Some users may
get more benefits on the electricity bill if they consume less energy, because the energy consumption of
each appliance is considered separately in the proposed algorithm.

Figure 14. Electricity cost when the number of users increases to 10.
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Figure 15. Electricity cost of 40 homes with and without person presence control and 280 appliances.



Energies 2016, 9, 593 22 of 25

Figure 16. Total energy consumption of 40 homes.

Figure 17. Total electricity cost of 40 homes without person presence.

Figure 18. Total electricity cost of 40 homes with person presence.
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5.5. Impact of PAR

In this section, we analyse the impact of our proposed energy management algorithm on total PAR
reduction, which is an important parameter for electricity providers. The EMC performs appliance
scheduling based on Objective (24) to minimize PAR. Figure 19 shows the comparison of total PAR
reduction in scheduled and unscheduled cases. It is clear that our proposed algorithm significantly
reduces the average PAR of a single home and 40 homes. In the case of a single home with hp = 1, the
average PAR reduction is 25%, while the average PAR reduction is 47.62% in the case of 40 homes.

Figure 19. PAR reduction of a single and 40 homes (hp = 0, without person presence; hp = 1, with
person presence).

6. Conclusions and Future Work

In this paper, we have identified that the inconsideration of user activities in the existing
scheduling techniques creates a trade-off between energy consumption minimization and user comfort
maximization. Direct involvement of user activities in our proposed load optimization technique
relaxed the trader-off between user comfort and the electricity bill. Considering this trade-off,
optimization models of different household appliances have been proposed and implemented by using
the proposed algorithm (Section 4.1). The simulation results are analysed in terms of the reduction
in energy consumption, the reduction in cost and occupancy. Table 5 shows that a single home saves
electricity cost up to 28.85%, whereas 16.80% of the cost is saved in the case of 40 homes, while 25% and
47.62% PAR reductions are achieved in a single and 40 homes, respectively. The unscheduled energy
consumption of h1 is 5.74% more than h2, and the scheduled energy consumption of h1 is 23.11% more
than h2. Moreover, the analysis of the impact of seasons on the DR programs is beneficial for utilities
in managing electricity generation according to variations in demand.

In the future, we will extend this work for a complete residential unit, where: (i) advanced
forecasting techniques will be used to estimate total load demand and the availability/capacity
of distributed energy resources (solar and wind); and (ii) energy management algorithms will be
developed by integrating distributed energy resources into the local microgrid through multi-agent
coordination and control techniques [34,35].
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Nomenclatures

Symbol Description Symbol Description

xud user-dependent appliances φt electricity unit price
xis interactive schedulable appliances ψ appliance ON/OFF status
xu unschedulable appliances T total time horizon
γ residential units ζ energy consumption threshold

Emin
con minimum energy consumption χ appliance set

Emax
con maximum energy consumption hp = [0, 1] human presence

tmin
h minimum temperature tmax

h maximum temperature
tsch scheduling horizon ts appliance starting time
Et total energy consumption λa Boolean variable for ON/OFF status
$ small change in temperature req equivalence resistance of room
M HVAC air flow rate C specific heat capacity

dQ
dt (t) heat exchange to outside temperature

tr room temperature U(Et) appliance utility function s
CT total electricity cost C electricity cost
t f appliance finishing time h ∈ h̄ homes
th HVAC temperature td temperature difference
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