
Multislot Simultaneous Spectrum Sensing and Energy Harvesting in
Cognitive Radio

Authors: 

Xin Liu, Zhenyu Na, Min Jia, Xuemai Gu, Xiaotong Li

Date Submitted: 2019-01-07

Keywords: detection probability, throughput, energy harvesting, spectrum sensing, cognitive radio (CR)

Abstract: 

In cognitive radio (CR), the spectrum sensing of the primary user (PU) may consume some electrical power from the battery capacity
of the secondary user (SU), resulting in a decrease in the transmission power of the SU. In this paper, a multislot simultaneous
spectrum sensing and energy harvesting model is proposed, which uses the harvested radio frequency (RF) energy of the PU signal to
supply the spectrum sensing. In the proposed model, the sensing duration is divided into multiple sensing slots consisting of one local-
sensing subslot and one energy-harvesting subslot. If the PU is detected to be present in the local-sensing subslot, the SU will harvest
RF energy of the PU signal in the energy-harvesting slot, otherwise, the SU will continue spectrum sensing. The global decision on the
presence of the PU is obtained through combining local sensing results from all the sensing slots by adopting “Or-logic Rule”. A joint
optimization problem of sensing time and time splitter factor is proposed to maximize the throughput of the SU under the constraints of
probabilities of false alarm and detection and energy harvesting. The simulation results have shown that the proposed model can
clearly improve the maximal throughput of the SU compared to the traditional sensing-throughput tradeoff model.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2019.0077
Citation (this specific file, latest version): LAPSE:2019.0077-1
Citation (this specific file, this version): LAPSE:2019.0077-1v1

DOI of Published Version:  https://doi.org/10.3390/en9070568

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



energies

Article

Multislot Simultaneous Spectrum Sensing and
Energy Harvesting in Cognitive Radio

Xin Liu 1,3,*, Zhenyu Na 2, Min Jia 3,*, Xuemai Gu 3 and Xiaotong Li 2

1 School of Information and Communication Engineering, Dalian University of Technology,
Dalian 116024, China

2 School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;
nazhenyu@dlmu.edu.cn (Z.N.); xtongli@yeah.net (X.L.)

3 Communication Research Center, Harbin Institute of Technology, Harbin 150080, China;
guxuemai@hit.edu.cn

* Correspondence: liuxinstar1984@dlut.edu.cn (X.L.); jiamin@hit.edu.cn (M.J.); Tel.: +86-150-4051-1725 (X.L.);
+86-136-1360-6260 (M.J.)

Academic Editor: Hongjian Sun
Received: 8 June 2016; Accepted: 15 July 2016; Published: 21 July 2016

Abstract: In cognitive radio (CR), the spectrum sensing of the primary user (PU) may consume some
electrical power from the battery capacity of the secondary user (SU), resulting in a decrease in the
transmission power of the SU. In this paper, a multislot simultaneous spectrum sensing and energy
harvesting model is proposed, which uses the harvested radio frequency (RF) energy of the PU signal
to supply the spectrum sensing. In the proposed model, the sensing duration is divided into multiple
sensing slots consisting of one local-sensing subslot and one energy-harvesting subslot. If the PU is
detected to be present in the local-sensing subslot, the SU will harvest RF energy of the PU signal in
the energy-harvesting slot, otherwise, the SU will continue spectrum sensing. The global decision on
the presence of the PU is obtained through combining local sensing results from all the sensing slots
by adopting "Or-logic Rule". A joint optimization problem of sensing time and time splitter factor is
proposed to maximize the throughput of the SU under the constraints of probabilities of false alarm
and detection and energy harvesting. The simulation results have shown that the proposed model can
clearly improve the maximal throughput of the SU compared to the traditional sensing-throughput
tradeoff model.

Keywords: cognitive radio (CR); spectrum sensing; energy harvesting; throughput;
detection probability

1. Introduction

To improve the current spectrum utilization, cognitive radio (CR) has been proposed to allow
a secondary user (SU) to access the spectrum licensed to the primary user (PU), providing that the
PU is not occupying the spectrum [1,2]. To avoid causing harmful interference to the PU, the SU
should detect whether the PU exists in the frequency band depending on performing spectrum sensing
before any available transmissions. Only if the absence of the PU is detected, can the SU access the PU
spectrum for its transmission [3,4]. The spectrum sensing performance is reflected by the probabilities
of false alarm and detection. Decreasing false alarm probability improves the spectrum access of the
SU, while increasing detection probability reduces the interference to the PU [5].

Since it is often hard to obtain any PU information from the SU, energy sensing has been frequently
used in CR as an effective spectrum sensing method, which can be implemented easily without
acquiring any prior information from the emission signal of the PU [6]. Increasing sensing time may
improve the sensing performance but decrease the transmission time, thus it is important to develop a
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sensing-throughput tradeoff scheme to acquire both reliable energy sensing for detecting the presence
of the PU signal and efficient data transmission for the SU [7]. In [8], the optimal sensing time is
determined to maximize the achievable throughput of the SU subject to the constraint of detection
probability of the PU. A joint optimization of sensing time and transmission power for maximizing
the aggregate throughput of a cooperative CR network is studied in [9]. In [10], an energy-efficient
CR system is designed to simultaneously meet spectrum sensing reliability and secondary data
transmission rate constraints. However, the energy consumption for spectrum sensing, which may
affect both energy sensing performance and transmission power of SU, has not been considered
in [7–10]. The signal sampling of energy sensing has to consume some electrical power from the stored
battery energy that originally supplies data transmission; thus, the achievable throughput of the SU
is decreased.

Recently, energy harvesting has been proposed by some references, which may collect the radio
frequency (RF) energy of the environmental signal sources to supply the electrical power for a wireless
communication system instead of a fixed power supply [11,12]. An energy-harvesting circuit that
consisted of semiconductor-based rectifying elements was designed to convert the received RF energy
to the direct current (DC) power [13]. In [14,15], an energy-harvesting SU is investigated to harvest
the RF energy of the PU signal in the transmission time when the PU is occupying this channel.
However, energy harvesting is often performed independently after spectrum sensing; thus, the energy
consumption of spectrum sensing cannot be duly supplemented. Moreover, since the spectrum sensing
may consume some of the total power, without energy harvesting in the sensing duration, the initial
transmission power of the SU may reduce, thus decreasing the transmission rate of the SU. Since the RF
energy of the PU signal can be used both for spectrum sensing and energy harvesting, the simultaneous
spectrum sensing and energy harvesting will become a profitable research are, which may save the
consumed sensing energy by using the harvested PU signal energy to supply spectrum sensing.

The contributions of the paper are listed as follows:

• The paper firstly combines spectrum sensing and energy harvesting, the sensing duration is
divided into multiple sensing slots consisted of one local-sensing subslot for energy sensing of
the PU and one energy-harvesting subslot for harvesting the RF energy of the PU signal. If the
presence of the PU is detected in the local-sensing subslot, the SU will harvest energy in the
energy-harvesting subslot. Then the harvested energy is used to supply the spectrum sensing in
the following sensing slot.

• The paper has proposed a jointly optimal allocation of sensing time and harvesting time to
maximize the achievable throughput of the SU under the constraints that the target probabilities
of detection and false alarm are both guaranteed and the harvested energy may supply the
spectrum sensing. A joint optimization algorithm based on binary searching and alternating
direction optimization (ADO) has been proposed to achieve the optimal solutions to the proposed
optimization problem.

The rest of the paper is organized as follows: the energy sensing and energy harvesting are
described in Section 2, both the system model building and the throughput of SU in the proposed
model are given in Section 3, the joint optimization algorithm of sensing time and time splitting in
the proposed model is defined in Section 4, and the simulations and discussions are finally drawn in
Section 5.

2. Energy Sensing and Harvesting

2.1. Energy Sensing

Since SU and PU are two different kinds of communication systems, the SU is often hard to
acquire any prior information of the PU signal, hence, energy detection is performed to sense the PU
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as an effective spectrum sensing method, without needing any information of the detected signal.
The detected signal y received by the SU is seen as a binary hypothesis problem as follows [16]:

y(t) =

{
n(t), H0

h(t)s(t) + n(t), H1
, t = 1, 2, ..., M (1)

where H0 and H1 denote the absence and presence of the PU, respectively, s(t) is the PU signal with
the power of ps, n(t) is the Gaussian noise with the variance of σ2

n, h(t) is the channel gain from the
PU transmitter to the SU receiver, M is the number of the signal samples. We also suppose that P(H0)

and P(H1) are the existent probabilities of H0 and H1, respectively. Supposing the sampling frequency
as fs and the sensing time as τ, we get M = τ fs. From Equation (1), the energy statistic of y is given
as follows:

Ω(y) =
1
M

M

∑
t=1
‖y(t)‖2 (2)

where y(1), y(2), ..., y(M) are independently and identically distributed. With a large M, Ω(y) obeys
the Gaussian distribution as follows:

Ω(y) ∼


N
(
σ2

n, σ
4
n

M

)
, H0

N
(
(1 + γ)σ2

n, (1+γ)
2σ4

n
M

)
, H1

(3)

where γ = h2 ps/σ2
n is the sensing signal to noise ratio (SNR). Comparing Ω(y) to a presettled detection

threshold λ, the probabilities of false alarm and detection are respectively given as follows: Pf(τ) = Pr (Ω(y) ≥ λ |H0 ) = Q
((

λ
σ2

n
− 1
)√

τ fs

)
Pd(τ) = Pr (Ω(y) ≥ λ |H1 ) = Q

((
λ

σ2
n(γ+1)

− 1
)√

τ fs

) (4)

where the function Q(x) = 1√
2π

∫ +∞
x exp

(
−z2/2

)
dz.

2.2. Energy Harvesting

In this paper, we consider an energy-harvesting SU consisting of a spectrum sensing device and
an energy-harvesting device, which converts the harvested RF energy of the PU signal to the electrical
power for supplying spectrum sensing. The SU senses the PU signal and simultaneously stores the
arriving energy from the PU in a rechargeable battery, through deploying an energy-harvesting circuit
consisting of band-pass filter, rectifying circuit and low-pass filter, as shown in Figure 1.

band-pass 

filter

rectifying

circuit

low-pass 

filter

DC

voltage

PU signal

Figure 1. Energy-harvesting circuit. PU: primary user; and DC: direct current.

The SU firstly uses a band-pass filter to suppress the out-of-band energy radiation of the received
PU signal and then converts the RF signal to a DC signal by the rectifying circuit. The rectifying circuit
finally outputs the DC voltage after filtering out the fundamental and harmonic signals from the DC
signal through a low-pass filter. However, some of the RF signal energy has to be reradiated to the
outside environment due to the electromagnetic characters of the energy-harvesting circuit, thus we
assume that 0 < µ < 1 is the energy-harvesting efficiency, which is determined by the characters of the
energy-harvesting circuit elements [16].
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3. System Model

3.1. Traditional Model

The traditional frame structure designed for the SU consists of one sensing slot and one
data transmission slot, and the SU must firstly sense the absence of the PU before any available
transmissions, as shown in Figure 2. We suppose the sensing duration as τ and the frame duration as
T. The SU can operate in the frequency band of the PU in the following two scenarios [17]:

• When the PU is really absent in probability of P(H0) and no false alarm is generated by the SU in
probability of 1− Pf, the SU may access the spectrum effectively in probability of P(H0)(1− Pf);

• When the PU is really present in probability of P(H1) but not detected by the SU in probability of
1− Pd, the SU may also access the spectrum but cause harmful interference to the PU in probability
of P(H1)(1− Pd).

Thus, the average achievable throughput of the SU is given as follows:

R(τ) =
T − τ

T
(

P(H0)(1− Pf(τ))C0 + P(H1)(1− Pd(τ))C1
)

(5)

where C0 and C1 denote the throughput of the SU when it operates in the absence and presence of the
PU, respectively. If there is only one point-to-point transmission in the secondary link, the SNR for this

secondary link is γSU =
pSUh2

SU
σ2

n
, where pSU is the transmission power of the SU transmitter and hSU

is the channel gain from the SU transmitter to SU receiver. Then we have C0 = B log2(1 + γSU) and
C1 = B log2(1 +

γSU
1+γ ) where B is the bandwidth, respectively. Obviously, we have C0 > C1.

Frame 1 Frame 2 Frame K

Sensing slot Transmission slot

Figure 2. Traditional frame structure.

The higher the detection probability, the better the sensing performance. However, the lower
the false alarm probability, the more chances the idle channel can be reused, thus the higher the
throughput for the SU [18]. Thus there could exist a tradeoff between sensing performance and
achievable throughput for the SU. The objective of sensing-throughput tradeoff model is to find
the optimal sensing duration τ for maximizing the average throughput of the SU while the PU is
sufficiently protected. Thus, the optimization problem of the sensing-throughput tradeoff model can
be stated as follows [8]:

max
τ

R(τ) (6a)

s.t. Pd(τ) ≥ P̄d (6b)

where P̄d is the lower limit of detection probability.

3.2. Proposed Model

In the common communication system, all the energy stored in the battery is used for data
transmission. However, in CR system, the spectrum sensing has to consume some of the battery energy
due to the circuit power of A/D chip and detector. Hence, the disadvantage of the traditional CR
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system is that spectrum sensing has to consume some of the stored energy for data transmission, which
decreases the transmission power and throughput of the SU transmitter compared with the common
communication system. In this paper, we have proposed a multislot simultaneous spectrum sensing
and energy harvesting model, where the sensing duration is further divided into N sensing slots,
each of which consists of local-sensing subslot and energy-harvesting subslot, as shown in Figure 3.
In each sensing slot, the SU firstly senses to make a local decision on the activity of the PU in the
local-sensing subslot, then if the absence of the PU is detected, in case that the PU may suddenly
appear later, the SU must continue sensing the PU in the energy-harvesting subslot and make a final
decision at the end of the sensing slot. However, if the presence of the PU is detected accurately in
the local-sensing subslot, the SU can harvest the RF energy of the PU signal in the energy-harvesting
subslot. The harvested energy in the current sensing slot is used to supply the local spectrum sensing
in the following sensing slot.

Figure 3. Proposed frame structure.

Supposing that the lengths of local-sensing subslot and energy-harvesting subslot are ρτ and
(1− ρ)τ, respectively, where ρ is the time splitter factor, the probability of deciding the presence of the
PU in the local-sensing subslot is P(H0)Pf(ρτ) + P(H1)Pd(ρτ). However, the SU can harvest energy
only when the PU is actually present, thus the harvested energy EH in the energy-harvesting subslot is
given by:

Eh(τ, ρ) = µP(H1)Pd(ρτ)psh2(1− ρ)τ (7)

While the probability of deciding the absence of the PU in the local-sensing subslot is
ξ = P(H0)(1− Pf(ρτ)) + P(H1)(1− Pd(ρτ)). If the absence of the PU is detected, the SU must sense
the PU both in local-sensing subslot and energy-harvesting subslot in probability of ξ, thus the average
sensing time is ρτ+ ξ(1− ρ)τ. The achieved probabilities of false alarm and detection at the end of
the sensing slot is Pf(ρτ+ ξ(1− ρ)τ) and Pd(ρτ+ ξ(1− ρ)τ). At the end of the sensing duration, the
SU will obtain a global decision on the activity of the PU through combining these sensing results
from all the sensing slots by adopting “Or-logic Rule”. Thus the global probabilities of false alarm and
detection are given as follows:

Pg
f (τ, ρ) = 1−

(
1− Pf

(
ρτ+ ξ(1− ρ)τ

))N

Pg
d(τ, ρ) = 1−

(
1− Pd

(
ρτ+ ξ(1− ρ)τ

))N (8)

The average number of sampling nodes in each sensing slot is
(
ρτ+ ξ(1− ρ)τ

)
fs. Supposing

the unit sampling energy as es, the total spectrum sensing energy is Es = Nes
(
ρτ+ ξ(1− ρ)τ

)
fs.

In case that the PU is not present in the whole sensing duration, we assume that the minimal energy
for spectrum sensing supported by the battery is Em and thus have NEh + Em ≥ Es. In fact, the
harvested energy NEh is used to compensate the loss of transmission power of the SU, thus supposing
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τ� T, the compensated transmission power4pSU ≈ NEh
T . The compensated SNR for the secondary

link is 4γSU =
4pSUh2

SU
σ2

n
, thus the throughput of the SU in the absence and presence of the PU are

C̃0 = log2(1 + γSU +4γSU) and C̃1 = log2(1 +
γSU+4γSU

1+γ ), respectively.
Like Equation (5), substituting Equation (8), the average throughput of the SU in the proposed

model is given as follows:

R̃(τ, ρ) =
T − Nτ

T
×
(

P(H0)(1− Pg
f (τ, ρ))C̃0 + P(H1)(1− Pg

d(τ, ρ))C̃1
)

(9)

When there is no any transmissions in CR, the maximal lifetime of the traditional CR network can
be obtained by:

LT =
ET

es fs
(10)

where ET is the total battery energy. However, according to Equation (7), the maximal lifetime of the
energy-harvesting CR network can be given by:

L̃T =
ET

es fs − µP(H1)Pd psh2 (11)

where obviously, L̃T > LT.

4. Model Optimization

In the proposed system model, our goal is to maximize the average achievable throughput of
the SU through jointly optimizing sensing time τ and time splitter factor ρ, subject to the constraints
that the probabilities of detection and false alarm are both guaranteed and the harvested energy may
supply the spectrum sensing, as follows:

max
τ,ρ

R̃(τ, ρ) (12a)

s.t. Pg
d(τ, ρ) ≥ P̄d, Pg

f (τ, ρ) ≤ P̄f (12b)

NEh + Em ≥ Es (12c)

0 ≤ τ ≤ T
N

(12d)

0 ≤ ρ ≤ 1 (12e)

where Pf is the upper limit of false alarm probability. We use ADO to solve Equation (12) [19]. Firstly,
we fix ρ = ρ0 where ρ0 ∈ (0, 1) and optimize τ. Then from Equation (4), since Q(x) is a monotonously
decreasing function, Pf and Pd have the same monotonicity in τ and thus from Equation (8), Pg

f
increases as Pg

d improves. Thus from Equation (9), R̃ reduces with the increasing of Pg
d , i.e., R̃ may

achieve the maximum only if Pg
d acquires its lower bound as Pg

d = P̄d. Then from Equations (4) and (8),
Pg

f is related to P̄d as follows:

Pg
f = 1−

(
1−Q

(
Q−1

(
1− (1− P̄d)

1
N

)
(γ+ 1) + γ

√(
ρ0τ+ ξ(1− ρ0)τ

)
fs

))N

(13)

With Pg
f ≤ P̄f and Pg

d = P̄d, we have ξ ≥ P(H0)(1− P̄f)
1
N + P(H1)(1− P̄d)

1
N . From Equation (13),

Pg
f decreases as ξ increases and thus we may optimize Equation (12) using ξ = P(H0)(1− P̄f)

1
N +

P(H1)(1− P̄d)
1
N . Substituting Equation (7) into Equation (12c), it is obtained that:

τ ≤ τh where τh =
Em

N
(
η1ρ0 + (1− ρ0)(η1ξ − η0)

) (14)
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where η0 = µP(H1)P̄d psh2 and η1 = es fs. Then from Pg
f ≤ P̄f, we get that:

τ ≥ τl where τl =

(
Q−1(P̄f)−Q−1(1− (1− P̄d)

1
N )(γ+ 1)

)2

γ2 fs
(
ρ0 + ξ(1− ρ0)

) (15)

Substituting Equations (13) and (14) into Equation (12), with given ρ0, the optimization problem
of τ is simply rewritten as follows:

max
τ

R̃(τ) =
T − Nτ

T
(
ϕ0(1−Q(ω0 + γ

√
ω1τ fs))

N +ϕ1
)

(16a)

s.t. τl ≤ τ ≤ min
{ T

N
, τh
}

(16b)

where ω0 = Q−1
(

1− (1− P̄d)
1
N

)
(γ+ 1), ω1 = ρ0 + ξ(1− ρ0), ϕ0 = P(H0)C̃0 and ϕ1 = P(H1)(1−

P̄d)C̃1. Then we express that there exists an optimal solution τz ∈
(
0, T

N
)

to make R̃(τ) achieve the
maximum. Take the first-order derivative of Equation (16a) in τ as follows:

∇R̃(τ) = −N
T
(
ϕ0(1−Q(ω0 + γ

√
ω1τ fs))

N +ϕ1
)
+

Nϕ0γ(T − Nτ)
√
ω1 fs

2T
√

2πτ

(
1−Q(ω0 + γ

√
ω1τ fs)

)N−1e−
(ω0+γ

√
ω1τ fs)2

2

(17)

Noting 0 < Q(x) < 1, we deduce the limit values from Equation (17) as follows:
lim
τ→0
∇R̃(τ) ≈ Nϕ0γT

√
ω1 fs

2T
√

2πτ

(
1−Q(ω0)

)N−1e−
ω2

0
2 → +∞

lim
τ→ T

N

∇R̃(τ) < −N
T
(
ϕ0(1−Q(ω0))

N +ϕ1
)
< 0

(18)

which indicates that there exists a τz ∈
(
0, T

N
)

to make ∇R̃(τ) = 0. Equation (18) also means that
∇R̃(τ) increases when τ approaches 0 and decreases when τ approaches T

N . Hence, there is a
maximum point τz of R̃(τ) within interval (0, T

N ). τz can be obtained through the Algorithm 1 based
on the binary searching.

Algorithm 1: Searching algorithm of τz ∈
(
0, T

N
)

for maximizing R̃(τ)

(1) Initialize τmin = 0, τmax = T
N and estimation error δ;

(2) While (|τmax − τmin| > δ) do:
(3) Set τz =

τmin+τmax
2 ;

(4) If (∇R̃(τz) == ∇R̃(τmin)): set τmin = τz;
(5) Else if (∇R̃(τz) == ∇R̃(τmax)): set τmax = τz;
(6) End if;
(7) End while;
(8) Output τz =

τmin+τmax
2 .

Noting τl ≤ τ ≤ min
{ T

N , τh
}

and τz < T
N , we may get τl ≤ τ ≤ min

{
τz, τh

}
. Thus the optimal

τ∗ to solve Equation (16) is given as follows:

τ∗ = max
{
τl, min

{
τz, τh

}}
(19)
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Secondly, we fix τ0 = τ∗ and optimize ρ. From Equation (12c), with given τ0, the upper limit of ρ
is obtained as follows:

ρ ≤
Em

Nτ0
+ η0 − η1ξ

η1(1− ξ) + η0
(20)

As seen from Equation (13), Pg
f decreases monotonously as ρ increases, i.e., the throughput R̃ may

achieve the maximum only if ρ acquires its upper limit as ρ = min
{

1,
Em
Nτ0

+η0−η1ξ

η1(1−ξ)+η0

}
. Using ADO,

the joint optimal solutions (τ∗, ρ∗) to Equation (12) are obtained, through iteratively and alternately
optimizing τ and ρ until both of them are convergent, as shown in Algorithm 2. Since the existent
convergence of τ has been expressed as above, we can also get the convergence of ρ that is uniquely
determined by τ. Noting that the locally optimal value in each iteration k is non-decreasing, we can
get R̃(τ(k−1), ρ(k−1)) ≤ R̃(τ(k), ρ(k−1)) ≤ R̃(τ(k), ρ(k)), which indicates that the convergence of R̃ can
be obtained if τ and ρ are both convergent.

Algorithm 2: Joint optimization algorithm

(1) initialize k = 0, τ(k) = 0, ρ(k) = ρ0 where ρ0 ∈ (0, 1) and estimation error δ;
(2) with given ρ(k), calculate τ∗ according to Algorithm 1 and Equation (19);
(3) set τ(k+1) = τ∗;

(4) with given τ(k+1), calculate ρ∗ = min
{

1,
Em

Nτ(k+1) +η0−η1ε

η1(1−ε)+η0

}
;

(5) set ρ(k+1) = ρ∗ and k = k− 1;
(6) repeat (2)-(5) until both |τ(k) − τ(k−1)| ≤ δ and |ρ(k) − ρ(k−1)| ≤ δ are satisfied.

The time complexity of the binary searching in Algorithm 1 is O
(

log T
Nδ
)

and the iterative number
of the Algorithm 2 is O

( 1
δ2

)
. Noting that the Algorithm 1 is implemented once in each iteration of

Algorithm 2, the total time complexity is O
( 1
δ2 log T

Nδ
)
. To describe the energy harvesting performance,

we define the energy-harvesting efficiency as follows:

θ =
4R
Eh

(21)

where4R is the throughput increment between energy-harvesting SU and non-energy-harvesting SU.

5. Simulations and Discussion

In the simulations, we suppose that the frame duration T = 20 ms, the number of sensing
slots N = 5, the probabilities of H0 and H1 are P(H0) = P(H1) = 0.5, respectively, the sampling
frequency fs = 1 MHz, the channel gain h obeys the Rayleigh distribution with the mean of −10 dB,
the bandwidth B = 1 KHz, the PU power ps = 10 dBW, the SU power pSU = 10 dBW, the noise variance
σ2

n = 1 dBW, the unit sampling energy es = 0.1 mJ and the minimum spectrum sensing energy supported
by the battery Em = 10 mJ.

Figure 4 shows the global false alarm probability Pg
f of the proposed sensing model versus the

time splitter factor ρ = {0.1, 0.3, 0.5, 0.7}, with different global detection probability Pg
d . It is seen

that Pg
f and Pg

d have the same monotonicity, which indicates that the spectrum access decreases as Pg
d

improves and the maximal throughput can be obtained if Pg
d acquires its lower limit; Pg

f decreases
as ρ increases, which indicates that the maximal spectrum access can be achieved if ρ acquires its
upper limit. Figure 5 indicates the throughput R changed with the sensing time τ. It is seen that there
exists an optimal τ that makes R achieve the maximum. When τ is small, R improves as τ increases,
because the spectrum sensing performance mainly improves; however, when τ is large, R decreases as
τ increases, because the data transmission time mainly decreases. Thus, there is a tradeoff between
spectrum sensing and throughput.
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Figure 4. Global false alarm probability versus time splitter factor.
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Figure 5. Throughput changed with sensing time.

Figure 6 shows the throughput R changed with the harvested energy Eh with Pg
d = {0.75, 0.8, 0.85, 0.9}.

It is seen that R decreases as Eh increases, because the sensing time decreases while the harvesting
time increases, which yields higher false alarm probability but more harvested energy. Thus the larger
throughput can be achieved if the harvested energy appropriately supplies the spectrum sensing.
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Figure 6. Throughput changed with harvested energy.
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Figure 7 indicates the throughput versus different spectrum sensing models: the traditional
sensing-throughput tradeoff model [8] and the proposed simultaneous spectrum sensing and energy
harvesting model with ρ = {0.1, 0.3, 0.5}. It is seen that the throughput of the traditional model is larger
than that of the proposed model with ρ = {0.1, 0.3}, because the spectrum sensing performance is very
low with small ρ and the false alarm probability is very large; however, the throughput of the traditional
model is smaller than that of the proposed model with large ρ, because the lost transmission energy is
compensated with the harvested energy while the spectrum sensing performance is guaranteed.
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Figure 7. Throughput versus spectrum sensing models. SNR: signal to noise ratio.

Figure 8 indicates the maximum throughput versus theoretic optimum and joint optimum with
Pg

d = {0.75, 0.8, 0.85, 0.9}. It is seen that the maximal throughput obtained by the joint optimization
algorithm accords with the corresponding theoretical maximum.
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Figure 8. Maximal throughput versus theoretic optimum and joint optimum.

Figure 9 shows the maximum throughput versus different spectrum sensing models: the
traditional sensing-throughput tradeoff model [8] and the proposed model. It is seen that the proposed
model can improve the achievable maximal throughput of the SU obviously through using the
harvested energy of the PU signal to compensate the energy consumption of spectrum sensing.
Figure 10 indicates the energy-harvesting efficiency θ versus traditional energy-harvesting SU [15]
and the proposed energy-harvesting SU, with different frame duration T. It is seen that the efficiency
of the traditional SU is lower than that of the proposed SU under small T but higher under large T,
because the traditional SU can only harvest energy in the transmission slot and the sensing energy
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consumption cannot be supplemented. Figure 11 compares the lifetime of the tradiotnal CR and the
energy-harvesting CR. It is seen that the energy-harvesting CR can achieve longer life.
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Figure 9. Maximal throughput versus spectrum sensing models.

2 4 6 8 10 12 14 16 18 20
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

T /ms

 θ
 /k

bp
s/

m
J

 

 

proposed energy−harvesting SU
tradtional energy−harvesting SU

Figure 10. Energy-harvesting efficiency versus frame duration. SU: secondary user.

40 60 80 100 120 140 160 180 200
10

2

10
3

10
4

E
T
 /J

LT
 /s

 

 

traditional CR
energy−harvesting CR

Figure 11. Lifetime comparison of different cognitive radio (CR) systems.



Energies 2016, 9, 568 12 of 13

6. Conclusions

In this paper, a multislot simultaneous spectrum sensing and energy harvesting model is proposed
to improve the achievable throughput of the SU through using the harvested RF energy of the PU signal
to compensate the energy consumption of spectrum sensing. The sensing duration is divided into
multiple sensing slots, each of which consisted of one local-sensing subslot for energy sensing and one
energy-harvesting subslot for collecting the RF energy in the presence of the PU. We have formulated a
joint optimization problem of sensing time and time splitter factor to maximize the average achievable
throughput of the SU. From the simulations, we have concluded the following results:

• there exists an optimal sensing time that maximizes the average achievable throughput of the SU
while the sensing performance is guaranteed;

• the maximal throughput of the SU can be obtained only if the detection probability acquires its
lower limit and the harvested energy appropriately supplies spectrum sensing;

• the proposed model can improve the maximal throughput of the SU obviously through using the
harvested energy to compensate the energy consumption of spectrum sensing.

In the future, we will apply the proposed model in cooperative spectrum sensing.
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