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Abstract: The introduction of uncontrollable renewable energy is having a positive impact on
our health, the climate, and the economy, but it is also pushing the limits of the power system.
The main reason for this is that, in any power system, the generation and consumption must match
each other at all times. Thus, if we want to further introduce uncontrollable generation, we need
a large ability to manage the demand. However, the ability to control the power consumption
of existing demand management approaches is limited, and most of these approaches cannot
contribute to the introduction of reneweables, because they do not consider distributed uncontrolled
consumption and generation in the control. Furthermore, these methods do not allow users to
exchange or jointly manage their power generation and consumption. In this context, we propose
an augmented energy management model for prosumers (i.e., producer and consumer). This model
considers controlled and uncontrolled generation and consumption, as well as the prosumer’s
ability (i) to plan the intended power consumption; and (ii) to manage real-time deviations from the
intended consumption. We apply this model to the energy management of prosumer communities,
by allowing the prosumers to coordinate their power consumption plan, to manage the deviations
from the intended consumption, and to help each other by compensating deviations. The proposed
approach seeks to enhance the power system, and to enable a prosumer society that takes account
social and environmental issues, as well as each prosumer’s quality of life.

Keywords: coordinated energy management; cooperative distributed protocol;
prosumer community; smart community; demand-side management; demand response

1. Introduction

The traditional power system is a uni-directional centralized system, where the generation is
controlled and the demand is mostly uncontrolled. It assumes that a large demand is aggregated,
so that consumption is made smoother, making the generation control easier, thus increasing stability
and reliability.

During the last 30 years, information and communication technologies have been introduced
in the generation, transmission and distribution systems of the power grid. These technologies are
commonly known as the “smartgrid” and have been used to improve the power system’s reliability.
In recent years, advanced countries (e.g., Japan, USA, Germany [1]) have shifted their priorities:
(i) to having a better management of the energy consumption; and (ii) to diversifying the generation
mix, all these mainly due to environmental concerns and demographics changes (e.g., decrease in
population size), or seeking to reduce cost and increase energy security [2]. As a result, these countries
have implemented demand management programs to suppress energy usage (e.g., through power
efficient appliances), and to reduce high consumption peaks (e.g., through the so-called demand
respond programs).
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An additional trend has been the recent rapid introduction of uncontrollable renewables (such as
Photo-voltaic (PV) and wind). This is the result of (i) the lower cost of renewables and batteries; and
(ii) government policies encouraging the installation of renewables (e.g., the feed-in tariff scheme).
As a consequence, more consumers have installed their own generation, energy storage and energy
management systems (EMS).

In addition to the energy management of individual users, the energy management of groups
of users has been addressed through the so called demand response programs, programs that have
been mainly used to increase stability and reduce cost. Although these program have had a positive
impact, their ability to control the power consumption is limited. These approaches usually only
manage controllable devices, with uncontrolled consumption and generation not being explicitly
considered. Therefore, they do not contribute much to the introduction of reneweables. Furthermore,
these approaches do not provide mechanisms for consumers and producers to exchange power or to
jointly manage their generation and consumption. As a result, demand response cannot have a large
positive impact on the power system.

In summary, we are observing a rapid introduction of distributed uncontrollable renewables and
some advances in the ability to control the demand, in particular of individual users. The question
becomes how to manage distributed controllable demand, while taking into account uncontrollable
generation and uncontrolled consumption. This general question is the primary problem addressed
in this paper.

In this context, each user should be considered as potential prosumer, i.e., a consumer and
producer of energy, and therefore an energy management system for a society of prosumers is
needed. From the social point-of-view, the introduction of such a system implies that a new market
would emerge, where the users would be able: (i) to exchange energy and capacity; and (ii) to
coordinate power consumption and generation, among others (e.g., to decide which energy they want
to consume based on origin and source type). To implement such prosumer community, a new energy
management approach is required.

Most existing demand management technologies have been developed from the
generation-side’s point-of-view and for the grid (thus the term “smart-grid”). However, such
systems should be designed from the user’s point-of-view, i.e., from the demand’s point-of-view.
Our work focuses on the latter direction, and to refer to our primary goal we use the term
energy management, instead of “smart-grid”.

When developing an energy management from the demand-side’s point-of-view, it is natural to
consider a decentralized management approach, in particular when each user is a potential prosumer.
Thus, similar to information networks where small-scale local networks are inter-connected and form
a bi-directional distributed network (the Internet) where two end-points can communicate, the energy
management system needs to be distributed with all end-points having the ability to control their
consumption and generation, and it needs to be bi-directional, with any two end-points being able to
coordinate (or exchange) power consumption and generation [3].

Any energy management system, distributed or not, needs to consider the energy markets it
interacts with. The structure of existing energy markets is basically the same across countries and
regions: a day-ahead market seeks to determine (plan) the generation for the day –using economic and
technical criteria–, while a real-time market seeks to minimize deviations from the intended generation
(as defined in the day-ahead market). While large consumers take these markets into account in
their energy management, energy management system associated to small consumers commonly
manage these markets independently (e.g., “day-ahead” through time-of-use (TOU) prices, and
“real-time” through critical-peak-prices (CPP) or curtailment programs). To achieve an effective
management, demand management systems need to take into account both markets, and in particular
the day-ahead management needs to take into account the real-time management that will take place
during the day.
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Seeking to address the issues discussed above, in this work we augment the demand
management proposed in [4,5] using the ideas on demand management introduced in [3] and
the ideas on coordinated energy management of prosumer communities outlined in [6]. For this,
we propose an augmented power consumption management model that considers uncontrolled
power consumption and generation, day-ahead controllable power, and real-time controllable
power. We then use this model in the coordination of prosumer communities taking into account:
(i) uncontrolled consumption and generation (real-time and forecast); and (ii) power management
ability (real-time and scheduled) to achieve an intended power consumption, both at the agent and
community level.

Paper structure. We first present a preliminary discussion on energy management (Section 2),
including a brief discussion on policies and markets (Section 2.1), an outline of energy management
paradigms (Section 2.2), and a discussion on coordinated energy management (Sections 2.3 and 2.4).
Afterwards (Section 3) we present the proposed augmented power consumption management model
and (Section 4) we describe the use of the augmented model in the context of a community,
in particular for day-ahead coordinated energy management. Finally, we illustrate and validate the
proposed augmented coordinated energy management in simulation (Section 5), to later conclude
(Section 6).

2. Preliminaries: Government Policies, Markets and Management Paradigms

2.1. Government Policies and Market Structure

Modeling energy systems requires the consideration of many issues, from technical and
sustainability issues, to social and economical ones [7]. While these issues vary across countries,
geographical locations and time, if we look at the big picture, the differences across countries are
minor. In particular there are two key issues related to the introduction of uncontrollable generation
and due to government policies trying to modify the generation mix and liberalize the energy market.

We will use the Japanese case to illustrate these issues. Let us first look at some context.
From April 2016, Japan is continuing with a long process to deregulate its energy system and to
change its energy mix. This process started several years ago, but it was disrupted and sped up after
the earthquake and Fukushima-accident in 2011, in particular after all nuclear reactors were shut
down. As a result two government policies were introduced to increase renewables and liberalize the
retail market.

One such policy is the introduction of Fit-In-Tariff (FIT) programs [8], which in Japan and many
countries seek to provide an incentive for the introduction of renewables. While this has promoted
the installation of PVs, it has had two consequences. First, it is not clear what users will do after
the FIT program period finishes (e.g., in the case of the 10-year program, small producers may not
be able to inject power back to the grid). Second, some power systems started to apply restrictions
to the further installation of uncontrollable renewables, due to their limited controllable generation
capacity (such restrictions have been applied in Kyushu, Japan). These two problems may slow down
the integration of renewables, but this could be alleviated with the help of advanced demand energy
management systems.

A second policy that has taken place in many countries is the deregularization of the energy
market. In the case of Japan, a liberalization process started several years ago and will go through an
important change in 2016 [2,9,10], where the power and gas retail markets will be completely opened
In this power market, the retailers need to buy (in advance) power for every 30-min time slot, and later
to manage, in real-time, deviations from the intended power consumption to avoid penalties. Thus, a
retailer should have the ability to plan (day-ahead) the power usage, to update the plan (hour-ahead),
and to manage controllable power (in real-time) under uncontrolled consumption and generation.

In this context we propose an augmented coordinated energy management system for prosumer
communities that we think is of interest for Japan and others around the world, for instance
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the European Union and New York where power generation and retail is already liberalized and
where FIT programs have been used. Before going into the proposed augmented coordinated
energy management system, in the remaining of the present section we give a brief discussion
on existing energy management paradigms, and present the basic formulation of coordinated
energy management.

2.2. Energy Management Paradigms

Supply Management. The conventional power system is designed based on three main
assumptions [11–13]: (i) the generation is controllable; (ii) the demand is uncontrollable (but can be
forecast); and (iii) the generated power is distributed from a central location to the consumers. Taking
these into account, four supply management mechanisms are used to maintain stability and reduce
economic cost: (i) unit commitment; (ii) economic dispatch; (iii) frequency restoration mechanism;
and (iv) contingency reserves. Unit-commitment and dispatch are used for scheduling generation and
for online control of generation, respectively, and they are managed by a system operator seeking to
reduce total economic cost. Frequency restoration is required due to the difference between nominal
demand and scheduled generation, while contingency reserves are required to respond when large loss
of power supply occurs.

Demand Management. Given that power consumption depends on humans’ living activities, in
the supply management described above, the power consumption is not controlled. This can cause
high consumption peaks, which requires expensive operational reserve just to supply enough power
during those high peaks. Thus, demand management methods have been introduced: (i) to reduce
peaks of very high demand (to reduce costs); and (ii) to avoid blackouts (in particular at times of
energy scarcity).

2.2.1. Demand Management Strategies

Given that energy supports living and work activities, any demand management should:
(i) fulfill the user’s Quality of Life (QoL), and at least satisfy minimum QoL requirements (i.e., the
user has a lower bound in the required energy); (ii) control the power consumption timing (rather
than only reducing total consumption); and (iii) consider that part of the power consumption is
uncontrollable due to the human living activities. In the context of this trade-off between QoL and
power control, a question that rises is who implements the demand management. In that sense,
demand management methods can be arranged in two broad categories: demand management from
the supply-side and from the demand-side.

Demand Management from the Supply-Side

Methods in this category are commonly known as Demand Response (DR) [14–17] and used to
avoid peaks of high demand (to reduce cost) and blackouts (due to consumption larger than available
generation). To avoid confusion, we use the term “Demand Response” only to refer to methods
that implement a demand management from the supply-side. DR approaches are centralized, where the
supply-side manages the demand through an “aggregator” that sends a top-down control signal
to the demand (see Figure 1a). The aggregator serves as an intermediary between generation and
demand, by managing the demand to achieve an intended power consumption pattern.
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(a) (b)

Figure 1. Demand management paradigms implementations: (a) demand management from the
supply-side; and (b) demand management from the demand-side.

DR strategies can be grouped in two categories:

• Event-based: an aggregator remotely controls appliances (and the associated loss or gain in
QoL), with the control taking place at particular events. Examples include direct load control,
emergency programs, curtailment programs, and demand bidding programs.

• Price-based: an aggregator sends the same price-signal to all users, seeking to modify
their consumption patterns. Based on the price signal, each user independently decides
its power usage. Examples include time-of-use (TOU), critical-peak-pricing (CPP), and
real-time-pricing (RTP).

Among all DR approaches, it has been argued [11] that (event-based) direct load control is
the best alternative from the control point-of-view. However, it has the drawback of remotely
controlling the appliances, making it difficult to manage QoL and to integrate uncontrollable
distributed generation.

On the other hand, price-based DR allows each user to self manage his/her trade-off between
QoL and cost, but the price-based top-down control (see Figures 1a and 2a) has limitations in the
ability to control aggregated demands [11,18]. There are two main reasons for this. (i) Each user
decides his/her power usage without communicating with the aggregator after receiving the price
signal. Thus, it works as a feed-forward control; (ii) All users receive the same price signal, which may
cause them to respond in a similar way (e.g., using power at the same time). Such a feed-forward
control that uses the same price signal to control many users requires an accurate model of the users’
behavior, model that is difficult to obtain due to the unpredictable nature of human living activities
and to privacy issues.

To address these issues, variants of the basic price-based DR approach have been
proposed: [19,20] proposed to measure response and to control demand with a (randomized)
engineering signal rather than a market price, whereas [21,22] suggested to add constraints to the
price based scheme. Dynamic pricing has been also proposed, but it can introduce instability and
volatile prices and loads [23].

In summary, DR limitations include: (i) event-based methods cannot manage the consumption
pattern without having an important impact on the users’ QoL; and (ii) price-based methods cannot
fully manage the consumption pattern. In addition, DR approaches cannot provide functionalities
such as power exchange or coordination among users, nor handle distributed generation.
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(a)

(b)

Figure 2. Control schemes. Example for two users, each one consisting of an energy management
system (EMS) controlling a single appliance. (a) A feed-forward control is realized, with all users
responding to the same price signal; (b) A feedback control is realized through the coordination
(communication) among EMSs.

Demand Management from the Demand-Side

During the last few years, the distributed management of power usage has been proposed
(see, e.g., [18,24–27]), where the users implement a distributed control and exchange information
to achieve the energy management. In the literature, this kind of approach has been refereed to
as distributed DR [27] and coordinated DR [18]. These methods can be characterized as demand
management from the demand-side.

While these methods have shown promising results, most of them address the same issues
of demand response, but in a distributed manner. Some of the issues not addressed by these
methods include:

• The energy management does not take QoL into account (e.g., in [28–30]): the formulations
consider cost-based functions or assume linear / quadratic dynamic models of power usage.

• They do not consider a common goal for the group, but just the goal of each agent in the group.
• They consider not only the management of the demand, but also the management of the grid

(transmission, distribution, and energy hubs). Whereas managing the grid is important, we think
the energy management of the demand should be done independently of the underlying grid.

We think that a demand management from the demand-side approach should address the following
challenges: manage the demand in a fully responsive fashion, allow adjusting the consumption
pattern in a general way (e.g., to compensate fluctuating uncontrollable renewables), allow agents to
manage their own QoL, and allow them to exchange or coordinate their consumption and generation.
Existing methods do not address all of these challenges.

2.3. Coordinated Energy Management

Coordinated energy management was proposed in [5], extended in [4], and its concept described
in [6]. It belongs to the demand management from the demand-side category, but differs from other
methods in this category in the problem it tries to solve and in the management approach. In the



Energies 2016, 9, 562 7 of 27

present section we will revisit its main ideas and basic formulation. In a nutshell, coordinated energy
management seeks:

• To allow each agent to manage its QoL and associated power consumption and generation.
• To allow each user to be a prosumer (i.e., a producer and a consumer).
• To allow prosumers to form a community and jointly manage their power usage taking into

account a common goal for the community (e.g., reduce cost, increase use of renewables, etc.)
• To achieve full responsiveness in energy management (e.g., that controllable consumption is able

to match uncontrollable generation and consumption at all times, instead of just seeking to reduce
economical cost, increase stability or respond to external requests).

This is achieved by enabling the users to communicate and coordinate their power consumption
and generation. This communication implements a feedback control loop among EMS agents (see
Figure 2b), which enables better responsiveness in the control (i.e., fast and predictable control).

To better illustrate coordinated energy management, in the following we will contrasts it against
price-based demand response, which is the most popular demand response program. We start by
noting that price-based demand response can be understood as a best-effort a group of independent
users, while coordinated energy management implements a best-effort of the community (see
Figure 2a,b).

2.3.1. Day-Ahead Power Consumption Coordination Formulation

Let us assume a community consisting of N = |N | agents, with each agent i ∈ N having an
associated decision variable xi ∈ RT representing the power consumption profile of agent i, and T
the number of time slots. The power used by agent i at time slot t, xi,t, can be positive (consumption)
or negative (generation). The power profile xi is controlled by an energy management system (EMS),
and we will refer to this EMS as agent (an appliance, household, factory, office, etc.).

To model the community, a cost function is associated to each agent, fi(xi), and a global cost,
g(∑N

i=1 xi), is shared among all agents i ∈ N . The cost function fi(xi) of agent i can measure QoL,
economic cost/benefit, and physical constraints associated xi, while the cost function g(∑i∈N xi) can
measure economic cost/benefit, constraints, and flatness associated to the aggregated profile ∑i∈N xi.
Figure 3a presents a scheme of the coordination and the involved functions, and Figure 3b illustrates
the profile-based cost functions (see [5] for agent cost functions and examples).
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Figure 3. Cont.
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Figure 3. Prosumer community coordination. (a) Prosumer community and the associated
community cost g(∑N

i=1 xi) and agent cost fi(xi). The coordinated variable xi represents the power
consumption of agent i; (b) The agent’s cost function fi(xi) measures the difficulty to achieve xi,
which can be associated to quality of life (QoL), physical constraints and economic cost.

To coordinate the power usage taking into account the agents’ and the global cost functions,
the community solves the following optimization problem (known as the sharing problem):

minimize
(xi)i∈N

∑
i∈N

fi(xi) + g( ∑
i∈N

xi) (P1)

with xi ∈ RT ∀i ∈ N the decision variables. Note that the power price is not a decision variable.

2.3.2. Distributed Coordination Protocol

To solve problem (P1), the protocol introduced in [5] is used (extensions of this protocol have
been presented in [4,31,32]). This protocol is based on the Alternating Direction Method of Multipliers
(ADMM) [33], and it iteratively solves Problem (P1):

xk+1
i := arg min

xi

fi(xi) +
ρ

2
||xi − xk

i + bk||22 , ∀i ∈ N

with bk := x̄k − z̄k + ν̄k

z̄k+1 := arg min
z̄

g(Nz̄) +
Nρ

2
||z̄− x̄k+1 − ν̄k||22

ν̄k+1 :=ν̄k + x̄k+1 − z̄k+1

(1)

with iteration index k, and where ν̄ ∈ RT is a vector of Lagrange multipliers [34], ρ > 0 a
constant. Here we have used the notation ā to refer to the average of a set of variables {ai}i∈N
(i.e., ā = 1

N ∑i∈N ai). This algorithm yields convergence without assumptions such as strict convexity
of fi and g [33].

The iterative algorithm in Equation (1) allows a distributed negotiation (see Figure 4b): The first
step in Equation (1) is solved concurrently by each agent (agent i only needs to know bk), while the
second and third steps are evaluated by a coordinator, which aggregates {xk+1

i }i, to later calculate
x̄k+1, z̄k+1 and ν̄k+1, and finally broadcast bk+1 to all agents. Thus, to take part of the coordination,
agent i needs to solve the problem prox fi/ρ(v) = arg minx fi(x) + ρ

2 ||x − v||2, i.e., to implement a
proximal operator [35,36], while the coordinator has to implement a proximal operator and a linear
update. The broadcast variable bk guides the coordination and measures the gap between x̄k and
z̄k plus the scaled Lagrange multipliers ν̄k. After convergence x̄K = z̄K, and the equality bK = ν̄K

is fulfilled, values that can be interpreted as clearing prices of an exchange market [33]. Thus, the
coordination determines the optimal power consumption and the clearing prices.
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(a) (b)

Figure 4. Management architectures. (a) In price-based demand response (DR) the aggregator
determines the price signal and then each agent independently determines its power usage; (b) In
coordinated energy management, the agents, with the help of a coordinator, iteratively minimize the
community objective and each agent’s objective.

This protocol is a power profile-based, with the profiles xk
i communicated (negotiated) by

the agents via the coordinator, and it differs largely from existing methods. In event-based DR
methods (e.g., direct load control) the appliances’ control variables (device starting time, A/C set
point, etc.) are managed by an aggregator, while in the case of price-based DR, the control is done
through price-signals.

2.4. Illustrative Example

We illustrate the basic coordination approach in a day-ahead planning scenario, where N agents,
each consisting of a single appliance balance their power consumption. In this setting, xi ∈ RT

corresponds to the power consumption profile of agent i, with T = 144 the number of time slots
(10-min per time slot; for a total duration of 24 h), and xi,t the power used by agent i at time slot t.
The results are presented for coordinated energy management and compared with a Time-of-Use
(TOU) price-based DR.

2.4.1. Coordinated Energy Management

We assume the community seeks to flatten the aggregated power profile v = ∑i xi, with shared
cost given by g(v) = β||v||22, with β = 2× 10−6 (note that other cost functions are possible: to match
a predefined consumption profile, to minimize peak consumption, etc. [4,5]). For the agents, we
consider a simplified model to illustrate the benefits of the coordination (see [5] for a generative
probabilistic model of agents/appliances that can be built using machine learning methods). The
dissatisfaction of agent i for selecting a profile xi is measured by:

fi(xi) = min
ti∈Ui
||ti − t0

i ||
2
2/σ2

i + Π[xi = ψi(ti)], with Π[v] =

{
0 if v is true

+∞ otherwise
(2)

where t0
i is agent’s i preferred power usage starting time, σi a measure of agent’s i starting time

flexibility (large σi implies larger flexibility), and {ψi(ti)}ti∈Ui the set of allowed profiles. In the
experiments, the agents have a preferred starting time t0

i uniformly distributed in [50, 75].
Second, each agent can have a load that can only be shifted, with profiles of the form

(in {ψi(ti)}ti∈Ui ):

xi = (0, . . . , 0︸ ︷︷ ︸
ti

, 1000, . . . , 1000︸ ︷︷ ︸
Td

, 0, . . . , 0︸ ︷︷ ︸
tr
i

), with ti + Td + tr
i = T (3)

and Td = 18 the consumption duration, ti the starting time (control variable), and tr
i the

remaining time.
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2.4.2. Price-Based Demand Response

We implement a simple price-based demand response in a framework similar to coordinated
energy management. We note that most price-based demand response programs can be formulated
as a two-step process (see Figures 1a and 4a). First, an aggregator determines the price signal using
an approximated model of the aggregated demand. Second, each user independently realizes its
power usage taking into account the received price signal, but without communicating again with
the aggregator nor with other users. This two-step process can be formalized as the following
optimization problem:

ȳ, p∗ = argmin
ȳ,p

g̃(Nȳ, p)

x∗i = argmin
xi

f̂i(xi, p∗) ∀i ∈ N
(P2)

The function g̃(Nȳ, p) is minimized by the aggregator and depends on the energy price p that
the agents pay, and the average power profile ȳ ∈ RT . We can think of p as price vector of the
same dimension T as ȳ. The function f̂i(xi, p), minimized by agent i, measures the cost of agent
i for selecting a profile xi given the energy price p. Given that we do not have a model of g̃, we
evaluate the response of users to various price signals p (instead of estimating the optimal price,
which by itself is a difficult problem). The cost of agent i is given by f̂i(xi, p) = fi(xi) + ||xi||2Wp

,

with Wp = diagonal(p) and p ∈ RT a price vector, and agent i independently solves its optimization
problem (second equation in Problem (P2)).

2.4.3. Results and Discussion

We consider the case of N = 40 agents, with σi = 3 for all agents, and analyze the obtained
aggregated profiles. In Figure 5a, we can observe the profiles obtained for demand response with
a price signal of the form p(α) = (1, . . . , 1, α, . . . , α, 1, . . . , 1), for α ∈ {1, 1.2, . . . , 2.2}, while in
Figure 5b we can observe the power profiles obtained by the coordinated energy management during
the iterations of a single negotiation process. The best case of price-based DR obtained a peak
consumption about 6 kW (for α = 1.6), while coordination obtains a peak consumption of about
3 kW after 100 iterations (we use a value ρ = 0.1 × 10−6 to control the convergence speed of the
iterative algorithm). Also, price-based DR generates an aggregated profile that is always in the range
[50, 96], while in the case of coordination the load is spread over the range [40, 110]. Hence, in this
example, coordinated energy management performs a better control, almost halving the maximum
peak and flattening the profile over a wider range.
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Figure 5. Aggregated profiles. (a) Obtained power profiles for various DR price signals; (b) Evolution
of the aggregated coordination profiles. Note that the best case of price-based DR has a peak
consumption of 6 kW, while for coordination the peak consumption is 3 kW.

We note that we have used a very simple price-based DR with a flat critical peak price being
applied for a continuous period of time (a critical peak price (CPP)). Using price signals that are not
flat can improve the results for DR [6], but the coordination still obtains better results. Thus, DR
requires finding an appropriated price signal or using additional mechanisms (see also the discussion
variants of the basic price-based DR in Section 2.2.1). This illustrates that determining the optimal
price signal is one of the main difficulties of price-based DR, because it requires having an accurate
model of the agent’s response to price signals. On the other hand, coordinated energy management
does not use a price-based control, and therefore does not requires a model of the agent’s response
to price signals, but instead the agents use a power-profile based coordination to determine their
power consumption.

3. Augmented Prosumer Management Model

As discussed, we need an energy management system that considers each user as a potential
prosumer, and not just as a consumer, and for this we need a prosumer management model.
To model a prosumer, we assume she has controlled and uncontrolled appliances, possibly having
storage capacity (e.g., a battery), and (un)controlled generation (e.g., PV), as shown in Figure 6.
Such prosumer can share part of her controlled and uncontrolled power resources if part of
a community.

Private	  
Shared	  (public)	  

Controllable	  
Uncontrollable	  

Community	  

Appliances	  PV	   Ba=ery	  

Prosumer	  agent	  

Figure 6. A prosumer agent has uncontrolled and controlled power resources (storage, generation,
appliances, etc.), and part of the resources can be shared with the community.
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In this context, a prosumer agent (we will the term agent to refer to the energy management
system used by the prosumer) has two primary goals: (i) To plan off-line (in advance) the intended
power consumption. (ii) To achieve in real-time the intended power consumption. A third goal, not
considered it in the current paper, consists of updating the power consumption plan. The off-line and
real-time management goals are intrinsic to most energy markets: there are costs due to the intended
power consumption and due to deviations from the intended consumption. At the retailer/utility
level, these costs are managed in separate programs and for a group of users (e.g., TOU and CPP
for day-ahead and real-time managements), but they should be managed at the prosumer level in an
integrated manner.

Due to the nature of human living activities and to external conditions (e.g., weather),
occasionally, an agent will not be able to achieve its intended power consumption. But, if the
prosumer belongs to a community, the agents in the community can help each other by compensating
(counterbalancing) each other’s deviations. In the following we present an augmented model for
such prosumer.

3.1. Augmented Prosumer Model

We consider three aspects to model the power consumption (and generation) of a prosumer
agent: (i) controlled/uncontrolled; (ii) off-line/real-time; and (iii) shared/private resources. Based on
these three aspects, we decompose the power consumption in 8 components, as presented in Figure 7.
The top/bottom of the figure indicates off-line /real-time consumption. The left-/right side indicates
controllable/uncontrollable resources. Shared/private resources are shown in the outer/inner parts
of the diagram. Note that here off-line refers to an energy management that is done in advance:
week-ahead, day-ahead, hour-ahead, etc.

Devia&on	  	  
&	  Tolerance	  

Compensa&on	  	  
&	  Capacity	  

Consump&on	  &	  Genera&on	  	  
(prosumer)	  Controlled	   Uncontrolled	  

Offline	  
(Forecast)	  

Real-‐&me	  
(Fluctua&on)	  

Offline	  
(Scheduled)	  

Real-‐&me	  
(Flexibility)	  

Shared	   Shared	  

Shared	   Shared	  

Private	  Private	  

Intended	  
Consump&on	  

Shared	  

xi ∈ RT

ωi ∈ Si
κ δi ~ Fi

σ

x̂i
c ∈ RT

xi
c ∈ RT xi

u ∈ RT

x̂i
u ∈ RT

ω̂i ∈ Ŝi δ̂i ∈ RT

	  Off-‐line	  management	  

Real-‐&me	  management	  

+	  

Private	  Private	   +	  

Shared	  

Shared	  

δi
+ ~ Fi

+ωi
+ ∈ Si

+

xi
c,+ ∈ RT xi

u,+ ∈ RT

Figure 7. Augmented prosumer model. The power consumption is decomposed based on
three aspects: controlled/uncontrolled, off-line/real-time, and shared/private resources, giving a
total of eight components. In total, three components are shared (shown in red boxes/arrows) and can
be jointly managed with the community: the intended power consumption xi, the deviation δi ∼ Fσ

i ,
and the compensation ωi ∈ Sκ

i . See main text for details.
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3.1.1. Power Consumption Decomposition

The power consumption of agent i is decomposed in controlled and uncontrolled components.
(i) The controlled component is given by xc,+

i + ω+
i ∈ RT , and it is further decomposed in

off-line controllable power xc,+
i = xc

i + x̂c
i , and real-time controllable power ω+

i (flexibility);
(ii) The uncontrolled component is given by xu,+

i + δ+i ∈ RT , and it is further decomposed in off-line
uncontrolled power xu,+

i = xu
i + x̂u

i , and real-time uncontrolled power δ+i (fluctuation). The private
off-line components add to zero (x̂c

i + x̂u
i = 0), and they are not considered in the following.

The private real-time components (controlled and uncontrolled) add to zero (ω̂i + δ̂i = 0), and we
will use this relation to manage part of the fluctuation.

The real-time controllable power is decomposed as ω+
i = ωi + ω̂i with ω+

i ∈ S+
i , where the

set S+
i represents the degree of control of ω+

i , and where ωi ∈ Sκ
i is the shared real-time controllable

power (the compensation) and ω̂i ∈ Ŝκ
i is the private real-time controllable power. The relation between

the sets is given by S+
i = Sκ

i ⊕ Ŝκ
i , with ⊕ the Minkowski sum, and where call Sκ

i the capacity (set).
We recall that the Minkowski sum of the sets Si and Sj is given by Si ⊕ Sj = {a + b |a ∈ Si, b ∈ Sj},
and it is also known as the sumset.

The real-time uncontrolled power is decomposed as δ+i = δi + δ̂i, with δ+i ∼ F+
i , where the

function F+
i represents the degree of fluctuation of δ+i (we take F+

i as the probability density function
associated to δ+i or as an indicator function of the values δ+i can take) , and where δi ∼ Fσ

i is the shared
real-time uncontrollable power (the deviation) and δ̂i ∼ F̂σ

i is the real-time uncontrollable power. We
call Fσ

i the tolerance (set). The relation between these functions is given by F+
i = Fσ

i ∗ F̂σ
i , with ∗

being the convolution operation. We note that the Minkowski sum and the convolution operator are
related: the support of the convolution of two indicator functions can be expressed as the Minkowski
sum of the support of the indicator functions.

The controlled resources are used for three purposes: (i) to schedule consumption (off-line),
represented by xc

i ; (ii) to minimized deviations from the plan (in real-time), represented by ω̂i; and
(iii) to compensate deviations of other agents (in real-time), represented by ωi. On the other hand, the
uncontrolled part of the power consumption is decomposed in three parts: (i) power consumption
forecast (off-line), represented by xu

i ; (ii) private fluctuation eliminated by the agent, represented by
δ̂i; and (iii) deviation from the intended power consumption, represented by δi.

3.1.2. Shared Power Resources

Agent i can share three resources: its intended consumption, its deviation and its compensation
(see Figure 7). While the intended consumption is managed off-line, the deviation and compensation
are managed in real-time. However, an off-line management should consider what deviations may be
observed in real-time, and what is the available compensation ability. For this the tolerance and capacity
are also shared. The shared resources are:

• Intended consumption. It is given by xi = xc
i + xu

i ∈ RT , with xc
i the shared scheduled power and

xu
i the shared forecast power (xu

i may include expected PV generation, A/C consumption, etc.).
• Compensation and capacity. The compensation is given by ωi ∈ Sκ

i and represents the shared
real-time controllable power. The set Sκ

i represents the capacity to control power consumption
in real-time. We use the term capacity to refer to the maximum ability to control the power
consumption. Examples include controlling a battery, a lighting (by changing the illumination
level), and an A/C (by changing the temperature set-point) . Thus, agent i plans the set Sκ

i off-line
and controls ωi ∈ Sκ

i in real-time.
• Deviation and tolerance. The deviation δi ∼ Fσ

i can be derived from δ̂+i = δi + δ̂i and ω̂i = −δ̂i,
obtaining: δi = δ̂+i − ω̂i. Thus, the amount of shared deviation δi is depends on the fluctuation
and it is managed using the private real-time controllable power ω̂i. The function Fσ

i represents
the tolerance for the deviation δi and it can be modeled using a probability density function or an
indicator function of the values that δi may take (we give an example of this later).
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An agent that acts independently (not in a community) minimizes its deviations (δi ≈ 0) and
does not provide compensation (ωi = 0). However, such agent cannot eliminate all deviations
unless it has a large ability to control its power consumption. On the contrary, if the agent is part
of a community, it can receive help from others to minimize its deviation, and it can help others to
compensate their deviations. Thus, an agent can manage its intended consumption xi, compensation
ωi, capacity Sκ

i , deviation δi, and tolerance Fσ
i , for its own benefit, while also receiving help from the

community and contributing to it.

3.2. Augmented Device Model

A prosumer agent consists of one or more devices (appliances, storage, generation, etc.), so we
need to integrate these devices in the prosumer model. To do this, we first make an augmented
model for each device. Once we have the power decomposition model for each device p = 1, . . . , P:
xp

i , ω
p
i ∈ Sp

i , ω̂
p
i ∈ Ŝp

i , δ
p
i ∼ Fp

i and δ̂
p
i ∼ F̂p

i , the corresponding components are aggregated:

• Intended consumption: ∑P
p=1 xp

i , with xp
i ∈ RT the intended consumption of device p.

• Compensation (shared and private) ωi = ∑P
p=1 ω

p
i and ω̂i = ∑P

p=1 ω̂
p
i , and capacity (shared and

private) Si = S1
i ⊕ . . .⊕ SP

i and Ŝi = Ŝ1
i ⊕ . . .⊕ ŜP

i .
• Deviation (shared and private) δi = ∑P

p=1 δ
p
i and δ̂i = ∑P

p=1 δ̂
p
i , and tolerance (shared and private)

Fi = F1
i ∗ . . . ∗ SP

i and F̂i = F̂1
i ∗ . . . ∗ F̂P

i .

Thus, the capacity and tolerance sets are aggregated using the Minkowski sum or the
convolution operator.

This is illustrated in Figure 8 for the shared components.

Device	  
contributes to 

Controllable, offline 

Uncontrollable, offline 

Controllable, real-time 

Uncontrollable, real-time 

Cooker 

Boiler 

PV 

Battery 

Shared	  components	  

Intended consumption (xi ) 

Deviation (δi ) & Tolerance (Fi
σ )

Compensation (ωi )& Capacity (Si
κ )

Figure 8. Device aggregation example. A rice cooker can be scheduled (contributes to the
intended consumption) or used on-demand (contributes to the deviation). A battery can flatten the
intended consumption and provide capacity for compensation. Devices can also contribute to private
components (not shown in the figure).

To build each device’s model we require knowledge about the device: for controllable devices
we need a control model and/or sensed data, and for uncontrolled devices we can use historical
sensed data. The parameters of such models can be learned using machine learning or statistical
learning methods.

4. Augmented Coordinated Energy Management in Prosumer Communities

We assume a community of N = |N | agents, where agent i ∈ N has the ability to manage its
power consumption using the augmented model presented in the previous section. The question
is how to use this model to manage the intended power consumption, the deviation and the
compensation at the community level. This is done with the help of a coordinator, as illustrated



Energies 2016, 9, 562 15 of 27

in Figure 9. Each agent coordinates, off-line, the intended power consumption xi ∈ RT , the capacity
(set) Sκ

i , and the tolerance Fσ
i , while the deviation δi ∼ Fσ

i and the compensation ωi ∈ Sκ
i are managed

in real-time.

Demand-‐side	  management	  

Price Power 
Coordinator	  

Power  
consumption 

Compensation & Capacity 

Deviation & Tolerance 

Prosumer	  2	  

Prosumer	  1	  

δi ~ Fi
σ

ωi ∈ Si
κ

xi ∈ RT

Figure 9. Prosumer community coordination scheme (example for two prosumers). The prosumers
coordinate off-line and real-time control variables via a coordinator. The dotted green lines indicate
off-line management: power consumption xi, capacity Sκ

i , tolerance Fσ
i . The solid blue lines indicate

real-time management: compensation wi and deviation δi.

During the real-time management, the community minimizes the deviation ∆ = ∑i δi using the
community compensation Ω = ∑i ωi such that the deviation is compensated ∆ + Ω = ∑i (δi + ωi) ≈ 0,
with each agent minimizing δi while fulfilling that δi ∼ Fσ

i or δi ∈ supp(Fσ
i ).

In the off-line management the community manages its intended consumption x = ∑i xi,
its capacity Ψκ and tolerance Σσ, with its capacity given by Ψκ = Sκ

1 ⊕ . . . ⊕ Sκ
N , and its tolerance

given by Σσ = Fσ
1 ∗ . . . ∗ Fσ

N . To achieve the real-time compensation of deviation (Ω + ∆ ≈ 0),
the community needs enough capacity to compensate the deviations (supp(Σσ) ⊂ Ψκ), which could
be ensured off-line.

4.1. Augmented Day-Ahead Coordination

In the off-line management, the community coordinates its intended consumption
x = ∑i xi, capacity Σσ and tolerance Ψκ . To do this, we parametrize the capacity
and tolerance of each agent i as Sκ

i = Sκ
i (κi) and Fσ

i = Fσ
i (σi), with κi, σi ∈

RT . Furthermore, we only allow a symmetric capacity set Sκ
i (κi) and a symmetric

tolerance Fσ
i (σi) (private sets/functions do not need to be symmetric). The set Sκ

i is
symmetric if ∀ωi ∈ Sκ

i , with ωi = (ωi,1, . . . , ωi,t . . . , ωi,T), we have that (ωi,1, . . . ,−ωi,t . . . , ωi,T) ∈ Sκ
i .

Then, we can write the community capacity as Ψ(κ) = Sκ
1 ⊕ . . . ⊕ Sκ

N with κ = ∑i κi, and the
community tolerance as Σ(σ) = Fσ

1 ∗ . . . ∗ Fσ
N with σ = ∑i σi.

Then, we can formulate the augmented day-ahead coordination as a sharing problem (similar to
Problem (P1)):

(x∗i , σ∗i , κ∗i )i∈N = arg min
(xi ,σi ,κi)i∈N

∑
i∈N

fi(xi, σi, κi) + g( ∑
i∈N

xi, ∑
i∈N

σi, ∑
i∈N

κi) (P3)

where fi(xi, σi, κi) is the cost of the agent i ∈ N , with xi, σi, κi ∈ RT
+ the decision variables of agent

i, and g(x, σ, κ) is the cost shared among all agents i ∈ N . This optimization problem can be solved
using the ADMM-based algorithm in Equation (1) and the distributed implementation in Figure 4b
by simply concatenating the profiles xi, σi, κi, and defining the concatenated broadcast signal.
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Agent cost

The cost function of agent i, with ui ∈ Ui the device control variable, is formulated as:

fi(xi, σi, κi) = min
ui∈Ui

f u
i (ui) + f x|u

i (xi, ui) + f σ,κ|u
i (σi, κi, ui) + f x

i (xi) + f σ
i (σi) + f κ

i (κi) (4)

The first three components of Equation (4) depend on the control signal ui:

• f u
i (ui) can measure loss in QoL associated to the device operation mode (due to control signal ui),

• f x|u
i (xi, ui) can represent soft-constraints (e.g. encode achievable profiles xi due to control ui),

• f σ,κ|u
i (σi, κi, ui): can measure the agent’s ability to control deviation,

where the control variable ui may include appliance mode control, battery charge/discharge control,
generation control, etc. The last three components in Equation (4) can be associated to:

• f x
i (xi): economical cost of profile xi,

• f σ
i (σi): penalty of deviating from the power profile plan, and

• f κ
i (κi): benefit of reserving capacity for the community.

Community cost

Given x = ∑i∈N xi, σ = ∑i∈N σi and κ = ∑i∈N κi (the community’s aggregated power, deviation
and capacity, respectively), the shared cost function for a community is defined as:

g(x, σ, κ) = gx(x) + gσ,κ(σ, κ) (5)

where the components of g can measure:

• gx(x): the cost associated to the intended community aggregated power consumption x, and
• gσ,κ(σ, κ): the degree of capacity relative to tolerance, where ideally, the community capacity

should be able manage any tolerance: i.e. supp (Σ(σ)) ⊂ supp (Ω(κ)).

4.2. Augmented Real-Time Coordination

We outline a possible protocol for the real-time coordination: every time an agent i cannot
follow its indented consumption profile (δi,t 6= 0), it sends a request to the coordinator indicating
its corresponding deviation δi,t. Once the coordinator has received agent’s i deviation, as well
as other agent’s deviations, the community compensates the aggregated community deviation.
The compensation applied by each agent j to compensate the deviation ∑i δi,t is determined
by the coordinator. A simple compensation management consists of a proportional control:
ωj,t = ∑i δi,t

κj,t
∑j κj,t

. i.e., using reserved capacity the deviation can be compensated. The details of such
control are out-of-scope of the present article.

5. Simulation Results

We consider two scenarios. The first scenario seeks to illustrate the augmented agent model
and the augmented day-ahead coordination. The second scenario seeks to validate the augmented
coordination using actual power consumption data. In both scenarios batteries provide off-line and
real-time control.

5.1. Augmented Agent and Coordination Example (Scenario 1)

We consider an scenario where a community of N = 40 prosumer agents coordinate their
power usage, with each agent having three devices: an appliance a that can be scheduled, a battery
b that can be controlled, and uncontrolled PV g. This augmented agent model is based on the
agent in Section 2.3, but we have added a battery and PV generation. This scenario illustrates
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how the augmented agent model is built and provides example results for the off-line (day-ahead)
coordination.

5.1.1. Device Models

Appliance

We consider a controllable appliance a, with a power profile xa
i = ψi(τi), where τi ∈ Θi is

the control variable representing the starting time (it is the same model used in Section 3.2; see
Equation (3), etc.). We assume that once the appliance a has been scheduled, its power consumption
xa

i does not change. Thus, this device does not contribute deviation nor compensation: Sa
i = {0} and

Ŝa
i = {0} (i.e., ωa

i = ω̂a
i = 0), and Fa

i (δ
a
i ) = 0 ∀δa

i ∈ RT and F̂a
i (δ̂

a
i ) = 0 ∀δ̂a

i ∈ RT (i.e., δa
i = δ̂a

i = 0).

Battery

We assume a battery b with storage capacity Ci = 700 Wh, maximum charge/discharge rate
ymax

i = ±100W, and an initial/end charge C0
i = CT

i = Ci/2. The battery provides control
ability for flattening the prosumer’s off-line plan, private real-time control, and compensation.
The battery power consumption is yb

i = xb
i + ω̂b

i + ωb
i , with its state-of-charge (SOC) given by

SOCb
i = 1TC0

i + ∆dLyb
i ∈ RT , with ∆d = 1/6[h] the duration of a time slot in hours (for T = 144) and:

1T =


1
1
...
1

 ∈ RT , L =


1 0 · · · 0

1 1
. . .

...
...

...
. . . 0

1 1 · · · 1

 ∈ RT×T (6)

We allow the SOC to be in the range [Cmin
i , Cmax

i ], thus 1TCmin
i ≤ SOCb

i ≤ 1TCmax
i , and we

can write:

1TCmin
i ≤ 1TC1

i + ∆dL
(

xb
i + ωb

i + ω̂b
i

)
≤ 1TCmax

i (7)

from where we have Sb,+
i = Sκ

i ∗ Ŝκ
i ⊂ [1TCmin

i − ∆dLxb
i − 1TC0

i , 1TCmax
i − ∆dLxb

i − 1TC0
i ]. Using a

symmetric Sκ
i (κi) = {κ | −κi ≤ κ ≤ κi, κ ∈ RT} parametrized by κi and Equation (7), we then write :

1TCmin
i ≤ 1TC0

i + ∆dLxb
i ± ∆d

(
κb

i + κ̂b
i

)
≤ 1TCmax

i

κmin
i ≤ κb

i ≤ κmax
i

κ̂min
i ≤ κ̂b

i ≤ κ̂max
i

(8)

with the equations implicitly defining Sb,+
i , where 0T ≤ κmin

i ≤ κmax
i ≤ 1TCmax

i and 0T ≤ κ̂min
i ≤

κ̂max
i ≤ 1TCmax

i . Note that there are three variables xb
i , κb

i and κ̂b
i , where κ̂b

i represents the battery
private “capacity” set. Note that in this formulation we have enforced that the capacity at one
time-slot does not affect the capacity at a different time slot.

PV Generation

We consider a simple PV model. We assume the weather forecast says it will be cloudy, but it
might be sunny at times. The PV output (cloudy case) will be x̄g

i ∈ RT , but it may vary in the range
[x̄g

i , x̄g
i + σ̄

g
i ] with σ̄

g
i ∈ RT . See Figure 10a. We model this with a PV output xg

i = x̄g
i and a fluctuation
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in δ+i ∈ [0, σ̄i] (we assume there is no likelihood information of PV generation, but we know the upper
and lower bound at each time). We recall that Fg,+

i = Fσ
i ∗ F̂i, and δ

g
i = δσ

i + δ̂i, where we can define:

Fg,+
i (σi) =

{
1 if σi ∈ [0, σ̄

g
i ], σ̄

g
i ∈ RT

0 otherwise.
(9)

Note that if the probability density function were available for the PV (or some appliances),
alternative definitions for the tolerance Fg

i could be given, e.g.,: Fg
i = N (x̄g

i , σ
g
i ) for a Gaussian

distribution, Fg
i = U (−σm

i , σM
i ) for a uniform distribution, etc.

By parametrizing Fi and F̂i using σi and σ̂i respectively, we can rewrite the (day-ahead) PV model:

xg
i = x̄g

i

0 ≤ σ
g
i + σ̂

g
i ≤ σ̄

g
i

(10)
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Figure 10. Generation and Demand Response (DR) profiles. (a) Photo-voltaic (PV) generation assumes
it will be cloudy, but with some possible hours of clear sky; (b) Price-based DR total consumption
profiles (includes generation, scheduled appliance and managed battery): Each curve is obtained
using a different price signal. Note the scale difference with respect to Figure 11a in the y-axis.
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Figure 11. Augmented day-ahead coordination results. (a) Intended consumption, appliance +
generation, and battery (dis)charge. The coordination obtains an intended consumption with a peak
below 10 kW (DR obtains a peak in the range [20,36] kW; see Figure 10); (b) The capacity is always
larger than the tolerance, and complements the state-of-charge (SOC). The capacity and tolerance are
shown in Wh (by multiplying them by ∆d.)
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5.1.2. Device Model Aggregation

We aggregate the device models using the derived equalities, inequalities and parametrization
above, instead of explicitly using the capacity and tolerance sets. We first recall that the intended
consumption is given by xi = xa

i + xb
i + xg

i thus we can write it as:

xi = ψi(τi) + xb
i + x̄g

i (11)

where τi ∈ Θi, x̄g
i is fixed, and xb

i is related to the shared capacity and tolerance.
As for the tolerance, from the equality δ̂i = ω̂i, we can set σ̂i = κ̂i. We also have that σi = σ

g
i and

κ̂i = κ̂b
i . Then, by setting the private capacity to manage any private deviations in Equation (10), we

can write:

0 ≤ σi + κ̂i = σ̄i (12)

Then, combining Equations (12) and (8) we get the set of inequalities that define the relation
between the tolerance, capacity, and intended battery charge/discharge of the agent:

1TCmin
i ≤ 1TC0

i + Lxb
i ± ∆d (κi + σ̄i − σi) ≤ 1TCmax

i

κmin
i ≤ κi ≤ κmax

i

σmin
i ≤ σi ≤ σmax

i

−ymax
i ≤ xb

i ≤ ymax
i

C1
i + ∆dLxb

i,T = CT
i

(13)

with σmax
i = σ̄

g
i and σmin

i = 0. Here we have added a constraint to the final capacity C1
i + ∆dLxb

i,T
and a charge rate constraint that only considers the consumption xb

i . The capacity and tolerance are
given by Sκ

i (κi) = {κ | −κi ≤ κ ≤ κi, κ ∈ RT} and Fσ
i (σi) = supp

(
{σ | −σi ≤ σ ≤ σi, σ ∈ RT}

)
.

Note that the tolerance in Equation (13) is not necessarily symmetric, but it is considered symmetric
when shared.

5.1.3. Cost Functions

Agent cost. The cost function of agent i is defined as:

fi(xi, σi, κi) = min
τi ,yi∈Ui

f τ
i (τi) + f x|τ,y

i (xi, τi, yi) + f σ,κ|y
i (σi, κi, yi) (14)

with τi (appliance starting time), and yi (the battery dis/charge plan) the agent’s internal control
variables. For clarity we have changed notation, and used yi for the battery intended consumption,
i.e., yi = xb

i .
The function f τ

i (τi) = ||τi − τ0
i ||

2
2/s2

i , as in Section 2.4, measures the loss in deviating from the
preferred starting time for an appliance whose control is defined by its start time τi. We assume that
the appliance is scheduled and that it does not provide control ability during the day.

Using the constraint in Equation (11) we relate control variables to the intended power
consumption xi:

f x|τ,y
i (xi, τi, yi) = Π[xi = ψi(τi) + yi + x̄g

i ] (15)

with ψi(τi) the appliance power usage, yi the battery intended power usage, and x̄g
i ∈ RT the forecast

PV generation.
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The function f σ,κ|y
i (σi, κi, yi) encodes allowed tolerance and capacity while fulfilling constraints:

f σ,κ|y
i (σi, κi, yi) =βσ||σi||2 + βκ ||κi||2 + βy||yi||2

+ Π[1TCmin
i ≤ 1TC0

i + Lxb
i ± ∆d (κi + σ̄i − σi) ≤ 1TCmax

i ]

+ Π[κmin
i ≤ κi ≤ κmax

i ]

+ Π[σmin
i ≤ σi ≤ σmax

i ]

+ Π[−ymax
i ≤ xb

i ≤ ymax
i ]

+ Π[∆dLxb
i,T = CT

i − C1
i ]

(16)

The terms in βσ||σi||2 + βκ ||κi||2 + βy||yi||2 flatten the tolerance, capacity and
battery consumption.

Community Cost. We use a the community cost as in Equation (5):

g(x, σ, κ) = gx(x) + gσ,κ(σ, κ), with

gx(x) = β3||x||2

gσ,κ(σ, κ) = Π[∆dσt < ∆dκt − Cκ∀t]

(17)

with Cκ a minimum gap between deviation and capacity.
Using the defined cost functions, the day-ahead community coordination is formulated as

in Problem (P3), and solved using the ADMM algorithm in Equation (1) and the distributed
implementation in Figure 4b. The implementation details for solving the optimization
problems above are not included for clarity. In a nutshell, the equations are solved at the
device-agent-community level using a hierarchical architecture (similar to the one used in [4] for
inter-community coordinator). The optimization problems at the agent and at coordinator include
solving a quadratic programing problem.

The parameter values were set as follows Cmin
i = 0.05Ci, Cmax

i = 0.95Ci, κmin
i = 0T , κmax

i = Ci1T ,
C0

i = CT
i = Ci/2, βσ = 0.5, βκ = 0.1, βy = 0.01, and Cκ = 50[Wh].

5.1.4. Experimental Results

For comparison purposes, in addition to the augmented day-ahead coordination, we also include
the results of price-based DR. The device models and parameters used for coordinated energy
management and for price-based DR are identical. For price-based DR, we use the price-based control
model described in Section 2.4, but here each user has a battery that is used to flatten the intended
power consumption, as well as to eliminate fluctuations in real-time. Given that in DR the agents are
not part of a community, they do not need to share capacity nor to help each other to compensate
deviations. However, each agent needs to manage its possible deviations by itself.

When comparing the results (below) to the ones in Section 2.4, one should have in mind the
three additions in the current setup: (i) The augmented day-ahead management considers that a
real-time management will take place; (ii) PV generation is added and a battery is managed; (iii) The
battery is managed for flattening the intended power consumption and for real-time compensation
of deviation. These apply to DR and coordination. The results of the simulations are presented in
Figures 10 and 11.

Figure 10b. Price-based DR with batteries can reduce the consumption peak, with the consumption
peak being about (20 kW) in the best case. Note that this is similar to the result of the non-augmented
coordination without batteries in Section 2.4; see Figure 5b.

Figure 11a. The coordinated intended power consumption is presented (each agent manages
appliances, battery dis/charge and generation). We can see that the coordination helps further
reducing the largest consumption peak due to the appliances. The coordination obtains a flattened
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profile for the community intended consumption (∑i xi), with a small consumption peak (10 kW).
This peak is half the one obtained by DR with batteries (see previous point; Figure 10b).

Figure 11b. The obtained tolerance and capacity are coordinated, with the tolerance being lower
that the capacity at all times. This shows that the augmented coordination does not only manage the
power consumption (flattening the consumption and reducing the maximum peak in this example),
but it also manages the aggregated capacity (the community real-time control ability) and tolerance.

Figure 11b. This figure also shows the trade-off between the battery charge-discharge and the
capacity. We can observe that the state-of-charge is large until the time slot t = 45, where the
batteries start to discharge to help reducing the large consumption peak (see Figure 11a). Note that
the state-of-charge is complementary to the capacity, meaning e.g., that when the battery is almost
full, the capacity is small, while when the state-of-charge is half the capacity, the capacity achieves its
maximum.

In summary, the augmented day-ahead coordination plans the intended power consumption,
obtaining a flattened the power profile, while coordinating capacity and tolerance for a
real-time management.

5.2. Augmented Coordination Validation (Scenario 2)

We apply the augmented coordinated energy management in a second scenario consisting of a
community of prosumers having uncontrolled consumption and distributed batteries. The goal is to
validate the proposed methodology using actual power consumption data. We use a prosumer agent
model similar to the one used in the previous section, but now the agent does not have PV generation
and it cannot schedule appliances. On the other hand, each agent has appliance power consumption
that is not controlled and fluctuates freely. As before each agent has a controllable battery.

In this scenario we use historical power consumption data (i) to build the augmented prosumer
model used in the off-line coordination; and (ii) to validate the obtained coordination results
using consumption data from the same households. The historical data for each household is
split in a training data (to build the augmented model) and a test data (for validation). In this
way we can evaluate how does the obtained off-line coordination would behave in the real-time
coordination. More specifically, we study whether the community could compensate the actual
deviation in real-time.

We follow the augmented formulation presented in Section 4.2. Each agent i has an uncontrolled
consumption, for which historical consumption data is available, and a controllable battery of
capacity Ci = qi700 Wh. The parameter qi defines the battery capacity of agent i (we use various
battery sizes, parametrized by qi). As before, the battery provides ability to control the power
consumption: to flatten the intended power consumption, to manage deviations, and to manage
compensation ability.

The cost function of agent i is defined as (it does not consider a scheduled appliance):

fi(xi, σi, κi) = min
yi∈Ui

f x|y
i (xi, yi) + f σ,κ|y

i (σi, κi, yi) (18)

with yi the battery dis/charge plan of the agent (i.e., the agent’s internal control variable). As before,
for clarity we write yi for the battery intended consumption (yi = xb

i ). The intended power
consumption xi depends on the forecast appliance power consumption (x̄a

i ∈ RT) and on the battery
power usage (yi):

f x|y
i (xi, yi) = Π[xi = x̄a

i + yi] (19)

For the battery cost function f σ,κ|y
i (σi, κi, yi) we use the same model as in Equation (16), and for

the community cost function we use the same cost as Equation (17): g(x, σ, κ) = gx(x) + gσ,κ(σ, κ),
with gx(x) = β3||x||2 and gσ,κ(σ, κ) = Π[∆dσt < ∆dκt − Cκ∀t], with Cκ = 50[Wh].
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Historical operation power consumption data was used to build the agent model and to
validate the community coordination. This sensed data corresponds to consumption data for
N = 37 households collected in 2003 at various locations across Japan (residential consumption
data from the energy consumption DB available at http://tkkankyo.eng.niigata-u.ac.jp/HP/HP/
database/japan2/index.htm on 2016/06/04). The original data was available at 1 min resolution,
but it was averaged for the used time-slot duration (we use a 10 min time-slot for day-ahead (T = 144
time-slots, for a total of 24 h) and 1 h time-slots for week-ahead coordination (T = 120, 5 days)).
The consumption model of agent i used during the coordination is defined by three parameters:
the consumption range [σmin

i , σmax
i ], with σmin

i , σmax
i ∈ RT in Equation (16), and the forecast power

consumption x̄a
i in Equation (19). We simply estimated x̄a

i as the mid-value of the consumption
range x̄a

i =
(
σmin

i + σmax
i
)

/2. The range [σmin
i , σmax

i ] was obtained for each agent using historical
operational data (of that agent) as follows. For each time t, we first estimated the minimum and
maximum power consumption for a period including 1 h before and after time t considering data for
the same weekday at the same month. Once these maximum and minimum bounds were estimated,
we took 1.2 times the minimum and 0.8 times of maximum as the upper and lower fluctuation
bounds, respectively. Examples of these values can be observed in Figure 12. We note that the
actual consumption is outside these bounds not more than a handful of times a day for a few agents
(e.g., agent 1 at times t = 10, t = 120, and t = 140, and agent 6 at time t = 40, t = 120 and t = 130),
which can be considered as the user deviating from its common living pattern from time to time.
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Figure 12. Actual consumption and estimated fluctuation range (“upper” and “lower” in the figure)
for 6 out of the 37 households used in the experiments. Note that the figures have different scales.
See main text for details on the estimation of fluctuation range.

The battery capacity of agent i is given by Ci = qi700, and we consider three cases for the
community’s distribution of battery capacities: qi ∈ {0.1, 0.2, . . . , 0.5} (tiny), qi ∈ {1} (small), and
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qi ∈ {1, 2, . . . , 5} (mid-size). In each case the community average battery size was C̄ = 0.3 × 700
(tiny), C̄ = 700 (small), C̄ = 3× 700 (middle). In addition to presenting results for various battery
sizes, we also consider two off-line cases: day-ahead coordination and week-ahead coordination.

5.2.1. Results

Day-Ahead Augmented Coordination

Figure 13 summarizes the results for the augmented day-ahead coordination. In the figure, each
row corresponds to different battery sizes (from top to bottom: tiny, small, mid size), and the columns
show: (Left) tolerance, deviation, capacity and compensation; (Center) intended consumption and
actual consumption, and (Right) imbalance. The imbalance for each time-slot t is measured by:

100
∣∣∣∣∑i χi,t−∑i xi,t+(δi,t+ωi,t)

∑i xi,t

∣∣∣∣, with χi,t the actual power consumption of agent i at time t. From Figure 13

we observe that:

• When a tiny battery size per agent (C̄ = 0.3× 700 Wh) is considered, the community does not
have enough capacity to compensate all deviations Figure 13a, cannot flatten the intended power
profile Figure 13b, and generates some imbalance Figure 13c.

• When a small battery size (C̄ = 700 Wh) is considered (second row), the community has more
capacity to compensate deviations Figure 13d, flattens the intended power profile Figure 13e, and
eliminates almost all imbalance Figure 13f.

• When a mid battery size (C̄ = 3× 700 Wh) is considered, the community has a large capacity
Figure 13g, furthers flattens the intended power consumption profile Figure 13h and generates
no imbalance Figure 13i.

Week-Ahead Augmented Coordination

Figure 14 summarizes the results for the augmented weak-ahead coordination. These results are
very similar to the ones obtained for day-ahead coordination:

• A tiny battery size per agent (C̄ = 0.3× 700 Wh) can slightly reduce imbalance but cannot flatten
the intended power profile Figure 14a–c.

• A small battery size (C̄ = 700 Wh) (second row) has much more capacity to compensated
deviations, slightly flattens the intended power profile, and eliminates almost all imbalance
Figure 14d–f.

• A mid battery size (C̄ = 3× 700 Wh) obtains a large community capacity and compensates all
deviations, while furthers flattening the intended power consumption profile and generating no
imbalance Figure 14g–h.

In summary, these results indicate that a community of agents coordinating their control ability,
here given by distributed batteries, could eliminate imbalance and flatten the intended power
consumption when a mid size-battery capacity (C̄ = 3 × 700 Wh) is installed at each household.
Even when the agents use a small battery (C̄ = 700 Wh), the community could eliminate almost
all imbalance, while slightly flattening the power consumption profile, thanks to the coordination of
intended power consumption, capacity and tolerance. Note that the used community cost function
gives more priority to having enough capacity when required over flattening the power consumption
(in Equation (17) a hard constraint was used for the tolerance and capacity). Thus, if required, more
importance can be given to flattening the intended power consumption by using a soft-constraint on
the tolerance and capacity.
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Figure 13. Augmented day-ahead coordination. Date: 2003/02. Rows indicate battery size:
C̄ ∈ {0.3 × 700, 700, 3 × 700}Wh. Left column: capacity, tolerance, deviation and compensated
deviation. Middle column: actual, intended and appliance consumption. Right column: community
imbalance (see main text for definition) for two different dates (2003/02 and 2003/04). Note:
the figures have different scales in the y-axis for easier visualization. (a) C̄ = 0.3 × 700 Wh;
(b) C̄ = 0.3× 700 Wh; (c) C̄ = 0.3× 700 Wh; (d) C̄ = 700 Wh.; (e) C̄ = 700 Wh.; (f) C̄ = 700 Wh;
(g) C̄ = 3× 700 Wh; (h) C̄ = 3× 700 Wh; (i) C̄ = 3× 700 Wh.
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Figure 14. Cont.
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Figure 14. Augmented week-ahead coordination. Date: 2003/02. Rows indicate battery size:
C̄ ∈ {0.3 × 700, 700, 3 × 700} Wh. Left column: capacity, tolerance, deviation and compensated
deviation. Middle column: actual, intended and appliance consumption. Right column: community
imbalance (see main text for definition) for two different dates (2003/02 and 2003/04). Note:
the figures have different scales in the y-axis for easier visualization. (a) C̄ = 0.3 × 700 Wh;
(b) C̄ = 0.3× 700 Wh; (c) C̄ = 0.3× 700 Wh; (d) C̄ = 700 Wh; (e) C̄ = 700 Wh; (f) C̄ = 700 Wh;
(g) C̄ = 3× 700 Wh; (h) C̄ = 3× 700 Wh; (i) C̄ = 3× 700 Wh.

6. Conclusions

We have presented an augmented model for coordinated energy management for prosumer
communities that allows users in a community to jointly manage their power consumption and
generation. The proposed energy management implements a “demand management from the
demand-side” approach where each user is a potential producer and consumer (i.e., a prosumer) that
manages its Quality of Life, and where all agents receive help from the community and contribute
to it.

The proposed augmented coordination scheme uses a control strategy that implements a
feedback in the control, giving the community a large ability to manage the its power resources,
and furthermore it considers off-line and real-time ability to manage a power under controlled and
uncontrolled devices. This is done using an augmented agent management model that is integrated
in a community coordination protocol. This augmented model manages, in its off-line stage, each
agent’s intended power consumption, (compensation) capacity and (deviation) tolerance such that in
real-time the agent and community has control ability to minimize deviations in real-time.

We presented results to in two scenarios where we illustrate the augmented model and its use
in the community coordination. In the first case we observed that the proposed approach presented
good control capabilities, allowing to flatten the power consumption while reserving control ability
for a real-time management. In this scenario we observed that the augmented coordination has a
better control ability than a simple price-based demand response program. In the second case we use
actual consumption data to validate that the off-line management reserves enough control resources
for the real-time management. In this results we observed that the community obtained a flattened
intended power consumption, while coordinating capacity and tolerance for a real-time coordinated
management, even when small size batteries are installed by the prosumers, thus successfully
coordinating the ability to control the power consumption under uncontrolled consumption.

We believe that the proposed augmented coordinated energy management is a compelling
solution for enhancing the power system, for implementing a prosumer society where the users can
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help each other, and for enabling the further introduction of distributed renewables, all this by putting
the focus on the demand-side (namely on the user) instead of on the grid or the generation-side.
As future work we are interested in (i) studying how the community can implement the real-time
management, in particular taking into account distributed uncontrollable generation; (ii) analyzing
user incentive and fairness issues, as well as allowing each prosumer to select his/her preferred
energy type and energy source; and (iii) testing the proposed approach in a real-world system.
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