
On Real-Time Fault Detection in Wind Turbines: Sensor Selection
Algorithm and Detection Time Reduction Analysis

Authors: 

Francesc Pozo, Yolanda Vidal, Josep M. Serrahima

Date Submitted: 2019-01-07

Keywords: FAST, sensor selection, Fault Detection, hypothesis test, principal component analysis

Abstract: 

In this paper, we address the problem of real-time fault detection in wind turbines. Starting from a data-driven fault detection method,
the contribution of this paper is twofold. First, a sensor selection algorithm is proposed with the goal to reduce the computational effort
of the fault detection method. Second, an analysis is performed to reduce the data acquisition time needed by the fault detection
method, that is, with the goal of reducing the fault detection time. The proposed methods are tested in a benchmark wind turbine where
different actuator and sensor failures are simulated. The results demonstrate the performance and effectiveness of the proposed
algorithms that dramatically reduce the number of sensors and the fault detection time.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2019.0026
Citation (this specific file, latest version): LAPSE:2019.0026-1
Citation (this specific file, this version): LAPSE:2019.0026-1v1

DOI of Published Version:  https://doi.org/10.3390/en9070520

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



Article

On Real-Time Fault Detection in Wind Turbines:
Sensor Selection Algorithm and Detection Time
Reduction Analysis

Francesc Pozo *, Yolanda Vidal and Josep M. Serrahima

Control, Dynamics and Applications (CoDAlab), Departament de Matemàtiques, Escola d’Enginyeria de
Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC), Campus Diagonal-Besòs (CDB),
Eduard Maristany, 6–12, Sant Adrià de Besòs (Barcelona) 08930, Spain; yolanda.vidal@upc.edu (Y.V.);
pepeserrahima_11@hotmail.com (J.M.S.)
* Correspondence: francesc.pozo@upc.edu; Tel.: +34-934-137-316; Fax: +34-934-137-401

Academic Editor: Frede Blaabjerg
Received: 10 May 2016; Accepted: 30 June 2016; Published: 5 July 2016

Abstract: In this paper, we address the problem of real-time fault detection in wind turbines.
Starting from a data-driven fault detection method, the contribution of this paper is twofold. First,
a sensor selection algorithm is proposed with the goal to reduce the computational effort of the fault
detection method. Second, an analysis is performed to reduce the data acquisition time needed by
the fault detection method, that is, with the goal of reducing the fault detection time. The proposed
methods are tested in a benchmark wind turbine where different actuator and sensor failures are
simulated. The results demonstrate the performance and effectiveness of the proposed algorithms
that dramatically reduce the number of sensors and the fault detection time.

Keywords: principal component analysis; hypothesis test; fault detection; sensor selection; FAST

1. Introduction

Wind energy, in contrast to burning fossil fuels, is a clean and inexhaustible renewable energy
source. It is on the way to becoming a leading electricity generating technology in Europe. There is
now 142 GW of installed wind power capacity with 131 GW onshore and 11 GW offshore [1].
Wind turbines have become the largest rotating machines on earth, while plans for future turbines
show even larger diameters up to 200 m (10 to 15 MW) and there is a need for research to cope with
the many challenges the technology upscaling implies [2]. One of the key challenges is to make wind
energy one of the most cost-efficient energy sources. Avoiding unexpected failures seems to be the
crux of the matter because of the impact on downtime and thus on the cost of energy [3]. Continuous
monitoring of wind turbine health using automated failure detection algorithms can improve turbine
reliability and reduce maintenance costs by detecting failures before they reach a catastrophic stage
and by eliminating unnecessary scheduled maintenance.

Nowadays, a tremendous amount of information is available to support operation of wind
turbines. Through the use of lidars, wind data become available, upstream as well as within the
turbines. All turbines permanently collect big data from hundreds of sensors, ranging from gearbox
oil temperature to stresses in the blade root. All control actions use sensor data as inputs, with
increasing resolution and complexity. Condition monitoring relies on clever processing of these data.
Proper selection and reduction of the amount of the data is of the utmost importance [3].

Traditionally, condition monitoring systems for wind turbines have focused on the detection
of failures in the main bearing, generator, and gearbox, some of the highest cost components on
a wind turbine. Two widely-used methods are vibration analysis and oil monitoring [4]. These are
standalone systems that require installation of sensors and hardware. In this paper, the fault detection
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strategy presented in [5] is used. It uses on-line SCADA (supervisory control and data acquisition)
data already available at an industrial wind turbine to provide advance warning of failures.

In this work, first, sensor selection is investigated based on principal components analysis.
The goal is to select a reduced number of sensors to be used by the fault detection method. From a
practical point of view, a reduced number of sensors installed in the wind turbine leads to a
reduced cost of installation and maintenance. In addition, from a computational point of view,
less sensors implies less computational effort. Due to these practical issues (reduction of hardware
costs, possibility of storage or physical space, computational and communication burden), sensor
selection is currently being studied and applied to several research areas. For instance, Chepuri and
Leus [6] propose convex relaxations techniques to select the best subset of sensors that guarantees
some recommended performance. Similarly, Bai et al. [7] suggest a sensor selection schedule to
minimize the observation cost on a sequential probability ratio test (SPRT). With respect to a more
precise problem, Miao et al. [8] investigated the performance of combinations of several metal-oxide
sensors for the discrimination of a set of ginsengs. Equivalently and yet in the field of wind turbines,
Wang et al. [9] review and apply standard techniques proposed by Jolliffe [10] for the sensor selection
for wind turbine condition monitoring.

The contribution of this paper is twofold. On one hand, a sensor selection algorithm based on
principal component analysis (PCA) is used to select the sensors that best separate the healthy and
the faulty wind turbine with the purpose of fault detection thus leading to some reduction in the
computational and communication effort. On the other hand, a reduction in the data acquisition time
needed by the fault detection method is investigated. In this second case, the goal is to reduce the
fault detection time.

In order to test the proposed sensor selection algorithm as well as the fault detection time
reduction, we used data from simulations using the comprehensive wind turbine simulator FAST
(fatigue, aerodynamic, structures and turbulence) for a 5 MW wind turbine [11]. Different actuator
and sensor failures are simulated following the benchmark model proposed in [12]. In this benchmark
challenge, a more sophisticated wind turbine model (using FAST) and updated fault scenarios are
presented. This higher-fidelity model also allows the use of more realistic wind inputs that vary
spatially across the rotor plane in addition to temporally.

This paper is organized as follows. In Section 2, the reference wind turbine, wind model, as
well as generator-converter actuator and pitch actuator models are recalled. The fault scenarios are
described in Section 3. Next, in Section 4, the proposed sensor selection algorithm is presented as
well as results showing the effect on the fault detection strategy when using the reduced number
of sensors. Thereafter, in Section 5, an analysis is performed to reduce the number of time instants
needed by the fault detection method, thus reducing the fault detection time. Then, Section 6 analyzes
the effect on the performance of the fault detection strategy when a reduced number of sensors is used
altogether with reducing the fault detection time. Finally, conclusions are drawn in Section 7.

2. Reference WT

The National Renewable Energy Laboratory (NREL) offshore 5-MW baseline wind turbine [13]
is used in the simulations. This model is used as a reference by research teams throughout the world
to standardize baseline offshore wind turbine specifications and to quantify the benefits of advanced
land- and sea-based wind energy technologies. In this work, the wind turbine is operated in its
onshore version and in the above-rated wind-speed range. The main properties of this turbine are
listed in Table 1.
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Table 1. Gross properties of the wind turbine [13].

Reference Wind Turbine

Rated power 5 MW
Number of blades 3
Rotor/Hub diameter 126 m, 3 m
Hub Height 90 m
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s
Rated generator speed 1173.7 rpm
Gearbox ratio 97

In this work, the proposed fault detection method is SCADA-data based, that is, it uses data
already collected at the wind turbine controller. In particular, Table 2 presents assumed available
data on a MW-scale commercial wind turbine that is used in this work by the fault detection method.

Table 2. Assumed available measurements. These sensors are representative of the types of sensors
that are available on a MW-scale commercial wind turbine.

Number Sensor Type Symbol Units

1 Generated electrical power Pe,m kW

2 Rotor speed ωr,m rad/s

3 Generator speed ωg,m rad/s

4 Generator torque τc,m Nm

5 first pitch angle β1,m deg

6 second pitch angle β2,m deg

7 third pitch angle β3,m deg

8 fore-aft acceleration at tower bottom ab
f a,m m/s2

9 side-to-side acceleration at tower bottom ab
ss,m m/s2

10 fore-aft acceleration at mid-tower am
f a,m m/s2

11 side-to-side acceleration at mid-tower am
ss,m m/s2

12 fore-aft acceleration at tower top at
f a,m m/s2

13 side-to-side acceleration at tower top at
ss,m m/s2

The reference wind turbine has a conventional variable-speed, variable blade-pitch-to-feather
configuration. In such wind turbines, the conventional approach for controlling power-production
operation relies on the design of two basic control systems: a generator-torque controller and
a rotor-collective blade-pitch controller. In this work, the baseline torque and pitch controllers
are utilized, but the generator-converter and the pitch actuators are modeled and implemented
externally; i.e., apart from the embedded FAST code. This will facilitate to model different type of
faults on the generator and the pitch actuator. The next subsections recall these models and also the
wind model used to generate the wind data.

2.1. Wind Modeling

The TurbSim stochastic inflow turbulence tool (National Wind Technology Center, Boulder, CO,
USA) [14] has been used. It provides the ability to drive design code (e.g., FAST) simulations of
advanced turbine designs with simulated inflow turbulence environments that incorporate many
of the important fluid dynamic features known to adversely affect turbine aeroelastic response
and loading.
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The generated wind data has the following characteristics: Kaimal turbulence model with
intensity set to 10%, logarithmic profile wind type, mean speed is set to 18.2 m/s and simulated
at hub height, and the roughness factor is set to 0.01 m.

In this work, every simulation is ran with a different wind data set.

2.2. Generator-Converter Actuator Model and Pitch Actuator Model

The generator-converter and the pitch actuators are modeled apart from the embedded FAST
code, with the objective to ease the model of different type of faults on these parts of the wind turbine.

On one hand, the generator-converter can be modeled by a first-order differential system [12]:

τr(s)
τc(s)

=
αgc

s + αgc

where τr and τc are the real generator torque and its reference (given by the controller), respectively,
and we set αgc = 50 [13]. The power produced by the generator, Pe(t), can be modeled by [12]:

Pe(t) = ηgωg(t)τr(t)

where ηg is the efficiency of the generator and ωg is the generator speed. In the numerical
experiments, ηg = 0.98 is used [12].

On the other hand, the three pitch actuators are modeled as a second-order linear differential
equation, pitch angle βi(t), and its reference u(t) (given by the collective-pitch controller) [12]:

βi(s)
u(s)

=
ω2

n
s2 + 2ξωns + ω2

n
, i = 1, 2, 3 (1)

where ωn and ξ are the natural frequency and the damping ratio, respectively. In the fault free case,
these values are set to ωn = 11.11 rad/s, and ξ = 0.6.

3. Fault Description

In this paper, the different faults proposed in the fault tolerant control benchmark [15] will be
considered, as gathered in Table 3. These faults selected by the benchmark cover different parts of the
wind turbine, different fault types and classes, and different levels of severity.

Table 3. Fault scenarios.

Fault Type Description

1 Pitch actuator Change in dynamics: high air content in oil (ωn = 5.73 rad/s, ξ = 0.45)
2 Pitch actuator Change in dynamics: pump wear (ωn = 7.27 rad/s, ξ = 0.75)
3 Pitch actuator Change in dynamics: hydraulic leakage (ωn = 3.42 rad/s, ξ = 0.9)
4 Generator speed sensor Scaling (gain factor equal to 1.2)
5 Pitch angle sensor Stuck (fixed value equal to 5 deg)
6 Pitch angle sensor Stuck (fixed value equal to 10 deg)
7 Pitch angle sensor Scaling (gain factor equal to 1.2)
8 Torque actuator Offset (offset value equal to 2000 Nm)

Usually, pitch systems use either an electric or a fluid power actuator. However, the fluid power
subsystem has lower failure rates and better capability of handling extreme loads than the electrical
systems. Therefore, fluid power pitch systems are preferred on multi-MW size and offshore turbines.
However, general issues such as leakage, contamination, component malfunction and electrical faults
make current systems work sub-optimal [16]. In this work, faults in the pitch actuator are considered
in the hydraulic system, which result in changed dynamics due to either a high air content in oil
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(fault 1) or a drop in pressure in the hydraulic supply system due to pump wear (fault 2) or hydraulic
leakage (fault 3) [17], as well as pitch position sensor faults (faults 5–7).

Pump wear (fault 2) is an irreversible slow process over the years that results in low pump
pressure. As this wear is irreversible, the only possibility to fix it is to replace the pump, which
will happen after pump wear reaches certain level. Meanwhile, the pump will still be operating and
the system dynamics is slowly changing, while the turbine structure should be able to withstand
the effects of this fault. Pump wear after approximately 20 years of operation might result in
pressure reduction to 75% of the rated pressure, which is reflected by the faulty natural frequency
ωn = 7.27 rad/s and a fault damping ratio of ξ = 0.75.

Hydraulic leakage (fault 3) is another irreversible incipient fault but is introduced considerably
faster than the pump wear. Leakage of pitch cylinders can be internal or external [16]. When this
fault reaches a certain level, system repair is necessary, and if the leakage is too fast (normally due
to external leakage), it will lead to a pressure drop and the preventive procedure is deployed to shut
down the turbine before the blade is stuck in undesired position (if the hydraulic pressure is too low,
the hydraulic system will not be able to move the blades that will cause the actuator to be stuck in its
current position resulting in blade seize). The fast pressure drop is easy to detect (even visually as it is
normally related to external leakage) and requires immediate reaction; however, the slow hydraulic
leakage reduces the dynamics of the pitch system, and for a reduction of 50% of the nominal pressure
the natural frequency under this fault condition is reduced to ωn = 3.42 rad/s and the corresponding
damping ratio is ξ = 0.9. In this work, the slow (internal) hydraulic leakage is studied.

On the contrary to pump wear and hydraulic leakage, high air content in the oil (fault 1) is an
incipient reversible process, which means that the air content in the oil may disappear without any
necessary repair to the system. The nominal value of the air content in the oil is 7%, whereas the high
air content in the oil corresponds to 15%. The effect of such a fault is expressed by the new natural
frequency ωn = 5.73 rad/s and the damping ratio of ξ = 0.45 (corresponding to the high air content
in the oil).

The generator speed measurement is done using encoders. The gain factor fault (fault 4) is
introduced when the encoder reads more marks on the rotating part than actually present, which can
happen as a result of dirt or other false markings on the rotating part.

Faults in the pitch position measurement (pitch position sensor fault) are also advised. This is
one of the most important failure modes found on actual systems [16,18]. The origin of these faults
is either electrical or mechanical, and it can result in either a fixed value (faults 5 and 6) or a changed
gain factor (fault 7) on the measurements. In particular, the fixed value fault should be easy to detect,
and, therefore, it is important that a fault detection, isolation, and accommodation scheme be able to
deal with this fault. If not handled correctly, these faults will influence the pitch reference position
because the pitch controller is based on these pitch position measurements.

Finally, a converter torque offset fault is considered (fault 8). It is difficult to detect this fault
internally (by the electronics of the converter controller). However, from a wind turbine level, it is
possible to be detected, isolated, and accommodated because it changes the torque balance in the
wind turbine power train.

4. Sensor Selection

The goal of this section is to present a method to select a reduced number of sensors to be used in
the fault detection method. Classical approaches to sensor or variable selection may be summarized
in the following example. Let us assume that we have N sensors or variables that are measuring
during (L− 1)∆ seconds, where ∆ is the sampling time and L ∈ N. The discretized measures of each
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sensor can be arranged as a column vector xi = (xi
1, xi

2, . . . , xi
L)

T , i = 1, . . . , N so we can build up a
L× N matrix as follows:

X =
(

x1 x2 · · · xN
)
=



x1
1 x2

1 · · · xN
1

x1
2 x2

2 · · · xN
2

...
...

. . .
...

x1
i x2

i · · · xN
i

...
...

. . .
...

x1
L x2

L · · · xN
L


∈ ML×N(R) (2)

It is worth noting that each column in matrix X in Equation (2) represents the measures of a
single sensor or variable. In general, when some application of principal component analysis is used,
and when a large number of variables or sensors is available, the results are usually slightly changed
if just a subset of the sensors is used [10]. Consequently, a simple approach is to calculate the subset
of σ sensors that maximizes the multiple correlation of the N − σ non-selected sensors with respect
to the σ selected sensors. A similar approach, based on principal component analysis (PCA), that is
also used in the field of feature extraction, is to compute the first principal components and observe
the coefficients of the corresponding eigenvectors. More precisely, if the unit eigenvector related to
the largest eigenvalue is

u1 = α1s1 + α2s2 + · · ·+ αNsN ,
N

∑
i=1

α2
i = 1

the sensor associated with the smallest coefficient α = min
i=1,...,N

αi can be neglected. A comprehensive

list of methods for deciding on which variables or sensors to reject can be found in [10].
However, when multiway principal component analysis is applied to data coming from N

sensors at L discretization instants and n experimental trials, the information can be stored in an
unfolded n× (N × L) matrix as follows:

X =



x1
11 x1

12 · · · x1
1L x2

11 · · · x2
1L · · · xN

11 · · · xN
1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...
x1

i1 x1
i2 · · · x1

iL x2
i1 · · · x2

iL · · · xN
i1 · · · xN

iL
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

x1
n1 x1

n2 · · · x1
nL x2

n1 · · · x2
nL · · · xN

n1 · · · xN
nL


(3)

In this case, a column in matrix X in Equation (3) no longer represents the values of a variable at
different time instants but the measurements of a variable at one particular time instant in the whole
set of experimental trials. Consequently, even though PCA can be applied to these kind of matrices
as a way to reduce the dimensionality of the data and to create a new coordinates space where the
data is best represented, the eigenvalues and eigenvectors of the covariance matrix CX = 1

N×L−1 XTX
cannot be directly used to infer what variables or sensors could be neglected. In addition, we are
not only interested in the sensors that best model the healthy wind turbine but the sensors that best
discriminate the faulty wind turbine. This is one of the main differences between the work proposed
by Wang et al. [9] and the strategy presented in the present work: while in [9] the authors use principal
component analysis to reduce the number of inputs (sensors) to build the model of the active and
reactive powers of a wind turbine as a multiple-input multiple-output linear system, in this paper,
PCA is used to find the sensors that best separate the healthy and the faulty wind turbine with the
purpose of fault detection.

The overall strategy to select the best subset of sensors that discriminate the healthy and the
faulty wind turbine is to create a multiway PCA model measuring a healthy wind turbine. With the
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model, and for each fault scenario, we measure the Euclidean distance between the arithmetic mean
of the projections into the PCA model that come from the healthy wind turbine and the mean of the
projections that come from the faulty one. The subset of sensors related to the maximum distance
between the means of each pair of projections will be the selected sensors. The detailed algorithmic
procedure is described in the next subsection.

4.1. Sensor Selection Algorithm

Sensor selection can be essentially viewed as a combinatorial problem involving some kind of
performance criterion over all possible options. In the subsequent algorithm, some parameters must
be selected, such as the cardinal of the initial set of variables or sensors N, the number of sensors σ to
be combined or the number ` of principal components:

1. Consider a set S = {s1, s2, . . . , s13} of N = 13 sensors as in Table 2.
2. Consider a number of sensors σ to be combined, σ = 2, . . . , N.

3. Consider the set Ωσ =

{
Sσ

1 ,Sσ
2 , . . . ,Sσ

(N
σ )

}
formed by the (N

σ ) σ−subsets of σ elements out of

the set S . For instance, S2
1 = {s1, s2}. In a general case, we will write Sσ

k = {s(1), s(2), . . . , s(σ)},
k = 1, . . . , (N

σ ), where s(1) refers to the first sensor in Sσ
k , s(2) to the second sensor in the set

and so on.
4. For each σ−subset Sσ

k ∈ Ωσ, k = 1, . . . , (N
σ ), measure, from a healthy wind turbine, sensors

s(1), s(2), . . . , s(σ) during (nL− 1)∆ seconds.
5. Arrange the collected data coming from the σ sensors in a matrix X ∈ Mn×(σ×L)(R) as follows:

X =



x(1)11 x(1)12 · · · x(1)1L x(2)11 · · · x(2)1L · · · x(σ)11 · · · x(σ)1L
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

x(1)i1 x(1)i2 · · · x(1)iL x(2)i1 · · · x(2)iL · · · x(σ)i1 · · · x(σ)iL
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

x(1)n1 x(1)n2 · · · x(1)nL x(2)n1 · · · x(2)nL · · · x(σ)n1 · · · x(σ)nL


(4)

6. Choose a number ` of principal components, ` = 1, . . . , σ× L.
7. Perform a sensor-based group scaling and find the PCA model P ∈ M(σ×L)×(σ×L)(R)

(also called loading matrix) as detailed in [5, Section 3.1]. Consider the reduced matrix
P̂ := P(:, 1 : `) ∈ M(σ×L)×`(R) related to the ` highest eigenvalues, formed by the first `

columns of matrix P.
8. Measure, from a healthy wind turbine, sensors s(1), s(2), . . . , s(σ) during (nhL − 1)∆ seconds.

Arrange the collected data coming from the σ sensors in a matrix Yh ∈ Mnh×(σ×L)(R)
as follows:

Yh =



y(1)11 y(1)12 · · · y(1)1L y(2)11 · · · y(2)1L · · · y(σ)11 · · · y(σ)1L
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

y(1)i1 y(1)i2 · · · y(1)iL y(2)i1 · · · y(2)iL · · · y(σ)i1 · · · y(σ)iL
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

y(1)nh1 y(1)nh2 · · · y(1)nhL y(2)nh1 · · · y(2)nhL · · · y(σ)nh1 · · · y(σ)nhL


(5)

Perform a sensor-based group scaling and project the data to the principal component space
using the matrix product T̂h = YhP̂ ∈ Mnh×`(R). Define ti

h ∈ R`, i = 1, . . . , nh each row vector
of matrix T̂h. Note that nh is a natural number not necessarily equal to n in Step 4.
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9. Measure, from a faulty wind turbine, sensors s(1), s(2), . . . , s(σ) during (nfL − 1)∆ seconds.
Arrange the collected data coming from the σ sensors in a matrix Yf ∈ Mnf×(σ×L)(R) as follows:

Yf =



z(1)11 z(1)12 · · · z(1)1L z(2)11 · · · z(2)1L · · · z(σ)11 · · · z(σ)1L
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

z(1)i1 z(1)i2 · · · z(1)iL z(2)i1 · · · z(2)iL · · · z(σ)i1 · · · z(σ)iL
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

z(1)nf1
z(1)nf2

· · · z(1)nfL z(2)nf1
· · · z(2)nfL · · · z(σ)nf1

· · · z(σ)nfL


(6)

Perform a sensor-based group scaling and project the data to the principal component space
using the matrix product T̂f = YfP̂ ∈ Mnf×`(R). Define ti

f ∈ R`, i = 1, . . . , nf each row vector
of matrix T̂f. Note again that nf is a natural number not necessarily equal to n in Step 4 neither
nh in Step 8.

10. Define µh as the mean vector value of ti
h ∈ R`, i = 1, . . . , nh, that is,

µh =
1

nh

nh

∑
i=1

ti
h ∈ R`

11. Define µf as the mean vector value of ti
f ∈ R`, i = 1, . . . , nf, that is,

µf =
1
nf

nf

∑
i=1

ti
f ∈ R`

12. Compute the Euclidean norm ‖µh − µf‖2 =: N σ
k associated to the σ-subset Sσ

k ∈ Ωσ,
k = 1, . . . , (N

σ ).
13. Find κσ ∈

{
1, . . . , (N

σ )
}

where

N σ
κσ = max

k=1,...,(N
σ )
N σ

k

Therefore, given a particular fault scenario, the σ sensors in the set Sσ
κσ are the sensors that

separate most of the data coming from the healthy wind turbine and the data coming from the
faulty one.

4.2. Results of the Sensor Selection

The results of the sensor selection are summarized in Table 4 when the number of sensors to be
combined is σ = 6 and the number of principal components is ` = 10.

More precisely, with respect to Table 4, it is worth noting that sensors 5, 6 and 7—corresponding
to the first, second and third pitch angles—appear as selected in all of the eight fault scenarios.
In this case, the sextuple of sensors is completed in fault scenarios 1, 2, 3 and 7 with sensors 9,
11 and 13 (side-to-side accelerations at tower bottom, mid-tower and tower top, respectively); in
fault scenario 4 with sensors 1, 2 and 3 (generated electrical power, rotor speed and generator speed,
respectively); in fault scenario 5 with sensors 1, 2 and 13 (generated electrical power, rotor speed
and side-to-side acceleration at tower top, respectively); in fault scenario 6 with sensors 1, 3 and 13
(generated electrical power, generator speed and side-to-side acceleration at tower top, respectively);
and finally, in fault scenario 8 with sensors 1, 11 and 13 (generated electrical power, side-to-side
acceleration at mid-tower and tower top, respectively). From a physical point of view, when using
σ = 6 sensors, it is interesting to note that the three pitch angles and the side-to-side accelerations
(and not the fore-aft accelerations that are in the same direction as the wind speed) are the most
important signals to detect faults.
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Table 4. Results of the sensor selection when the number of sensors to be combined is σ = 6 for each
of the eight fault scenarios described in Table 3.

Sensors

Fault no. 1 2 3 4 5 6 7 8 9 10 11 12 13

1 X X X X X X
2 X X X X X X
3 X X X X X X
4 X X X X X X
5 X X X X X X
6 X X X X X X
7 X X X X X X
8 X X X X X X

4.3. Fault Detection with a Reduced Number of Sensors

To analyze the effect on the overall performance of the fault detection strategy with a reduced
number of sensors, we will study a total of 24 samples of ν = 50 elements each, corresponding to the
following distribution:

• 16 samples of a healthy wind turbine, and
• Eight samples of a faulty wind turbine with respect to each of the eight particular fault scenarios

defined in Table 3.

In this section, we will consider the following combination of σ = 6 sensors:

• sensors 1, 2, 4, 5, 6 and 7, that is, we will measure and collect the information provided by
the generated electrical power, rotor speed, generator torque and the first, second and third
pitch angles.

For this combination of sensors, each sample of ν = 50 elements is formed by the measures
gathered from the sensors during (ν × L − 1)∆ = 312.4875 seconds, where L = 500 and the
sampling rate 1/∆ = 80 Hz. The fault detection strategy is based on the work by Pozo and
Vidal [5], where multiway principal component analysis (MPCA) is first applied and then the
so-called Welch–Satterthwaite method [19] to test for the equality of means. One of the key issues
of the strategy presented in [5] is the way the data is collected and arranged in a matrix. To create the
baseline pattern or PCA model, we measure the σ = 6 sensors from a healthy wind turbine and all
the collected data is organized in a matrix X ∈ Mn×(N×L) as follows:

X =



x(1)11 x(1)12 · · · x(1)1L x(2)11 · · · x(2)1L · · · x(σ)11 · · · x(σ)1L
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

x(1)i1 x(1)i2 · · · x(1)iL x(2)i1 · · · x(2)iL · · · x(σ)i1 · · · x(σ)iL
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

x(1)n1 x(1)n2 · · · x(1)nL x(2)n1 · · · x(2)nL · · · x(σ)n1 · · · x(σ)nL


(7)

=
(

X(1) X(2) · · · X(σ)
)

where the superindex s = 1, . . . , σ of each element x(s)ij , i = 1, . . . , n, j = 1, . . . , L in the matrix
represents the number of sensors. For the sake of completeness, we summarize in the following
itemized list the fault detection strategy presented in [5], which is also illustrated in Figure 1:

• Sensor group-scaling is applied to matrix X in Equation (7) so the mean of each column is 0 and
the standard deviation of each sensor submatrix X(s), s = 1, . . . , σ is 1.
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• The covariance matrix CX is computed according to the expression

CX =
1

n− 1
XTX ∈ M(σ×L)×(σ×L)(R)

• The eigenvalues and eigenvectors of matrix CX are computed. The eigenvectors (principal
components) constitute the columns of the transformation matrix P—also called PCA model
or baseline pattern— according to the eigenvalues in descending order.

• With respect to the first principal component, for instance, the baseline sample is defined as
the set of numbers {τi

1} := X(i, :) × P × e1, i = 1, . . . , n, where e1 is the first vector of the
canonical basis.

• When the measures of the σ = 6 sensors are obtained from the current wind turbine to be
diagnosed, a new matrix Y has to be constructed as in Equation (7):

Y =



y(1)11 y(1)12 · · · y(1)1L y(2)11 · · · y(2)1L · · · y(σ)11 · · · y(σ)1L
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

y(1)i1 y(1)i2 · · · y(1)iL y(2)i1 · · · y(2)iL · · · y(σ)i1 · · · y(σ)iL
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

y(1)ν1 y(1)ν2 · · · y(1)νL y(2)ν1 · · · y(2)νL · · · y(σ)ν1 · · · y(σ)νL


(8)

=
(

Y(1) Y(2) · · · Y(σ)
)

Note that the number ν of rows in matrix Y in Equation (8) is a natural number not necessarily
equal to the number of rows n in matrix X in Equation (7).

• Matrix Y in Equation (8) is scaled with respect to matrix X in Equation (7), that is, we subtract
to the κ-th column of matrix Y, κ = 1, . . . , ν× L× σ, the mean of the κ-th column of matrix X.
Likewise, each element in the submatrix Y(s), s = 1, . . . , σ, is divided by the standard deviation
of the submatrix X(s).

• With respect to the first principal component, for instance, the sample of the current wind
turbine to be diagnosed is defined as the set of numbers {ti

1} := Y(i, :)× P× e1, i = 1, . . . , ν.
• The Welch–Satterthwaite test for the equality of means [19] is used with samples {τi

1} and {ti
1}

to classify the current wind turbine to be diagnosed as healthy or not.

As stated before, a particular configuration of σ = 6 sensors has been considered. Table 5
summarizes how the results in Table 6 are organized. More precisely, Table 6 includes—using the
measures of sensors 1, 2, 4, 5, 6 and 7—the number of samples of the healthy wind turbine correctly
classified by the test as healthy (correct decision); the number of samples of the faulty wind turbine
correctly classified as faulty (correct decision); the number of samples of the faulty wind turbine
wrongly classified as healthy (type II error or missing fault); and the number of samples of the healthy
wind turbine wrongly classified as faulty (type I error or false alarm). It is worth noting that, for this
configuration, type I errors (false alarms) and type II errors (missing faults) occur when we consider
scores 2, 3 or 4, i.e., when the test is based purely on the first score all the classifications are accurate.

Table 5. Scheme for the presentation of the results in Table 6.

Healthy Sample (H0) Faulty Sample (H1)

Fail to reject H0 Correct decision Type II error (missing fault)
Reject H0 Type I error (false alarm) Correct decision
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Table 6. Categorization of the samples with respect to the presence or absence of a fault and the result
of the test for each of the four scores when the size of the samples to diagnose is ν = 50 and the sensors
used are numbers 1, 2, 4, 5, 6 and 7.

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 16 0 8 1 9 0 13 1
Reject H0 0 8 8 7 7 8 3 7

hypothesis test

faultyhealthy

yes no

{ τ i
j } { tij }

|tobs| ≤ t ?

Wind turbine to diagnose

Healthy wind turbine

Figure 1. The fault detection strategy is based on testing for notable changes in the distributions of the
sample coming from the healthy wind turbine and the sample coming from the current wind turbine
to diagnose [5].

The sensitivity and specificity can also be used here as two statistical measures to analyze the
performance of the test. On one hand, the sensitivity or power of the test is defined as the ratio
of samples from the faulty wind turbine correctly classified. Therefore, if the false negative rate is
defined as γ, the sensitivity is computed as 1 − γ. On the other hand, the specificity of the test
can be defined as the percentage of samples from the healthy wind turbine correctly identified as
such and is usually expressed as 1− α, where α is the false positive rate. These two measures are
calculated—organized as detailed in Table 7—in Table 8 with respect to the 24 samples and for the first
four scores. The results in Table 8 show that the sensitivity 1− γ of the test is, on average, 94%, which
is very close to 100%. Sensitivities of 100% are achieved when scores 1 and 3 are considered. The mean
value of the the specificity is 72%, which is very close to the expected value of 1− α = 64%, since the
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level of significance used in the test is α = 36%. The specificity when only score 1 is considered is
increased to 100%.

Table 7. Scheme for the presentation of the results in Table 8 (specificity and sensitivity).

Healthy Sample (H0) Faulty Sample (H1)

Fail to reject H0 Specificity (1− α) False negative rate (γ)
Reject H0 False positive rate (α) Sensitivity (1− γ)

Table 8. Sensitivity and specificity of the test for each of the four scores when the size of the samples
to diagnose is ν = 50 and the sensors used are numbers 1, 2, 4, 5, 6 and 7.

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 1.00 0.00 0.50 0.12 0.56 0.00 0.81 0.12
Reject H0 0.00 1.00 0.50 0.88 0.44 1.00 0.19 0.88

The reliability of the fault detection strategy can also be measured using the true rate of
false negatives and the true rate of false positives. These two quantities are based on the Bayes
theorem [20]. On one hand, the true rate of false positives is defined as the proportion of samples
from the faulty wind turbine with respect to the samples that have been classified by the test as
healthy, that is,

P(H1|accept H0)

On the other hand, the true rate of false negatives is defined as the proportion of samples from
the healthy wind turbine with respect to those samples that have been classified by the test as faulty,
that is,

P(H0|accept H1)

For the sensor configuration proposed in this section, the results—organized as described in
Table 9—are summarized in Table 10.

Table 9. Relationship between the proportion of false negatives and false positives and scheme for the
presentation of the results in Table 10.

Healthy Sample (H0) Faulty Sample (H1)

Fail to reject H0 P(H0|accept H0)
true rate of false negatives
P(H1|accept H0)

Reject H0
true rate of false positives
P(H0|accept H1)

P(H1|accept H1)

Table 10. True rate of false positives and false negatives for each of the four scores when the size of
the samples to diagnose is ν = 50 and the sensors used are numbers 1, 2, 4, 5, 6 and 7.

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 1.00 0.00 0.89 0.11 1.00 0.00 0.93 0.07
Reject H0 0.00 1.00 0.53 0.47 0.47 0.53 0.36 0.64
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A final study is developed here based on the receiver operating curves (ROC) to demonstrate
the overall accuracy of the fault detection strategy applied to a configuration with a reduced number
of sensors. In general, these curves illustrate the compromise between the sensitivity and the false
positive rate. More precisely, for a given level of significance and for each score, the pair of quantities

(false positive rate, sensitivity) ∈ [0, 1]× [0, 1] ⊂ R2

is represented on a plane. As in [5], we have considered 49 levels of significance, α1, . . . , α49, within the
range [0.02, 0.98], where αi = 0.02× i, i = 1, . . . , 49. The position of such points can be understood
as follows. Since the ultimate goal is to reduce the quantity of false positives while the number of
true positives is increased, these points must be ideally placed in the upper-left half plane. Therefore,
a method is considered as satisfactory if those points lie within that upper-left half plane. In this sense,
Figure 2 illustrates the receiver operating curves for the four scores when the size of the samples to
diagnose is ν = 50 and the sensors used are numbers 1, 2, 4, 5, 6 and 7. The ROCs for score 1 (in red,
Figure 2) are particularly remarkable. The overall behavior of scores 2 and 4 are still acceptable,
while the ROC for the third score must be considered as unsatisfactory.

The results of the fault detection strategy presented in this section, with respect to score 1 and
using a reduced number of sensors (6 out of 13), when compared to the results in [5]—when the
13 sensors are used—do not present any performance degradation. That is, in both cases, we have
a 100% of accuracy in the detection of the 24 samples (healthy and faulty), but with about 54%
less sensors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.1
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0.8
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1
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Receiver operating curves (ν = 50)α = 36%

α = 36%

α = 36%
α = 36%

score 1

score 2

score 3

score 4

Figure 2. The receiver operating curves (ROCs) for the four scores when the size of the samples
to diagnose is ν = 50 and the sensors used are numbers 1, 2, 4, 5, 6 and 7. The pair (false positive
rate, sensitivity) ∈ R2 is emphasized—with a black border—for the four scores when the level of
significance is α = 36%.

5. Detection Time Reduction Analysis

In the previous section, we have considered a strategy to reduce and select the number of sensors
used in the fault detection strategy. It has been shown, for instance that, with 54% less sensors, we
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are still able to accurately detect when the wind turbine is healthy or faulty. With the goal of the
reduction of the detection time, in this section, we present an analysis of the effect of the structure of
the matrix Y in Equation (8) with respect to number of rows (ν), number of columns (L), detection
time (basically (ν× L− 1)∆ seconds) and accuracy in the detection. The detection time is basically the
time of collection since the computational time involved in the mathematical operations needed once
the data is collected is comparatively quite small. Consequently, the detection time can be reduced if
we reduce: (i) the number of rows (ν) of matrix Y, that is, the size of the samples; (ii) the number of
columns (L) of matrix Y, that is, the number of time instants per row; or (iii) both ν and L. The effect
of these reductions on the accuracy of the fault detection strategy will be analyzed in the following
subsections, where all the available sensors are used.

5.1. On the Size of the Sample (ν)

The first way to study the detection time is the reduction of the size of the sample. The size
of the sample has a physical meaning in our system: the information stored in the matrix is the
data collected by the sensors, and therefore the smaller the size is, the lesser time the data must be
acquired. The original Y matrix is formed by the data from all 13 sensors, and the information fulfills
the matrix as detailed in Equation (8). This matrix is formed by submatrices of ν = 50 rows and
L = 500 columns, one for each sensor. Therefore, as said before, if there is a reduction on the size of
the sample (ν), the total diagnosing time is reduced.

To analyze the effect on the overall performance of the fault detection strategy with a reduced
number of rows, we will study a total of 10 different scenarios, corresponding to 10 different
values for ν:

ν1 = 5, ν2 = 10, . . . , νi = 5i, . . . , ν10 = 50

For each scenario, we will study a different number of samples of ν = νi, i = 1, . . . , 10 elements
each, corresponding to the following distribution:

•
⌊

48001
νi×L

⌋
samples of a faulty wind turbine with respect to each of the 8 particular fault scenarios

defined in Table 3, resulting in a total of 8 ×
⌊

48001
νi×L

⌋
faulty samples, where b·c is the floor

function and L = 500, and
• 16×

⌊
48001
νi×L

⌋
samples of a healthy wind turbine,

which is also detailed in Table 11. The positive integer
⌊

48001
νi×L

⌋
comes from the fact that we have

simulated, for each fault scenario, the wind turbine during (48001− 1)× ∆ = 600 seconds. This way,
we can create

⌊
48001
νi×L

⌋
samples of νi rows each.

Table 11. For each scenario, we will study a different number of faulty and healthy samples of
ν = νi, i = 1, . . . , 10 elements each.

Faulty Samples Healthy Samples

ν1 = 5 19× 8 = 152 304
ν2 = 10 9× 8 = 72 144
ν3 = 15 6× 8 = 48 96
ν4 = 20 4× 8 = 32 64
ν5 = 25 3× 8 = 24 48
ν6 = 30 3× 8 = 24 48
ν7 = 35 2× 8 = 16 32
ν8 = 40 2× 8 = 16 32
ν9 = 45 2× 8 = 16 32
ν10 = 50 1× 8 = 8 16
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In order to analyze the effect on the accuracy of the fault detection strategy, the sensitivity and
specificity have been studied for the 10 different scenarios, corresponding to 10 different values for ν.
As defined in Section 4.3, the specificity is the percentage of correct decisions when the sample studied
is healthy (a healthy sample is set as healthy, hence failing to reject H0), whereas the sensitivity is the
percentage of faulty samples (H1) rejected to be healthy.

size of the sample (ν)
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Figure 3. Specificity (green) and sensitivity (red) of the test as a function of the size of the sample (ν),
that is, the number of rows of matrix Y in Equation (8), when the first score is used.

As can be seen in Figure 3, the sensitivity and specificity change drastically when varying ν.
Therefore, there is a direct connection between the correct decisions and the size of the sample. It
can be seen that when the size (ν) decreases, the specificity (that is, out of the 8× b48001/(νi × L)c
healthy samples, how many of them are detected as healthy) decreases rapidly from its maximum
(a 100% effectivity at ν = 50) to values around 50% when the size is half its initial value. Therefore,
the results get worse as soon as the size of the sample decreases from 50. However, the sensitivity
(how many of the b48001/(νi × L)c faults are detected correctly) maintains a pretty good effectivity
from sizes between 25 and 50, but then decreases to approximately 75% accuracy.

If we examine the ROC curves in Figures 4–6 for three different values of ν (ν = 50, ν = 30 and
ν = 10, respectively), we see that, when ν = 50, the first score has a perfect performance, as it is
always detecting both faulty and healthy situations. However, as ν decreases, there is a degradation
in all scores, and, therefore, the results obtained are not as good as desired.

As a conclusion to this study, it is suggested that the size of the sample, that is, the number of
rows of matrix Y in Equation (8), cannot be reduced from 50. This quantity is the minimum value
with the maximum accuracy, and the results get much worse as soon as it began being reduced.
This result is consistent with the general theory of statistical hypothesis testing [19], where the power
or sensitivity of a test and the sample size are shown to be related.
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Figure 4. The ROCs for the four scores when the size of the samples to diagnose is ν = 50 and all the
sensors are used.
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Figure 5. The ROCs for the four scores when the size of the samples to diagnose is ν = 30 and all the
sensors are used.
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Figure 6. The ROCs for the four scores when the size of the samples to diagnose is ν = 10 and all the
sensors are used.

5.2. On the Time Instants per Row (L)

The second possibility to reduce the time of diagnosis is to decrease the number of columns in
the original matrix Y in Equation (8). Each column represents a different time instant. Therefore,
the bigger number of columns the matrix needs, the more time instants the sensor must collect as
information before processing it. To analyze the effect on the accuracy of the fault detection strategy,
the reduction in the number of columns is made keeping the number of rows as ν = 50.

To analyze the effect on the overall performance of the fault detection strategy with a reduced
number of columns, we will study a total of 19 different scenarios, corresponding to 19 different
values for L:

L1 = 5, L2 = 10, L3 = 15, . . . , L10 = 50

L11 = 100, L12 = 150, L13 = 200, . . . , L19 = 500

For each scenario, we will study a total of 24 samples of ν = 50 elements each, corresponding to
the following distribution:

• 16 samples of a healthy wind turbine, and
• Eight samples of a faulty wind turbine with respect to each of the eight particular fault scenarios

defined in Table 3.

The results of this analysis can be summarized as follows:

• There is no direct connection between the decrease of the number of time instants and the
specificity and the sensitivity. Hence, the detection is maintained to values of 100% of effectivity
of detection in both healthy and faulty samples (Figure 7), except for L = 200 and L = 250,
when there are 6.25% of false alarms (which can be considered a quite good performance),
and for values of L smaller than 25.
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• It can also be observed from Figure 7 that the first principal component (score 1) has a perfect
recognition of the faulty samples of the wind turbine, as its detection is always 100% when L is
greater or equal to 25.

• As it can be inferred from the ROC curves in Figures 8 and 9, the first principal component
keeps, in both cases, a very good overall performance.
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Figure 7. Specificity (green) and sensitivity (red) of the test as a function of the number of time instants
per row (L) when the first score is used.
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Figure 8. The ROCs for the four scores when the number of time instants per row is L = 500.
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Figure 9. The ROCs for the four scores when the number of time instants per row is L = 100.

As a conclusion to this study, we can infer that the number of columns (L, time instants) can be
reduced up to 25 without a degradation in the overall performance. Therefore, the detection time can
be reduced from 312.4875 seconds to only 15.6125 seconds, that is, a reduction of 95% of the original
detection time.

6. Fault Detection with a Reduced Number of Sensors and a Reduced Number of Time
Instants (L)

In this section, we will present two examples considering a fault detection strategy with a
reduced number of sensors, as stated in Section 4, and also a reduced number of time instants
(La = 50 and Lb = 25), as considered in Section 5.2. The purpose of this example is to prove that
both simplifications altogether follow the objective of fault detection, without missing faults nor false
alarms, and with a clear reduction in detection time and computational effort.

To analyze the effect on the overall performance of the fault detection strategy with a reduced
number of sensors and with La = 50 and Lb = 25 time instants per row, we will study a total of
24 samples of ν = 50 elements each, respectively, corresponding to the following distribution:

• 16 samples of a healthy wind turbine, and
• Eight samples of a faulty wind turbine with respect to each of the eight particular fault scenarios

defined in Table 3.

In both cases, the following combination of σ = 6 sensors is considered:

• sensors 1, 2, 4, 5, 6 and 7, that is, we will measure and collect the information provided by
the generated electrical power, rotor speed, generator torque and the first, second and third
pitch angles.

For the first case, each sample of ν = 50 elements is formed by the measures gathered from the
sensors during (ν× La − 1)∆ = 31.24875 seconds, where La = 50 and the sampling rate 1/∆ = 80
Hz. For the second case, each sample of ν = 50 elements is formed by the measures gathered from
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the sensors during (ν× Lb − 1)∆ = 15.6125 seconds, where Lb = 50 and the same sampling rate as in
the first case.

For the first case (La = 50), the results of the fault detection strategy are summarized in Tables 12
and 13. These results clearly exposed that the first principal component is capable of detecting all the
faulty samples, and, at the same time, it is capable to state that all 16 healthy samples come from a
wind turbine working on their normal condition. Thus, there are neither missing faults, which is a
major problem in wind turbines, nor false alarms.

For the second case (Lb = 25), the results for the first score are summarized in Table 14. Even for
this case, when the fault detection scheme is based on the measured gathered from the sensors during
less than 16 seconds, the strategy is able to correctly classify a 100% of the samples both coming from
the healthy and faulty wind turbine. More precisely, with 54% less sensors and 95% less detection
time—compared to [5]—the fault detection strategy is still able to accurately detect when the wind
turbine is healthy or faulty.

Table 12. Categorization of the samples with respect to the presence or absence of a fault and the
result of the test for each of the four scores when the size of the samples to diagnose is ν = 50,
La = 50, and the sensors used are numbers 1, 2, 4, 5, 6 and 7.

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 16 0 9 0 5 0 7 0
Reject H0 0 8 7 8 11 8 9 8

Table 13. True rate of false positives and false negatives for each of the four scores when the size of
the samples to diagnose is ν = 50 and the sensors used are numbers 1, 2, 4, 5, 6 and 7.

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 1.00 0.00 0.56 0.00 0.31 0.00 0.44 0.00
Reject H0 0.00 1.00 0.44 1.00 0.69 1.00 0.56 1.00

Table 14. Categorization of the samples with respect to the presence or absence of a fault and the
result of the test for the first score when the size of the samples to diagnose is ν = 50, Lb = 25, and the
sensors used are numbers 1, 2, 4, 5, 6 and 7.

Score 1 Score 1

H0 H1 H0 H1

Fail to reject H0 16 0 1.00 (specificity) 0.00
Reject H0 0 8 0.00 1.00 (sensitivity)

7. Conclusions

The proposed strategy, using only six sensors when ν = 50 and L = 25, detects all the studied
faults with a detection time of 15.6125 s and with no false positive detections nor missed detections.

On one hand, compared to the five solutions to the problem given in [15], our strategy reduces
the detection time for all the pitch actuator faults (that is, faults 1, 2, and 3), and for the scaling pitch
angle sensor fault (fault 7). In the case of faults 4, 5, 6 and 8, our detection time is not the best nor the
worst (again, compared to the five solutions given in [15]). However, it is noteworthy that, for all the
studied faults, our fault detection scheme is the only one that achieves, in all cases, sensitivity and
specificity of 100%.
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On the other hand, compared to [5], with 54% less sensors and 95% less detection time, the
real-time application of the fault detection method is now possible while still being able to detect
when the wind turbine is healthy or faulty with a sensitivity and specificity of 100%.
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