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Abstract: Local electricity generation and sharing has been given considerable attention recently for
its disaster resilience and other reasons. However, the process of designing local sharing communities
(or local grids) is still unclear. Thus, this study empirically compares algorithms for electricity sharing
community clustering in terms of self-sufficiency, sharing cost, and stability. The comparison is
performed for all 12 months of a typical year in Yokohama, Japan. The analysis results indicate that,
while each individual algorithm has some advantages, an exhaustive algorithm provides clusters
that are highly self-sufficient. The exhaustive algorithm further demonstrates that a clustering result
optimized for one month is available across many months without losing self-sufficiency. In fact,
the clusters achieve complete self-sufficiency for five months in spring and autumn, when electricity
demands are lower.

Keywords: electricity sharing; community clustering; vehicle to community system; graph partitioning;
simulated annealing

1. Introduction

While electricity is a fundamental requirement for sustainable urban development, electricity
supply can be interrupted by natural or man-made disasters, including earthquakes and cyber-attacks.
In Japan, the nuclear power plants in Fukushima were seriously damaged by the 2011 Great East Japan
Earthquake, and a massive blackout occurred in the Tokyo Metropolitan area.

Distributed (or decentralized) generation systems [1] are a useful alternative to centralized
generation systems. A distributed system generates electricity locally using renewables, and distributes
the electricity to a local grid. Decentralized generation systems, which increase energy resilience
and decrease carbon emission, have been given considerable attention in recent years (see, [2]).
Implementation of decentralized systems would be particularly important in Asian countries, where
populations are increasing rapidly, while natural disasters are simultaneously increasing in frequency
and intensity owing to climate change (see, e.g., [3]).
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A distributed electricity generation system consists of the following elements: (i) electricity
generators; (ii) electricity storage; and (iii) a local grid. Electricity can be generated by use of wind
generators, photovoltaic (PV) panels, fuel cell generators, and so on. These options are desirable
because of their stability and low emissions [4], and although they are somewhat costly [5], the costs
have been declining. For instance, the cost of PV electricity generation is now competitive with
conventional, centralized electricity generation [6]. On the other hand, regarding electricity storage,
use of electric vehicle (EV) batteries has extensively been discussed (e.g., [7–9]) and reviewed by [10].

A decentralized electricity production system that integrates PV for generation and EVs for
storage is a promising option. In the vehicle-to-community (V2C) system [11–13], electricity generated
by mass-adopted PVs is stored in EV batteries, and then shared within the local community.

The potential for using EV batteries as electricity storage devices has been extensively discussed
in recent years (e.g., [14,15]). The battery capacity of the Leaf, a popular EV produced by Nissan Motor
Co., Ltd. [16], is 30 kWh, whereas the daily household electricity consumption in Japan was 14.5 kWh
in 2014 (source: [17]). Thus, one battery could support typical household consumption for two days.
Sharing electricity in EV batteries through the V2C system is especially helpful in an emergency or
during the daily peak demand.

Yamagata and Seya [12] demonstrated that a V2C system provides sufficient electricity for
households in many of the local communities in Yokohama, Japan. However, they also showed
a significant regional imbalance, with the storage capacity (i.e., the number of EVs) being insufficient
in some regions and excessive in others. Their study highlights the importance of designing a local
grid that balances the local storage capacity with the local PV generation ability. Unfortunately, how to
design such local communities is largely unexplored.

As a first step towards energy self-sufficiency, this study compares community clustering
algorithms, and discusses how to design electricity self-sufficient local communities for the V2C
system. The paper is organized as follows: Section 2 describes situations relating to EV and PV in Japan;
Section 3 explains the clustering algorithms used; Section 4 empirically compares these algorithms,
and clarifies advantages and disadvantages of each algorithm in terms of the sharing community
clustering; and, finally, Section 5 contains discussions on the analysis results, and our conclusions.

2. EV and PV in Japan

Figure 1 plots the numbers of EVs, hybrid EVs (HEV, vehicles that use both EV and a combustion
engine, switching based on driving conditions), and PVs in Japan. As can be seen, EV use increased
rapidly after the Automotive Industry Strategy was launched in 2010, encouraging EV production and
promotion. PV use increased rapidly beginning around 2009, when a surplus PV electricity-purchasing
scheme began. The increase accelerates again around 2012, when the purchasing scheme changed to
the feed-in-tariff (FiT), which purchases all PV electricity. Although the market penetration percentages
of EV and HEV are still only 0.19% and 7.76%, respectively, in 2015 [18], rapidly-increasing use of EV,
HEV, and PV indicates good potential for the V2C system in Japan.

A number of cities have been selected as test sites for local grids using EV and PV [19]. Viability of
widespread V2C systems depends on continued economic and technological progress for EV and PV.
For instance, a recent rapid reduction in solar panel prices (see, [19]) significantly increases the viability
from an economic perspective.

This study assumes a best-case scenario where all cars are replaced with EVs, and PVs are
installed on the rooftops of all detached houses (i.e., each house operates as an EV charging station,
and electricity is transmitted to a local grid by connecting the EV battery to the grid). Although
this scenario is difficult to achieve, it should help clarify to what extent a V2C system is capable of
contributing to energy resilience. By focusing on the maximum potential of V2C systems, future spread
of EV and PV can be directed to provide the maximum benefit.
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3. Community Clustering for the V2C System

3.1. Problem Setting

We represent the electrical grid in a study area (in our case, it is Yokohama, Japan; see Section 4)
as a graph G = (V, E), where the nodes, V, represent the 250-m grids in the target area and the edges,
E, represent their neighboring relations. Our objective is to partition the graph G into self-sufficient
sub-graphs or local communities, {G1 = (V1, E1), G2 = (V2, E2), Gn = (Vn, En)}.

The i-th local community, Gi, is electrically self-sufficient if the storage capacity C(Gi) and the PV
electricity supply are well balanced. We assume that only surplus electricity, S(Gi) ´ D(Gi), is stored,
where S(Gi) is the PV electricity supply, and D(Gi) is the household electricity demand. The balance
can be quantified by the difference between the capacity and the surplus electricity, |w(Gi)|, where
w(Gi) is formulated as follows:

wpGiq “ CpGiq ´ rSpGiq ´DpGiqs (1)

where w(Gi) measures the storage availability |w(Gi)| is small if the storage capacity matches the
surplus electricity well in each community. In other words, communities minimizing |w(Gi)| are
self-sufficient in terms of storage efficiency.

In addition to the storage efficiency, the electricity transmission cost must also be minimized for
efficient electricity sharing. Thus, the following sub-sections introduce algorithms that identify local
communities considering both the storage efficiency and the sharing cost.

Two approaches are possible to solve this clustering problem: (i) maximizing the storage efficiency
while constraining the transmission cost; and (ii) minimizing the transmission cost while constraining
the storage efficiency.

There are two representative approaches to solve clustering problems: the graph partitioning and
meta-heuristic approaches. The former optimizes positions of partitions in a graph determining the
transmission cost, whereas the latter can maximize the storage efficiency directly, which is our principal
interest. This difference leads to different objective functions, as explained later. The remainder of this
section formulates graph partitioning and meta-heuristic approaches for clustering communities with
self-sufficient electricity production.

3.2. Graph Partitioning Algorithms

We first write the electricity transmission cost in G as follows:

Og “ α
n
ÿ

i“1

|Vi|
2 `β

ˇ

ˇ

ˇ

ˇ

E
n
Y

i“1
Ei

ˇ

ˇ

ˇ

ˇ

(2)

where α and β are coefficients such that α + β = 1. |Vi|2 counts the number of node pairs within each
local community (sub-graph), which we use as a proxy of the transmission cost within Gi. |Vi|2 grows
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rapidly as the size of Gi increases. In other words, the first term, describing the internal transmission
cost, is small when all of the clusters are reasonably small. The second term counts the number of edges
across communities (sub-graphs), which is small if the clusters are circular-shaped. The transmission
cost, Equation (2), is small if clusters are small and circular-shaped.

We attempt to minimize Equation (2) with a self-sufficiency constraint: |w(Gi)| < k, where k
is a given threshold. The minimization identifies local clusters with low sharing costs and high
self-sufficiency. The problem is formulated as follows:

Definition 1. (Graph clustering problem): Given graph G = (V, E), where each node ni is labeled with weight
w(ni) and threshold k, the graph clustering problem finds a set of sub-graphs {G1 = (V1, E1), G2 = (V2, E2), . . . ,
Gn = (Vn, En)} such that

‚ V = XiVi where Vi X Vj = ø if i ‰ j,
‚ For every graph partition {G11, G12, . . . , G1n}, Og(G1, G2, . . . , Gn) ď Og(G11, G12, . . . , G1n),
‚ For every subgraph Gi, |w(Gi)| < k.

Among the several algorithms available to solve this problem, we apply the following standard
ones: the recursive coordinate geometric bisection (RCB) algorithm ([22]), which allows vertical and
horizontal partitioning only, and the multi-level graph (GRAPH) algorithm ([23–25]), which is a more
general partitioning algorithm.

The clustering procedure of the RCB algorithm is summarized as follows:

1. The graph is split vertically or horizontally into two sub-graphs of nearly equal sizes.
2. Step 1 is iterated for each sub-graph.

Although this is a simple approximation, the RCB algorithm is preferable for clusters that satisfy
the self-sufficiency constraint.

Next, we describe a general graph partition algorithm that supports irregular partitions of the
graph while explicitly controlling the edge connectivity. It can partition graphs into subgraphs that
maintain the balance of the sum of the weights (Equation (3)):

wpGiq ď p1` εq
ÿ

i

wpGiq

n
ˆ@i (3)

where n is the number of subgraphs. Minimizing edge connections between subgraphs is
accomplished by:

ˇ

ˇ

ˇ

ˇ

EpGq
n
Y

i“1
EpGiq

ˇ

ˇ

ˇ

ˇ

(4)

We assumed ε = 0.35 based on some preliminary analyses. The clustering procedure using the
GRAPH algorithm is summarized as follows:

1. Construct a smaller summarization of a graph by aggregating nodes and edges in the graph.
2. Perform a graph partitioning procedure on the summarized graph.
3. Propagate the computed partition back to the original graph.
4. Repeat this process on the resulting partitions as needed.

While the GRAPH algorithm, which allows general-shaped clusters, may be more preferable in
terms of flexibility, it can be slow relative to the RCB algorithm.

3.3. Meta-Heuristic Optimization

While the RCB and the GRAPH algorithms do not perform exhaustive optimizations, but rather
fast approximations, it is unclear to what extent exhaustiveness is important for efficient detection of
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self-sufficient clusters. Hence, a simulated annealing-based (SA; [26]) exhaustive optimization was
also used.

SA is a probabilistic meta-heuristic algorithm. It searches the global optimum by gradually
reducing the cooling parameter: if the parameter is large, large jumps in the search space are allowed
for each iteration, but as the parameter becomes smaller, the jumps are restricted to be smaller and
smaller. This optimization scheme effectively avoids converging to a local optimum. In particular,
the probability of converging to the global optimum approaches 1 as the decay speed of the cooling
parameter slows. The SA algorithm is more flexible than the RCB and the GRAPH algorithms.
In addition, the assumption of a gridded neighborhood structure, which can make an algorithm less
flexible, is not needed for this algorithm, and nodes (V) and edges (E) do not appear in the subsequent
equations. Since it is so flexible and thorough, the SA algorithm can be exceedingly slow.

While the graph partitioning algorithms evaluate electricity-sharing cost in each graph, the SA
algorithm evaluates the sharing cost using the circularity (Equation (5)):

Circle “
ÿ

i

˜

1´

d

4π
|apGiq|

ppGiq
2

¸

(5)

where a(Gi) and p(Gi) are geographical measurements, the former being the area of the cluster Gi,
which consists of 250-m grids, and the latter being the perimeter. Circle approaches zero if clusters
are circular-shaped, and 1 if they are non-circular-shaped. Since the inter-point distance between
arbitrary points in a circle region is smaller than those in any other shaped regions, Circle can be used
as a measure of the electricity-sharing cost.

We minimize the following cost function in the SA algorithm:

Os “
ÿ

i

|wpGiq| ` λCircle (6)

where λ is a given parameter, and the first and second terms quantify the storage sufficiency (or
self-sufficiency) and the electricity sharing cost, respectively.

The problem to be solved by the SA algorithm is formulated as follows:

Definition 2. Meta-heuristic graph clustering problem: Given graph G = (V, E), where each node ni is labeled with
weight w(ni), the meta-heuristic clustering problem finds a set of sub-graphs {G1 = (V1, E1), G2 = (V2, E2), . . . ,
Gn = (Vn, En)} such that:

‚ V = XiVi where Vi X Vj = ø if i ‰j,
‚ For every graph partition {G11, G12, . . . , G1n}, Os(G1, G2, ..., Gn) ď Os(G11, G12, ..., G1n).

w(Gi) does not appear in Definition 2 because it is embedded in Os. SA solves this cluster
optimization problem as follows (see, [27,28]):

1. Set initial M sub-graphs (local communities), and calculate the cost Os = Os(G1, G2, ..., Gm).
2. Detach a node ni from the corresponding subgraph Gi, and merge it into another subgraph G1i,

then, calculate the cost O1s = Os(G11, G12, ..., G1m).
3. If Os ě O1s, the change is accepted. Otherwise, the change is accepted with a probability,

which is evaluated by exp{´(O1s ´ O s)/T}, where T is the cooling parameter that controls
the acceptance probability.

4. Iterate steps 2 and 3 alternately until O1s converges.

To find the global optimum, the cooling parameter T needs be reduced gradually across iterations.
We define it by T = γk ˆ T0, where T0 = 105. The probability that an SA algorithm converges to the
global optimum approaches 1.0 as γ approaches 1.0 [26]. Thus, γ is set at 0.9999.
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In summary, the RCB algorithm is the fastest, but least flexible, the SA algorithm is the slowest, but
most flexible, and the GRAPH algorithm falls between the other two in terms of both computational
time and flexibility. The next section applies the three algorithms to clustering of communities with
self-sufficient electricity production in Yokohama, Japan.

4. Energy Self-Sufficient Community Clustering in Yokohama, Japan

The RCB, GRAPH, and SA algorithms are applied to detect self-sufficient clusters in Yokohama,
Japan. Yokohama is located about 30 min south of the center of Tokyo. The population was about
3.7 million in 2015, the second largest municipality in Japan. Here, as a way to consider seasonal
differences, clustering was performed for every month.

To perform the clustering, we first need to evaluate C(Gi), S(Gi), and D(Gi), which determine
w(Gi). Section 4.1 explains how to calculate these three values in 250-m grids for each month, and
Section 4.2 explains the implementation of the clustering algorithms.

4.1. Estimation of Storage Sufficiency in Month m: wm(Gi)

4.1.1. Calculation of the Storage Capacity: C(Gi)

We use cars for electricity storage in our V2C analysis. The number of cars not in use in each 250-m
grid was estimated by a simulation using MATsim, which is an open source agent-based transport
simulator developed by researchers in ETH Zurich (Eidgenössische Technische Hochschule Zürich),
Switzerland, and TU Berlin (Technische Universität Berlin), Germany. For more details about MATsim,
see [29]. In this simulation, daily movement of people in Yokohama were simulated using MATsim
with inputs of road network data (source: National Digital Road Map Database), data recording
722,000 people’s actual travel behaviors during a given few days from October to December (source:
Person Trip Survey in 2008), and the number of registered cars in Yokohama. The number of cars not
in use was estimated based on the trip duration and arrival time of each agent during the simulation.
Multiplying this number by the battery storage capacity produced the total electricity storage capacity
for a given grid. For the storage capacity, we assumed 30 kWh that is the capacity of Nissan Leaf,
which is a representative EV.

4.1.2. Calculation of the Potential PV Electricity Supply in Month m: Sm(Gi)

Following [30], the electricity PV supply in m-th month in i-th cluster, PVm(Gi), is estimated by
Equation (7):

PVmpGiq “ I ˆ τˆ roo f PV
pGiq ˆ ηpc ˆ Km,pt ˆ T (7)

where I is the total solar irradiance (kWh/m2/h) as calculated by the METPV-2 database [30], τ is
the array conversion efficiency (=0.1), roofPV(Gi) is the installation area in i-th cluster (m2), ηpc is the
efficiency of the power conditioner (=0.95), Km,pt is the temperature correction coefficient set for each
month m (e.g., May: 0.92; August: 1.00), and T is the performance ratio (=0.89).

4.1.3. Calculation of the Electricity Demand in Month m: Dm(Gi)

The monthly household electricity demand in the i-th cluster, Dm(Gi), is estimated by F(Gi) ˆ bm,
where F(Gi) is the total floor area in the i-th grid (source: Zenrin Z-map TOWN II), and bm is the unit
electricity demand in each month, which was published by the Japan Institute of Energy in 2008.

4.1.4. Storage Availability in Month m: wm(Gi)

Figure 2 plots the estimated storage availability in the six months. This figure suggests that the
availability decreases in summer and winter, when electricity demands for cooling or heating are large.
In each month, storage availability is imbalanced spatially, so some areas have excess storage, while
others have insufficient storage. Community clustering would be helpful to moderate the imbalance
and increase self-sufficiency.
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the clusters under the threshold k in Definition 1. Even so, we expect that the GRAPH algorithm 
minimizes the cost function when the graph is partitioned into a fixed number of clusters because 
the MLG algorithm’s goal is to minimize the number of edges across different clusters. The RCB 
clusters are almost the same through the months; based on the RCB algorithm, the same set of 
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Figure 2. Estimated storage availability for six months in each 250-m grid.

4.2. Comparison of Clustering Results

Figure 3 displays community clustering results for the six months. Note that we divide the
electrical grid into 20 clusters using the RCB and GRAPH algorithms, since they are not explicitly
designed to minimize the cost function in Equation (2), but rather to maintain the weighted sum of
the clusters under the threshold k in Definition 1. Even so, we expect that the GRAPH algorithm
minimizes the cost function when the graph is partitioned into a fixed number of clusters because the
MLG algorithm’s goal is to minimize the number of edges across different clusters. The RCB clusters
are almost the same through the months; based on the RCB algorithm, the same set of clusters are
available in each month, which greatly increases the feasibility of community clustering.
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To quantify the similarity of clusters across months, the similarity between clusters in months m
(Gm) and m ´ 1 (Gm-1) are evaluated sequentially using the Jaccard similarity coefficient (e.g., [31]),
which is formulated as follows:

JpGm, Gm´1q “
|Gm X Gm´1|

|Gm Y Gm´1|
(8)

J(Gm, Gm´1) approaches 1 if the two clustering results, Gm and Gm´1, are similar, and approaches 0 if
they are dissimilar. Figure 4 plots the estimated Jaccard similarity coefficients. The RCB clusters in each
month are quite similar, and their coefficients are around 0.95. By contrast, the GRAPH clusters indicate
weaker similarity, with coefficients around 0.7 to 0.8. Thus, the RCB algorithm is more preferable in
terms of the stability of the clusters, which increases the feasibility of implementation. The coefficients
of the SA algorithm are moderate and highly variable.
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To compare the electricity-sharing costs, circularity of clusters are compared in each month and
plotted in Figure 5. Note that the cost is small if clusters are circular-shaped. The solid lines in
Figure 5 denote average circularity for all of the clusters in each month, and the dashed lines denote
the minimum circularity among the clusters. Based on this figure, the GRAPH algorithm provides the
most circular-shaped clusters, and the GRAPH algorithm would be preferable in terms of reducing
electricity-sharing costs. On the other hand, the minimum circularity of each algorithm is similar,
indicating that GRAPH is the best in terms of the average sharing cost, but all three algorithms (RCB,
GRAPH, and SA) are compatible in terms of the optimum electricity-sharing cost among the clusters.
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Figure 6 plots the root mean squares of storage availabilities in each month. From Equation (2), it
is readily verifiable that these values are equivalent to the root mean squared error (RMSE), which is
a standard error statistic (e.g., [32]), quantifying the difference between the storage capacity and
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the surplus electricity. While the objective functions of graph partitioning (RCB/GRAPH) and
meta-heuristic (SA) algorithms are different because of their basic underlying assumptions (see the
beginning of Section 3), both attempt to minimize the RMSE, using Equations (3) and (6), respectively.
The RCB clusters show large RMSEs (Figure 6), indicating that the RCB clusters are not preferable
in terms of storage sufficiency. The SA clusters have smaller RMSEs than RCB and GRAPH. The SA
clusters would, therefore, be preferable in terms of storage sufficiency. Note that GRAPH clusters also
have small RMSEs, indicating that these clusters are also reasonably self-sufficient.
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We have discussed cluster optimization in each month. However, due to implementation costs,
using only one clustering result for all months would be desirable. Figure 7 plots RMSEs when the
clustering result optimized for one month is used across all months. This figure shows that the SA
clusters optimized in June minimize the RMSEs through the entire year.
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Figure 7. RMSEs (storage capacity vs. PV electricity) of the month-wise optimized clusters (solid lines)
and of the clusters from a given month applied to all months (dashed lines). (a–c) denote results of
RCB, GRAPH, and SA algorithms, respectively.

The effectiveness of using a common cluster set across months is due to the time-invariance
of the spatial distributions of PV panels, EVs, and households, which determines the electricity
self-sufficiency. Owning to this property, desirable community clusters would be similar throughout a
year. It is likely that the time-invariance holds in many other countries and regions. Applying a cluster
set throughout years appears to be a reasonable approach.

Still, it is unclear how optimal these clusters are. Since clustering problems are usually difficult
to solve (i.e., NP-hard), identification of “good enough” clusters is a usual concern. While we face
the same difficulty, since SA asymptotically converges to the global optimum (see, Section 3.3), the
monthly SA clusters must be nearly optimal in each month. Additionally, owing to the time-invariance
property, which we discussed just above, optimization of the SA clusters holds even if one clustering
result is applied throughout the year. Considering the high optimality and feasibility, use of one
SA-based clustering result across months would be a good option. Although we subsequently focus
on the cluster optimized in June, whose RMSEs are the smallest (see, Figure 7c), a similar discussion
holds for the other 11 clustering results, since cluster shapes are similar across months (see, Figure 3c).
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To verify the effectiveness of the June SA clusters, the storage sufficiency of the June clusters are
plotted in Figure 8 and summarized in Figure 9. Interestingly, Figure 9 shows that all of the June SA
clusters fulfill the self-sufficiency criteria in April, May, June, September, and October. The lack of the
storage sufficiency appearing in the other months is quite small as compared with the individual grid
level (i.e., negative values, which appear in Figure 8, are quite small compared to those in Figure 2).
The June SA clusters, therefore, significantly increase the electricity self-sufficiency.
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Figure 9. Rate of self-sufficient grids. Blue indicates the rates of grids whose storage sufficiency
is positive, and is calculated as [the number of grids with positive storage-sufficiency]/6,687. Red
indicates the rates of grids that are in community clusters with positive storage sufficiency, and is
calculated as [the number of grids in a cluster, Gi, with positive storage-sufficiency]/6,687. The total
number of grids is 6,687.

5. Concluding Remarks

We compared clustering algorithms, including fast or exhaustive options, in terms of electricity
self-sufficient community clustering. The analysis result reveals advantages and disadvantages when
using each algorithm. The RCB algorithm provides clusters that are stable across months. The GRAPH
algorithm provides circular-shaped clusters with small electricity sharing cost and reasonably high
self-sufficiency. The SA algorithm provides the most self-sufficient clusters. We also demonstrate
that the use of the SA clusters optimized in June for all months is a sensible method in terms of both
self-sufficiency and the feasibility. Our analysis takes an important first step towards designing energy
sharing community clusters for the V2C system.

Still, we have many issues that must be discussed in order to effectively implement the V2C
system. First, it is important to analyze the trade-off between implementation/maintenance costs and
electricity self-sufficiency. This trade-off analysis would be necessary for effective implementation
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and operation of this system. Second, further discussion of intangible aspects is needed. How can
we generate social acceptance, deliver the product to society, and design a profitable business model?
To better consider these issues, some social-level experiments would be needed. Fortunately, there are
a number of smart-grid initiatives and test sites in Japan (see, [19]). Conducting a social experiment
in collaboration with these activities would be an important next step towards implementing the
V2C system.

A deeper discussion of the local community design is also needed. The electricity sharing
community might further encourage related collaborative activities, such as car sharing, event sharing,
and helping neighbors on a daily basis or in an emergency. To design not only electricity sharing but
also these collaborative activities, both of which can increase human well-being, we need to design
the local communities with consideration for coordinating resident activities and allocating facilities
(e.g., EVs and their stations). Consideration of the transportation network would also be important to
encourage transportation sharing and electricity sharing by carrying batteries (which might be needed
in extreme events).

Cities are not homogeneous two-dimensional (2D) systems as we implicitly assumed; rather,
urban physical form is normally heterogeneous and has 3–4 essential dimensions determined by
physical characteristics, such as topography, 3D urban street canyons, and microclimate (see, [33–35]).
Residents and their behavioral patterns are also heterogeneous. Integration of net-zero community
clustering with 3D urban modeling or scenario analysis would be an exciting step toward smart and
sustainable development.
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