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Abstract: Attributing to the advantages of high efficiency, low electromagnetic interference
(EMI) noise and closest to the pulse-width-modulation (PWM) converter counterpart,
zero-voltage-transition (ZVT) PWM soft-switching inverters are very suitable for high-performance
applications. However, the conventional control algorithms intended for high efficiency generally
results in voltage distortion. Thus, this paper, for the first time, proposes a high-precision control
method to eliminate the dead-time effect through controlling the auxiliary current in the auxiliary
resonant snubber inverter (ARSI), which is a typical ZVT PWM inverter. The dead-time effect of
ARSI is analyzed, which is distinguished from hard-switching inverters. The proposed high-precision
control is introduced based on the investigation of dead-time effect. A prototype was developed
to verify the effectiveness of the proposed control. The experimental results shows that the total
harmonic distortion (THD) of the output current of the ARSI can be reduced compared with that of
the hard-switching inverter, because the blanking delay error is eliminated. The quality of the output
current and voltage can be further improved by utilizing the proposed control method.

Keywords: Zero-voltage-transition (ZVT); soft-switching; auxiliary resonant snubber inverter (ARSI);
high precision; dead-time effect

1. Introduction

In high-performance applications, the high switching frequency is the least requirement for
power inverters to achieve high dynamical response and high precision [1]. However, hard-switching
power inverters suffer from large switching loss and severe electromagnetic interference (EMI) as the
switching frequency increases [2,3].

In order to solve the problems of large switching loss and severe EMI in a power inverter
with high switching frequency, the use of the soft-switching technique is one of the best options.
It utilizes auxiliary components to limit the di/dt or dv/dt during the commutation period, and thus
reduces the overlap between the voltage and current of semiconductor switches. To date, a variety of
soft-switching DC-AC topologies have been proposed [4–22]. Among them, the zero-voltage transition
(ZVT) pulse-width-modulation (PWM) inverters is a typical soft-switching inverters. An auxiliary
circuit connected in parallel with the main power path is employed in ZVT PWM inverters, which only
operate for a short interval before and after the commutation period of the main switches. This makes
ZVT inverters the closest to the PWM converter counterpart. In addition, ZVT PWM inverters have
the advantages of operating with soft switching within a wide load range and low voltage and current
stresses over other types of soft-switching inverters.

Several topologies of the ZVT PWM inverters have been proposed. The auxiliary resonant
commutated pole inverter (ARCPI) has been proposed with two auxiliary switches per phase [4,5].
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The ARCPI can meet the demand for high efficiency and low voltage and current stresses. However,
the major drawback is the existence of the split capacitors, which cause the problems of capacitor
charge balance. The auxiliary resonant snubber inverter (ARSI) has been proposed to eliminate the
split capacitors, but the three-phase topology cannot utilize the conventional space-vector-pulse-width
modulation (SVPWM) [6,7]. Thus, they are more suitable for permanent magnet brushless DC motors
instead of all types of motors. The single-phase topology is very attractive with only two auxiliary
switches and well fit to the conventional PWM. Meanwhile, the ZVT inverter using coupled magnetics
has been proposed to eliminate the split capacitors [8–10]. However, these topologies need coupled
inductors and a large number of auxiliary switches, which increase the cost and difficulty of the circuit
realization. The ZVT PWM converter has been synthesized and summarized in [11,12].

Although each topology has its drawbacks, the ZVT inverters are widely adopted due to its
high efficiency, low EMI noise, available to utilize PWM and low voltage and current stresses.
However, the main problem in high-performance applications is the dead-time effect, which brings
about distortion and nonlinear voltage error. Extensive studies have been completed on the
elimination [13,14] and compensation [15–17] of the dead-time effect, but they are focused on
hard-switching inverters. With the additional auxiliary circuit, the auxiliary current is a new
controllable variable in the ZVT PWM inverters compared with hard-switching inverters. Just as the
DC-link soft-switching inverter, the zero-voltage notches can influence the output and increase the
nonlinearity [18]. The auxiliary current can also affect the output voltage and current of ZVT PWM
inverters, which makes the dead-time effect quite different from that of hard-switching inverters.
Besides, the conventional control of ZVT PWM inverters including the fix-timing control [19,20] and
variable-timing control [20–22] aim to improve the efficiency and leads to voltage distortion in turn.

Motivated by the dead-effect elimination of hard-switching inverters and lack of studies about the
impact of auxiliary current on linearity of a ZVT PWM soft-switching inverter, this paper analyzes the
dead-time effect of a typical example of ZVT PWM soft-switching inverters—ARSI. A high-precision
control by controlling the auxiliary current to eliminate the dead-time effect is proposed. A prototype
was developed to verify the effectiveness of the proposed control method.

2. Commutation of the Auxiliary Resonant Snubber Inverter

Figure 1 depicts the single-phase ARSI topology analyzed in this paper, which consists of a
standard H-bridge inverter, resonant capacitors and an auxiliary circuit. The proper operation of the
auxiliary switches Sr1 and Sr2 can create zero-voltage-switching (ZVS) condition for the main switches
S1–S4. Meanwhile, the auxiliary switches can realize zero-current switching (ZCS).
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1) All components and devices are ideal;
2) The gate signals of the MOSFETs are ideal square-wave;
3) The load Lo is large enough to maintain the load current constant during each switching cycle.

One switching cycle of the operating stages and the operating waveforms are, respectively, shown
in Figures 2 and 3, where vds is the drain-source voltage of a MOSFET, id is the drain current of a
MOSFET, vg is the practical gate signal with dead-time, vg,id is the ideal gate signal, iLr is the resonant
inductor current, vab is the practical pole voltage across the load with dead-time, vab,id is the ideal pole
voltage across the load and verr is the voltage error between vab and vab,id.
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Figure 3. The key waveforms of the ARSI when the output current is positive.

1) Stage A (t0–t1): The main switches S1 and S4 fully conducts the load current and S2 and S3 are
in the off state. Therefore, the pole voltage vab is expressed as follows:

vabptq “ Vs (1)

2) Stage B (t1–t2): Due to the existence of the resonant capacitors Cr1 and Cr4, vds1 and vds4 increase
very slowly. Therefore, S1 and S4 are turned off at ZVS at t1. Then, the load begins resonating with
four resonant capacitors. Cr2 and Cr3 are discharged and Cr1 and Cr4 are charged due to the positive
load current. The drain-source voltages of MOSFETs can be calculated as follows:

vds1ptq “ vds4ptq “
io

2Cr
pt´ t1q (2)

vds2ptq “ vds3ptq “ Vs ´
io

2Cr
pt´ t1q (3)

The pole voltage can be obtained as follows:

vabptq “ vds3ptq ´ vds4ptq “ Vs ´
io
Cr
pt´ t1q (4)
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When vds2 and vds3 decrease to zero at t2, the resonant period is over. The resonant time is
calculated as follows:

∆t12 “ t2 ´ t1 “
2CrVs

io
(5)

3) Stage C and D (t2–t4): After the vds2 and vds3 decrease to zero, the current freewheels through
the body diodes D2 and D3 and vds2 and vds3 are clamped to zero. Therefore, S2 and S3 are turned on
at ZVS condition at t3. After t3, the current is diverted from D2 and D3 to the channels of S2 and S3.
During these stages, the pole voltage vab can be written as follows:

vabptq “ ´Vs (6)

4) Stage E and F (t4–t6): Sr1 is turned on at t4 at ZCS condition, resulting in charging the resonant
inductor with voltage Vs. The resonant inductor current can be calculated as follows:

iLrptq “
Vs

Lr
pt´ t4q (7)

At t5, the resonant inductor current iLr equals the load current io. After t5, S2 and S3 work from
third quadrant to first quadrant because iLr is larger than io. To obtain the resonant inductor current
ILrm, the charging time can be obtained according to Equation (7).

∆t46 “ t6 ´ t4 “
ILrmLr

Vs
(8)

During this stage, the pole voltage is as follows:

vabptq “ ´Vs (9)

5) Stage G (t6–t7): The resonant inductor is charged to ILrm at t6. Meanwhile, S2 and S3 are turned
off at ZVS condition at t6. Thus, the resonant inductor begins resonating with four resonant capacitors.
Cr1 and Cr4 are discharged and Cr2 and Cr3 are charged. The equations during this resonant period
can be written as follows.

vds1 ptq ` vds3 ptq “ Vs (10)

icr1 ptq “ Cr
dvds1 ptq

dt
(11)

icr3 ptq “ Cr
dvds3 ptq

dt
(12)

icr1 ptq ` iLr ptq “ io ` icr3 ptq (13)

vds1 ptq ´ vds3 ptq “ Lr
diLr ptq

dt
(14)

Therefore, the inductor current and drain-source voltages of the main MOSFETs can be obtained
as follows according to Equations (10)–(14).

iLr ptq “ pILrm ´ ioq cosωA pt´ t6q `
Vs

ZA
sinωA pt´ t6q ` io (15)

vds1 ptq “ vds4 ptq “
1
2

Vs `
1
2

VscosωA pt´ t6q ´
1
2

ZA pILrm ´ ioq sinωA pt´ t6q (16)

vds2 ptq “ vds3 ptq “
1
2

Vs ´
1
2

VscosωA pt´ t6q `
1
2

ZA pILrm ´ ioq sinωA pt´ t6q (17)

where ωA “
1?

LrCr
, ZA “

b

Lr
Cr

, and ILrm is the initial resonant inductor current.
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The pole voltage can be obtained as follows:

vab ptq “ vds3 ptq ´ vds4 ptq “ ZA pILrm ´ ioq sinωA pt´ t6q ´VscosωA pt´ t6q (18)

For vds1(t) = 0, the resonant time can be calculated as:

∆t67 “ t7 ´ t6 “
2

ωA
arcsin

Vs
b

V2
s ` Z2

ApILrm ´ ioq
2

(19)

At the end of the resonant time t7, iLr can be obtained from Equations (15) and (19).

iLrpt7q “ ILrm (20)

6) Stage H–J (t7–t10): After the voltages vds1 and vds4 decrease to zero, the body diodes D1 and
D4 conduct the current so that vds1 and vds4 are clamped to zero. Therefore, S1 and S4 are turned on
at the ZVS condition at t8 and take over the load current. During these stages, the pole voltage can
be obtained.

vabptq “ Vs (21)

Owing to the positive pole voltage, the resonant inductor is discharged. During the discharging
period, iLr can be calculated as follows:

iLrptq “ ILrm ´
Vs

Lr
pt´ t7q (22)

After the current iLr decreases to zero, Sr1 are turned off at ZCS condition. The discharging time
can be obtained as follows according to Equation (22).

∆t710 “ t10 ´ t7 “
ILrmLr

Vs
(23)

3. Dead-Time Effect and Voltage Error

The duty ratio and output voltage are respectively the direct input and output of the inverters.
Thus, the linearity of inverters is related the relationship duty ratio and output voltage.

From the analysis in Section 2, the pole voltage can be obtained in one switching cycle (t0–t10) as
follows according to Equations (1), (4), (6), (9), (18) and (21).

vab “

$

’

’

’

’

’

&

’

’

’

’

’

%

Vs ´
io
Cr
pt´ t1q t1 ď t ď t2

´Vs t2 ă t ă t6

ZA pILrm ´ ioq sinωA pt´ t6q ´VscosωA pt´ t6q t6 ď t ď t7

Vs t0 ď t ă t1 or t7 ă t ă t10

(24)

The voltage error verr between the practical pole voltage and the ideal pole voltage can be obtained
as follows:

verr “ vab ´ vab,id “

$

’

&

’

%

2Vs ´
iL f _u

Cr
pt´ t1q t1 ď t ď t2

´Vs ´VscosωA pt´ t6q ` ZA pILrm ´ ioq sinωA pt´ t6q t6 ď t ď t7

0 t0 ď t ă t1 or t2 ă t ă t6 or t7 ă t ă t10

(25)

The average voltage error in a switching cycle can be obtained as follows:

Verr “
1
Ts

ż t10

t0

verrdt “
∆t12 ´ ∆t67

Ts
Vs (26)



Energies 2016, 9, 579 7 of 17

The average output voltage can be calculated as follows:

Vo “
1
Ts

ż t10

t0

vabdt “ p2D´ 1qVs `
∆t12 ´ ∆t67

Ts
Vs “ Vab,id `Verr (27)

The output voltage is related to not only the duty ratio but also the commutation times according
to Equation (27). The nonlinearity of the ARSI is caused by the dead-time effect.

Figure 4 shows when the output current is positive, the dead-time effect of the hard-switching
inverter and the ARSI without considering the turn-on and turn-off delay. Due to the finite rise- and
fall-times of voltage caused by the output capacitors of MOSFETs, the rise- and fall-errors occur in the
hard-switching inverter. Additionally, the dead-time effect also causes the blanking delay error which
is the main error source in the hard-switching inverter [16]. As for the ARSI, only the commutation
stages (t1–t2) and (t6–t7) lead to the voltage errors according to Equation (25). Although the rise-
and fall-errors are enlarged in the ARSI due to the additional resonant capacitors compared with the
hard-switching inverter, the blanking delay error that caused by the blanking delay times (t2–t3) and
(t6–t7) is eliminated, because the body diodes of the next turn-on MOSFETs conduct the current during
the blanking delay time. Therefore, the dead-time effect is reduced in the ARSI.
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In one switching cycle, there are two commutations among the main switches. The PTN
(positive to negative) commutation is the commutation that the current is diverted from positive
switches (S1 and S4) to negative switches (S2 and S3), while the NTP (negative to positive) commutation
is the commutation that the current is diverted from negative switches (S2 and S3) to positive switches.
In Figure 3, (t1–t2) is PTN commutation and (t6–t7) is NTP commutation.

According to Equation (25), the average voltage error of each commutation in a switching cycle
can be obtained as follows:

Verr,PTN “
1
Ts

ż t2

t1

verrdt “
∆t12

Ts
Vs “

tr f ,PTN

Ts
Vs (28)

Verr,NTP “
1
Ts

ż t7

t6

verrdt “ ´
∆t67

Ts
Vs “ ´

tr f ,NTP

Ts
Vs (29)

where trf,PTN is the commutation time of PTN commutation and trf,NTP is the commutation time of
NTP commutation.

When the output current is positive, the S2 and S3 realize natural ZVS (NZVS) without the
operation of auxiliary circuit during the PTN commutation, while S1 and S4 realize auxiliary ZVS
(NZVS) with the proper operation of auxiliary circuit during the NTP commutation. According
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to Equations (28) and (29), the PTN commutation introduce positive voltage error and the NTP
commutation create negative voltage error in conclusion. The magnitude of the voltage error is
proportional to the commutation time trf regardless of whether the main switches realize NZVS or
AZVS. Table 1 shows the average voltage errors of the PTN and NTP commutations. The analysis
above is discussed in the case of positive output current, but the conclusion can also be used in the
condition of negative output current.

Table 1. The average voltage errors of PTN and NTP commutations.

Type PTN Commutation NTP Commutation

Voltage error Verr
Vs
Ts

tr f ´
Vs
Ts

tr f

The commutation time trf is related to the realization of the ZVS type. If the main switches achieve
NZVS, the commutation time can be obtained according to Equation (5).

tr f ,NZVS “

ˇ

ˇ

ˇ

ˇ

2CrVs

io

ˇ

ˇ

ˇ

ˇ

(30)

To achieve AZVS with the proper operation of the auxiliary circuit, the commutation time can be
obtained according to Equation (19).

tr f ,AZVS “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ωA

arcsin
Vs

b

V2
s ` Z2

A I2
boost

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(31)

where Iboost is the initial resonant current which is the current to charge and discharge the resonant
capacitors Iboost = ILrm ´ io and ILrm is the auxiliary current at the beginning of the resonant time.

According to Equations (30) and (31), the commutation time can be summarized in Table 2.
To achieve NZVS, the commutation time is related to the load current. To achieve AZVS, the
commutation time is related to the initial resonant current Iboost.

Table 2. The commutation time with different type of ZVS.

Type NZVS AZVS

Commutation time trf

ˇ

ˇ

ˇ

2CrVs
io

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
ωA

arcsin Vs?
V2

s `Z2
A I2

boost

ˇ

ˇ

ˇ

ˇ

In a switching cycle, one commutation aims to realize NZVS of the main switches, while the other
commutation aims to achieve AZVS. When the output current is positive, NZVS of the main switches
can be achieved during the PTN commutation. When output current is negative, NZVS can only be
achieved during the NTP commutation. The voltage error can be obtained according to Tables 1 and 2.
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(32)

Figure 5 shows the pole voltage and voltage error in a switching cycle. The PTN commutation
introduces positive voltage error, while the NTP commutation creates negative voltage error.
The NZVS results in linear changing of vab and AZVS results in nonlinear changing of vab.
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Figure 5. The pole voltage and voltage error in a switching cycle: (a) io > 0 and (b) io < 0.

4. Control Strategy

4.1. Proposed Control Strategy

The dead-time effect causes the nonlinearity of the ARSI, which results in nonlinear relationship
between the output voltage and the duty ratio. This leads to voltage error. As in the analysis in Section 2,
the voltage error is proportional to the commutation time. To achieve NZVS, the commutation time
related to the load current is uncontrollable. However, to achieve AZVS, the commutation time related
to the initial resonant current can be controlled by the auxiliary current. Therefore, the voltage error of
AZVS can be controlled. Under the realization of “AZVS + NZVS” in a switching cycle, the voltage
error is shown in Equation (32). For Verr(t) = 0 in Equation (32), the initial resonant current Iboost can be
obtained as follows.

Iboost “
Vs

ZAtan ωACrVs
|io|

(33)

If the initial resonant current can be controlled to meet the requirement of Equation (33), the
voltage error caused by the dead time can be eliminated. The output voltage can be obtained as follows.

Vo “ p2D´ 1qVs (34)

The output voltage is proportional to the duty ratio when the current Iboost meet Equation (33).
However, when the load current is small enough, the commutation time of NZVS may be longer than
the dead time tdead according to Equation (30). The NZVS of the main switches fails, which is shown
in Figure 6. This leads to incorrectness of Equation (32). Thus, the initial resonant current meeting
Equation (33) cannot eliminate the voltage error when the output current is small enough.
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To achieve ZVS from zero load to full load and eliminate the dead-time effect, the realization of
“AZVS + AZVS”, which means all the main switches realize AZVS in a switching cycle, is adopted.
According to Tables 1 and 2, the voltage error can be obtained as follows:
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ˇ
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ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚ (35)

For Verr = 0 in Equation (35), the initial resonant current can be obtained as follows:

Iboost,PTN “ Iboost,NTP (36)

If the initial resonant current meets Equation (36), the voltage error caused by the dead time can
also be eliminated with the realization of “AZVS + AZVS”.

Table 3 shows the realization type of ZVS from zero load to full load. When |io| > Ith,
“AZVS + NZVS” is adopted. The initial resonant current is controlled to meet Equation (33). When
|io| ď Ith, “AZVS + AZVS” is adopted. The initial resonant current must meet the Equation (36).
In this case, the voltage error caused by the dead-time effect can be eliminated from zero load to full
load, resulting in a linear relationship between the output voltage and the duty ratio according to
Equation (34).

Table 3. The realization type of ZVS from zero load to full load.

Type PTN Commutation NTP Commutation

io > Ith NZVS AZVS (Sr1)
´Ith ď io ď Ith AZVS (Sr2) AZVS (Sr1)

io < ´Ith AZVS (Sr2) NZVS

Meanwhile, to ensure the success of NZVS, threshold current Ith should meet the requirement as
follows so that the ZVS can succeed from zero load to full load.

Ith ą
2CrVs

tdead
(37)

4.2. Conventional Control Strategy

The conventional control involves two methods, fix-timing control and variable-timing control.
Although fix-timing control is simple to be implemented, it has the difficulties of achieving ZVS at every
load current and it also leads large conduction loss [19,20]. These disadvantages limit the application
of fixed-timing control in ZVT inverters. The variable-timing control utilizes the instantaneous load
current to generate the gate signal of the auxiliary switches, which can achieve soft-switching for a
wide load range and reduce the conduction loss [20–22]. These advantages make variable-timing
control be widely used. Therefore, only the variable-timing control is discussed below.

The initial resonant current Iboost is selected to be as low as possible over the entire load range
and Iboost is kept constant in variable-timing control. Therefore, the voltage error of the variable-timing
control can be obtained as follows.
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(38)
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Due to constant Iboost, the error occurs in the output voltage. Figure 7 shows the voltage error
according to Equation (38) with the parameters in Table 4. The voltage error only occurs when
“AZVS + NZVS” is adopted. A large voltage error about 1.2 V occurs at the threshold current 3 A.
As the output current increases, the voltage error decreases first and then increases.
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Figure 7. The average voltage error vs. output current with conventional variable-timing control.

Table 4. The parameters of the circuit.

Parameter Value

DC voltage Vs 80 V
Switching frequency fs 200 kHz

Dead time tdead 0.5 µs
Load 3.7 Ω, 4.87 mH

Resonant inductor Lr 4.4 µH
Resonant capacitor Cr 4.7 nF
Threshold current Ith 3 A

Iboost 4 A

4.3. Realization of the Proposed Control Strategy

In the proposed control strategy of Section IV, the initial resonant current Iboost can be controlled to
eliminate the voltage error caused by the dead-time effect. With the proper conduction of the auxiliary
switches Sr1 and Sr2, the initial resonant inductor current ILrm can be controlled to obtain the required
Iboost. During the conduction period of S2 and S3, Sr1 is turned on to obtain a positive Iboost to achieve
AZVS of S1 and S4. Furthermore, during the conduction period of S1 and S4, Sr2 is turned on to obtain
a negative Iboost to realize AZVS of S2 and S3. Thus, to obtain the required Iboost, the resonant inductor
must be charged to ILrm at the beginning of the resonant time as follows.

ILrm “

#

Iboost ` io f or Sr1

Iboost ´ io f or Sr2
(39)

where Iboost and ILrm is always positive without including the direction.
Figure 8 shows the auxiliary current during the charging time tch, commutation time trf and

discharging time tdch. The charging time determines the initial resonant inductor current ILrm.
During the charging period, as in stages E and F in Figure 3, the inductor current is charged with the
DC voltage Vs. According to Equation (8), the charging time can be obtained as follows.

tch “
Lr ILrm

Vs
(40)
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The charging time tch determines the turn-on moment of the auxiliary switches. According to
Equations (8) and (23), the discharging time tdch equals tch. Therefore, the on-time of the auxiliary
switches can be obtained as follows:

tA “ tch ` tdead ` tdch “ 2tch ` tdead (41)

Due to tdead > trf, the on-time tA in Equation (39) is larger than the required tA with some margin
to ensure that the auxiliary switches is turned off after the auxiliary current drops to zero.

Figure 9 shows the open-loop realization diagram of the proposed control. The proposed control
method is implemented in the FPGA of a digitally controlled ARSI prototype. FPGA samples the
load current every switching cycle. Then the mode judgment is done according to Table 3. If the
“AZVS + NZVS” is adopted when |io| ě Ith, the initial resonant current is calculated from Equation
(33). If the “AZVS + AZVS” is adopted when |io| < Ith, Iboost is fixed at IB. Then, ILrm, tch and tA are
calculated from Equations (39)–(41). The gate signal of the auxiliary switches can be generated by
tch and tA.
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5. Experiment

The proposed method was implemented in the Altera Cyclone IV FPGA with parameters in
Table 4. Figure 10 shows the photograph of the prototype. It consists of FPGA (Altera Corporation
EP4CE22E22C7N, the USA) control board, switching power supply, MOSFET driver and the
power circuit.
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The dead-time effect leads to the nonlinearity of inverter, which introduces the baseband
harmonics in the output voltage and current. In the experiment, the total harmonic distortion (THD)
of output current and output voltage with different methods are compared to verify the effectiveness
of the proposed control method. The oscilloscope MSO4034B with the probes TCP0030, TPP0500 and
P5025 is used to measure the voltages and currents. The power analysis module DPO4PWR is used to
analyze the THD of the current and voltage.

Figure 11 shows the voltage and current waveforms of ARSI with conventional variable-timing
control and proposed control when the modulation index is 0.4 in an open-loop configuration.
The auxiliary circuit is operated twice with bidirectional current in a switching cycle to realize the
“AZVS + AZVS”. However, a single direction current occurs in the auxiliary circuit with realization of
“NZVS + AZVS”. To measure the output voltage vo, a filter is added to attenuate the carrier harmonics
of the pole voltage vab. Figure 11a shows that a large voltage error occurs in the output voltage with
conventional control due to the unequal commutation times. The distortion is obvious especially at
the mode switching point between the “AZVS + AZVS” and “NZVS + AZVS”. The quality of the
output voltage is improved with the proposed control in Figure 11b. The voltage error with proposed
control should be zero in theory. However, the voltage error exists in the experimental results due to
the limited PWM resolution of 8 bit and current detecting error.
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Figure 11. The current and voltage waveforms of ARSI with conventional control and proposed control:
(a) conventional control and (b) proposed control.

Figure 12 shows the voltage waveforms and their harmonic analysis results when the modulation
index is 0.4 in an open-loop configuration. THD-F is the ratio of the RMS value of harmonic components
to the RMS value of the fundamental component, while THD-R is the ratio of the RMS value of
harmonic components to the RMS value of the source waveform. THD-F is used in the experiment
to compare the quality of the voltage and current. The THD-F and magnitude of the harmonic
voltages respect to the fundamental voltage are indicated by the red boxes in Figure 12. THD-F of the
output voltage with proposed control is 3.21%, which is less than 6.29% with conventional control.
The magnitudes of the baseband harmonics are reduced by using the proposed control.
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Figure 12. The current waveforms and their harmonic analysis results: (a) conventional control and
(b) proposed control.

Figure 13 shows the magnitudes of the 2nd–10th harmonic voltages with respect to the
fundamental voltage. The magnitudes of the harmonic voltages are reduced obviously with the
proposed control, except the 6th, 8th and 10th harmonic currents.
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Figure 13. The magnitudes of the 2nd–10th harmonic voltages respect to the fundamental voltage.

Figure 14 shows the current waveforms and their harmonic analysis results when the modulation
index is 0.4 in an open-loop configuration. The THD-F, RMS and magnitude of the harmonic voltages
with respect to the fundamental voltage are indicated by the red boxes. Due to a large dead time,
severe distortion occurs in the output current of the hard-switching inverter, as shown in Figure 14a.
The RMS of the current is only 2A, which is much lower than the RMS of the soft-switching inverters
with the modulation index 0.4. The THD-F of the hard-switching inverter is 4.36%. As for the ARSI, the
THD-F is reduced to 1.57% and the RSM of the current is improved with conventional control, because
the blanking delay error is eliminated which is the main error source in the hard-switching inverter.
The THD-F of the output current is further improved to 0.607% by using the proposed control.
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Figure 15 shows the magnitudes of the 2nd–10th harmonic currents of the ARSI respect to the
fundamental current. The magnitudes of the harmonic currents are reduced obviously with the
proposed control, except the 6th, 8th and 10th harmonic currents. The current results are in good
agreement with the voltage results in Figure 13.
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6. Conclusions

This paper analyzed the dead-time effect of ARSI, which is a typical example of ZVT PWM
inverters. The blanking delay error that is the main error source of the hard-switching inverter is
eliminated in the ARSI. Only the error caused by the rise- and fall-times exist in the ARSI. For the
dead-time effect, the PTN and NTP commutations, respectively, cause the positive and negative voltage
errors that are proportional to the commutation time, regardless whether NZVS or AZVS of the main
switches is realized. NZVS and AZVS determine the commutation time of the ARSI. Based on the
analysis, a high-precision control has been proposed to eliminate the voltage error. In the experiment,
the THD of the output current and voltage are greatly reduced from 1.57% and 6.29% to 0.607% and
3.21%, respectively, by using the proposed control. In conclusion, the output quality can be improved
with the high-precision control method.

However, objectively speaking, there are still some disadvantages in the proposed control. This
novel method improves the precision at the expense of efficiency, because of relatively higher auxiliary
current compared with that of the traditional control. Besides, the current Iboost should be calculated
online, resulting higher calculation effort.

Anyway, the proposed control is very attractive in the high-precision applications to improve the
output quality. Despite the fact that the analysis and proposed control is based on the ARSI, they can
be used similarly to other types of the ZVT PWM inverters to eliminate the dead-time effect.
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