
Smart Monitoring Embedded Service for Energy-Efficient and Sustainable
Management in Data Centers

Authors:

Diego Marcos-Jorquera, Virgilio Gilart-Iglesias, Francisco José Mora-Gimeno, Juan Antonio Gil-Martínez-Abarca

Date Submitted: 2019-01-07

Keywords: embedded systems, service oriented architecture, sustainable network, energy-efficient networks, monitoring energy-consumption

Abstract:

Information technologies (IT) currently represent 2% of CO? emissions. In recent years, a wide variety of IT solutions have been
proposed, focused on increasing the energy efficiency of network data centers. Monitoring is one of the fundamental pillars of these
systems, providing the information necessary for adequate decision making. However, today’s monitoring systems (MSs) are partial,
specific and highly coupled solutions. This study proposes a model for monitoring data centers that serves as a basis for energy saving
systems, offered as a value-added service embedded in a device with low cost and power consumption. The proposal is general in
nature, comprehensive, scalable and focused on heterogeneous environments, and it allows quick adaptation to the needs of changing
and dynamic environments. Further, a prototype of the system has been implemented in several devices, which has allowed validation
of the proposal in addition to identification of the minimum hardware profile required to support the model.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2019.0024
Citation (this specific file, latest version): LAPSE:2019.0024-1
Citation (this specific file, this version): LAPSE:2019.0024-1v1

DOI of Published Version: https://doi.org/10.3390/en9070515

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)

energies

Article

Smart Monitoring Embedded Service for
Energy-Efficient and Sustainable Management in
Data Centers
Diego Marcos-Jorquera *, Virgilio Gilart-Iglesias, Francisco José Mora-Gimeno
and Juan Antonio Gil-Martínez-Abarca

Department of Computer Science Technology and Computation, University of Alicante, Alicante 03690, Spain;
vgilart@dtic.ua.es (V.G.-I.); fjmora@dtic.ua.es (F.J.M.-G.); gil@dtic.ua.es (J.A.G.-M.-A.)
* Correspondence: dmarcos@dtic.ua.es; Tel.: +34-965-903-681; Fax: +34-965-909-643

Academic Editor: Luca Chiaraviglio
Received: 15 April 2016; Accepted: 28 June 2016; Published: 1 July 2016

Abstract: Information technologies (IT) currently represent 2% of CO2 emissions. In recent years,
a wide variety of IT solutions have been proposed, focused on increasing the energy efficiency of
network data centers. Monitoring is one of the fundamental pillars of these systems, providing the
information necessary for adequate decision making. However, today’s monitoring systems (MSs)
are partial, specific and highly coupled solutions. This study proposes a model for monitoring data
centers that serves as a basis for energy saving systems, offered as a value-added service embedded
in a device with low cost and power consumption. The proposal is general in nature, comprehensive,
scalable and focused on heterogeneous environments, and it allows quick adaptation to the needs
of changing and dynamic environments. Further, a prototype of the system has been implemented
in several devices, which has allowed validation of the proposal in addition to identification of the
minimum hardware profile required to support the model.

Keywords: monitoring energy-consumption; energy-efficient networks; sustainable network; service
oriented architecture; embedded systems

1. Introduction

In recent years, there has been constant growth in the cloud computing paradigm. This is leading
to an accelerating expansion of the network infrastructures and data processing centers of the providers
of these services. The sector of information technologies (IT) already represents a significant percentage
of global electricity consumption. Therefore, to sustain the growth of IT in general and that of data
centers in particular, it is necessary to introduce solutions that guarantee energy efficiency.

To this end, there have been a series of recent IT proposals in the literature focused on increasing
the energy efficiency of network data centers. The proposals can be classified into two large groups:
solutions based on hardware and those based on software [1]. The goals of the former are to improve
the efficiencies of hardware components, both of network devices and physical servers [2–4]. The latter
focus on aspects such as the operating system, the virtual machines or software applications [5–7].

Existing proposals use a great variety of techniques to reduce energy consumption: the turning
off and on of servers and switches that are not in use [8,9]; the consolidation and dynamic supply of
servers, that is, using the minimum number of servers that satisfies the needs of the work load [10,11];
virtualization and migration techniques in virtual machines [10,12]; proxy servers to turn off inactive
nodes while maintaining a presence through the proxy [8,9]; and planning of loads to predict traffic
behavior in the network to adjust the physical infrastructure [13,14].

All the proposals have a common methodology for reducing energy consumption in data
centers: they divide the solution into three modules or stages: monitoring, analysis and execution.

Energies 2016, 9, 515; doi:10.3390/en9070515 www.mdpi.com/journal/energies

Energies 2016, 9, 515 2 of 25

Monitoring obtains in real time the state of the variables related to energy consumption in the
infrastructure. Analysis determines the actions to be executed to minimize the energy consumption
while fulfilling the service needs. Execution carries out the actions indicated in the analysis, applying
the different techniques mentioned in the previous paragraph.

Clearly, monitoring is a fundamental pillar of these systems, providing the information necessary
to make decisions, information that measures different parts of computers and the data center
infrastructure, which shows the needs of more complex tools able to monitor a network infrastructure
and to trigger energy saving techniques when traffic conditions change [15]. Therefore, it is essential to
optimize the monitoring stage because implementing large monitoring systems (MSs) and collecting
large amounts of data can lead to resource demands that are higher than the savings anticipated in
the main production environment [16]. However, while multiple specialized devices for MS loads
exist, these tend to be ad hoc for a specific application or scenario. They cannot be integrated or reused
in other systems due to being strongly coupled, do not have characteristics such as proactivity and
persistence, tend to produce overloads in existing production systems, and lack intelligence; i.e., they
do not provide processed information that aids in decision making.

This article conducts an in-depth study of MS to propose a general, comprehensive, autonomous,
de-coupled, robust, scalable, flexible, proactive and intelligent model that does not interfere with the
main production environment. As a result of the models developed in [17,18] and based on simplifying
the management of IT infrastructure and services through autonomous devices with minimum
management and attention, weak coupling, and self-sufficiency, we propose the design of a monitoring
model for energy management to reduce energy consumption. The functionality of the system is
offered as services under the service-oriented architecture (SOA) paradigm, implemented through
representational state transfer (RESTful) architectural style, to provide higher levels of integration
and decoupling with the remaining systems while simultaneously having the capacity to integrate
almost immediately with other network devices and services found in heterogeneous environments.
To that end, the system is based on the composition of basic management network IT services through
the use of standard technologies and protocols to monitor and analyze the loads of network nodes
using network standards such as simple network management protocol (SNMP) and remote network
MONitoring (RMON).

These services are provided through an embedded network device to provide an accessible
technological platform that tolerates errors and does not significantly increase energy consumption.
The device has persistence and data processing capacities that make it an intelligent probe. We show
how an independent element that is easy to install and manage avoids possible conflicts with
management policies of the data center while being able to obtain the minimum information necessary
to activate its initial configuration and execute management tasks with minimum human intervention.

The rest of the article has been structured as follows: Section 2 presents a review and analysis of
the state of the art in research proposals and related technologies, Section 3 describes the methodology
followed in the study to obtain the monitoring model, Section 4 describes a set of scenarios and tests
for validation, and finally, we present our main conclusions and future lines of work.

2. Related Work

Recent years have seen an acceleration of publications that address energy efficiency in data
centers. As a result of this research activity, many different approaches have been proposed to save
energy. They can be categorized into two main spheres: models focused on hardware and models
focused on software [1]. For an in-depth discussion of the different models for energy saving systems,
one can turn to the review in [1]. The present study focuses on the infrastructure monitoring stage
present in all the proposals in the literature, which constitutes our main objective.

The approaches focused on hardware are generally based on monitoring load or traffic demand
and on dynamically adjusting the network hardware infrastructure to these traffic needs. They mainly
use techniques of consolidating servers, switches and links to adapt infrastructure to traffic demand.

Energies 2016, 9, 515 3 of 25

Mahadevan et al. [2] proposed three algorithms to save energy by monitoring data traffic in all
the switches in the data center. Based on the usage of each port, the first algorithm adapts the state
of each link, the second consolidates switches, and the third consolidates servers. The last approach
generates the largest energy savings. This paper shows an analysis of the energy consumption profile
of network devices.

ElasticTree monitors the traffic load of data centers and dynamically adjusts the set of active
network elements (switches and links) to adapt to changes [11]. The system is formed by three models:
optimizer, routing and power control. The optimizer uses a matrix of monitored traffic, topology, the
energy model of each switch and the desired tolerance to errors in order to generate as output the set
of active elements leading to minimum power consumption.

In a study presented in [5], a heuristic algorithm was designed to save energy from the viewpoint
of routing; the authors use the term energy-aware routing to describe it. The system monitors the matrix
of traffic between servers in the data center; a value of 1 in the matrix indicates the presence of traffic
flow between the two servers. The system takes topology and a predefined network performance
level into account. The result is the turning off of switches that are not necessary to achieve the
specified performance.

Correlation-aware power optimization (CARPO) integrates dynamic consolidation of traffic flows
in a set of switches with adaptation of the ratio of links [14]. In addition, it incorporates an analysis of
the weak correlation that usually exists between traffic flows in a data center.

Tarutani et al. [19] used optical switches instead of electronic ones to reduce energy consumption
of the data center network itself. The reduction in energy consumption is produced through the
configuration of a virtual network that minimizes the number of necessary ports. It monitors the
amount of traffic and determines changes, both frequent and gradual, in the traffic pattern.

Wang et al. [20] proposed a general framework for saving energy in modern data centers based
on traffic engineering and virtualization techniques. It characterizes three different traffic patterns
and, depending on the pattern, carries out advanced engineering traffic planning. It monitors traffic
demands and, on that basis, determines the traffic pattern and conducts planning by also consolidating
switches and balancing traffic flows.

In these previous proposals, the monitoring module has an elevated degree of coupling with
the rest of the modules in the system; this leads to inflexible and closed proposals for the proposed
solutions. The monitored variables are not based on a set of general variables but instead are specific
and defined ad hoc for the proposed application. In addition, the monitoring in these previous studies
lacks any type of intelligence or processing (filters, aggregations, etc.); it obtains only basic data
without processing.

Within the models focused on software, we found some proposals based on services and others
geared toward desktop computers. The former obtain the minimum set of resources associated with
the traffic load for the specified service. The latter detect the turning off or suspending of a computer
and, at that instant, translate the presence of the computer in the network to a proxy server.

Chen et al. [13] showed a system that enables energy savings in data centers at the level of Internet
service. The system monitors workload traces of 32 different performance variables such as login
ratio, connection count, use of memory and central processing unit (CPU) and failed connections.
The system exhibits the weakness of being too specific; more precisely, it is centered on the Windows
Live Messenger service.

In [6], the servers and switches continuously monitor the load, combine periodic loads and
estimate aggregate performance. Specifically, for each service, they monitor the usage and tail lengths
of requests as well as their performance requests. The proposal uses an economic approach in which
maximizing the efficiency of resources corresponds to maximizing a utility function for the user.

LiteGreen is an energy savings system that uses virtualization to migrate the physical desktop
of the user to a server of virtual machines when the user is inactive. It monitors the computational
activity of the user, specifically, CPU, memory, disk, network, and mouse activity.

Energies 2016, 9, 515 4 of 25

Reich et al. [8] proposed a light proxy system to turn off inactive machines while maintaining
the presence of the network in the machine. It has the advantage of being a solution that is actually
deployed in production environments, in contrast to other studies that use a small set of tests and even
simulations. The system monitors a period of inactivity in machines; when the period expires, the
machine goes to sleep and the proxy system will address requests directed to the machine, initiating
the machine again if necessary. SleepServer is a similar proposal; that is, it uses a proxy to maintain the
presence of the machine, but the difference is that it is based on virtualization techniques [9]. It uses
a module in the client machine to detect when it is suspended by the operating system.

Once the proposals in the state of the art were analyzed, the need was identified to have a greater
degree of generality and intelligence. Additionally, the proposals are hindered by being designed for
very specific services, exhibiting a high degree of coupling.

Table 1 summarizes the information monitored by each of the analyzed proposals.

Table 1. Information monitored by each analyzed proposal. CPU: central processing unit.

Proposal Traffic Demand CPU Use Memory Disk Network Connect Others

[2]
‘

- - - - - -
[11]

‘

- - - - - -
[5]

‘

- - - - - -
[14]

‘

- - - - - -
[19]

‘

- - - - - -
[20]

‘

- - - - - -
[13] -

‘ ‘

- -
‘ ‘

[6]
‘

- - - -
‘

-
[10] -

‘ ‘ ‘ ‘

-
‘

[8] - - - - - -
‘

[9] - - - - - -
‘

We have observed that all the analyzed IT energy savings proposals, especially those focused on
data centers, use systems that monitor load and consumption of infrastructure associated with the
services provided. However, none of the proposals consider the most important characteristics
associated with these environments when managing their consumption, such as infrastructure
heterogeneity, existing applications and services in the centers, and dynamism and exposure to
continuous change, in which new elements continuously arise that will influence energy consumption
and must be taken into account in the monitoring process. All the reviewed approaches focus
on ad-hoc proposals to monitor very specific parameters necessary for each of the cases being
analyzed. These approaches involve highly coupled proposals and depend on the environments
of the applications, making them partial, ad-hoc, rigid and hardly scalable solutions, unable to offer
an integrated solution and manage the changes that occur in an environment as dynamic as a data
center. In addition, all the MS proposals call for a general purpose computing architecture, implying
increased power consumption over existing levels.

3. Investigation Methodology

Based on the above analysis identifying limitations in the monitoring processes for the systems
in terms of energy savings, a new autonomous and robust model is being proposed that provides
a smart monitoring service for energy savings. The proposal is general, integral and scalable and is
oriented toward heterogeneous environments. It is valid for any energy-saving system regardless
of infrastructure, services, protocols, etc., such as data centers, Cloud infrastructures and business
networks; it deftly allows adapting to the needs of a changing and dynamic environment without
an additional consumption cost.

A methodology based on business process management has been followed to develop the
proposal [21,22]. Process management is a strategy that establishes a task sequence to be followed to

Energies 2016, 9, 515 5 of 25

transform input elements into output elements. This transformation must be aligned with previously
defined objectives that are strategic for the organization, satisfying shortcomings and resolving
identified problems. Thus, the defined process will allow for achieving the model central to the
present study in a systematic way, without straying from the charted objective: solving the problems
and shortcomings identified in the existing monitoring proposals for the management of energy
consumption in data processing centers.

To define the processes, we have chosen the formal notation of Eriksson-Penker [23]. It is
an extension of the UML Language for representing business processes; it is intuitive and easily
comprehended by all the participants in the process.

Figure 1 shows the main process conducted in the research, termed Design of smart monitoring
service for saving energy. The input element («input») represents current MS for saving energy.
This «input» is to be transformed through this process into a novel embedded smart monitoring service
for energy saving («output»), addressing the needs and gaps identified previously. These are now
represented by the strategic objectives to guide the research process («goals»).

Energies 2016, 9, 515 5 of 24

identified problems. Thus, the defined process will allow for achieving the model central to the

present study in a systematic way, without straying from the charted objective: solving the problems

and shortcomings identified in the existing monitoring proposals for the management of energy

consumption in data processing centers.

To define the processes, we have chosen the formal notation of Eriksson-Penker [23]. It is an

extension of the UML Language for representing business processes; it is intuitive and easily

comprehended by all the participants in the process.

Figure 1 shows the main process conducted in the research, termed Design of smart monitoring

service for saving energy. The input element («input») represents current MS for saving energy. This

«input» is to be transformed through this process into a novel embedded smart monitoring service

for energy saving («output»), addressing the needs and gaps identified previously. These are now

represented by the strategic objectives to guide the research process («goals»).

Figure 1. Modeling (Eriksson-Penker notation) of definition of smart monitoring model for saving energy.

To perform the transformation and achieve the established objectives, one must identify the

controllers («Control») and facilitators («supply») needed to guide this transformation. These elements

represent strategies, paradigms, techniques and technologies that will be integrated into our

proposal. Processes can be split into new sub-processes. This action makes easy the identification and

the comprehension of the problem. In our case, a first division was required, as illustrated in Figure 1.

The resulting sub-processes are, first, the sub-process definition of monitoring data conceptual

model, focused on locating the different types of data associated with energy consumption within a

data processing center and how they must be structured to achieve the formulated objectives; second,

Definition of
monitoring data

conceptual model

<<input>>

Lacks of current
monitoring systems

for saving energy

<<output>>

Smart monitoring
model for saving

energy

Monitoring
Data Model

Definition of
functional model

Functional
model

Definition of
deployment

model

<<goals>>

Autonomy
General

Comprehensive
Scalable
Flexible

Proactive
Value Added
Robustness

Low Cost
Low Power Consumption

<<control>>

Green IT strategies

<<control>>

Integration and
Data design

patterns

<<control>>

ICT’s model and
paradigms

<<supply>>

Embedded devices

Definition of
provisioning

model

Provisioning
model

<<control>>

Management
network protocols

<<supply>>

Network
management and
monitoring tools

<<control>>

SOA Principles

<<supply>>

Web Service Styles

Definition of smart monitoring model for saving energy

B

C

A D

Identification of
lacks in

monitoring for
saving energy

Definition of
smart monitoring
model for saving

energy

Implementation of
a prototype based

on the new
monitoring model

Validation of the
new monitoring

model

Research Methodology

Figure 1. Modeling (Eriksson-Penker notation) of definition of smart monitoring model for
saving energy.

To perform the transformation and achieve the established objectives, one must identify the
controllers («Control») and facilitators («supply») needed to guide this transformation. These elements
represent strategies, paradigms, techniques and technologies that will be integrated into our proposal.

Energies 2016, 9, 515 6 of 25

Processes can be split into new sub-processes. This action makes easy the identification and the
comprehension of the problem. In our case, a first division was required, as illustrated in Figure 1.

The resulting sub-processes are, first, the sub-process definition of monitoring data conceptual
model, focused on locating the different types of data associated with energy consumption within
a data processing center and how they must be structured to achieve the formulated objectives; second,
there are two sub-processes: definition of functional model, focused on the identification of functional
modules for data acquisition as well as its processing in a heterogeneous and dynamics environment,
and definition of provisioning model, focused on defining an interoperable and proactive model for
the exposure and provisioning of information to other systems. Finally, the sub-process definition of
deployment model, is focused on obtaining a service-provisioning model that reduces consumption
and can introduce the proposed monitoring service itself.

The result of this process will be the smart monitoring model for saving energy, whose general
scenario is shown in Figure 2. It is composed of two decoupled functionalities, the functional
model (Figure 2B), including the necessary functionalities to obtain monitoring information from
the environment and process it, and the provisioning model (Figure 2C), focused on exposing the
monitoring data to third-party consumers for their exploitation. Both functionalities are connected
through the monitoring data model (Figure 2A). Finally, the suitable deployment model, aligned with
the defined goals, has been identified to support the proposal (Figure 2D).

Energies 2016, 9, 515 6 of 24

there are two sub-processes: definition of functional model, focused on the identification of functional

modules for data acquisition as well as its processing in a heterogeneous and dynamics environment,

and definition of provisioning model, focused on defining an interoperable and proactive model for

the exposure and provisioning of information to other systems. Finally, the sub-process definition of

deployment model, is focused on obtaining a service-provisioning model that reduces consumption

and can introduce the proposed monitoring service itself.

The result of this process will be the smart monitoring model for saving energy, whose general

scenario is shown in Figure 2. It is composed of two decoupled functionalities, the functional model

(Figure 2B), including the necessary functionalities to obtain monitoring information from the

environment and process it, and the provisioning model (Figure 2C), focused on exposing the

monitoring data to third-party consumers for their exploitation. Both functionalities are connected

through the monitoring data model (Figure 2A). Finally, the suitable deployment model, aligned with

the defined goals, has been identified to support the proposal (Figure 2D).

Figure 2. General scenario for the proposal of a smart monitoring model for saving energy in data centers.

3.1. Definition of Monitoring Data Conceptual Model

One of the principal novelties of this study is its attention to the heterogeneity in current energy

saving systems in terms of monitoring the various resources that impact energy consumption of the

data centers they manage. To achieve the objective, a monitoring solution is necessary that is generic,

allowing any of the scenarios that are meant to be controlled to be addressed, comprehensive,

allowing the different problems that arise from the solution itself (network hardware, servers, Cloud

services and applications, or complementary elements in the environment such as cooling systems)

to be addressed, and flexible, allowing customization of the monitoring solution to meet the needs of

the organization.

The current sub-process should define the conceptual data model to satisfy the specific

requirements intrinsic in data processing environments. To execute the sub-process, the types of data

related to energy consumption in the study’s context have been identified, including how they are

acquired, processed, stored and offered, as well as the values that are useful in the energy

consumption decision-making phase.

The review of the various studies found that a large amount of monitoring data related to energy

savings exist.

The most important measure to evaluate energy consumption is power usage effectiveness

(PUE), proposed by the green grid. This measure is the ratio between the total energy consumption

and the IT equipment energy consumption. The reciprocal of this measure is the data center

infrastructure efficiency (DCiE), and it is also often used to evaluate the energy consumption.

The corporate average data center efficiency (CADE) is another measure used to evaluate the energy

Intranet Functional Model
Provisioning

Model

B C

A

D

Service Consumer

Deployment Model

Monitoring Data
Model

Figure 2. General scenario for the proposal of a smart monitoring model for saving energy in
data centers.

3.1. Definition of Monitoring Data Conceptual Model

One of the principal novelties of this study is its attention to the heterogeneity in current energy
saving systems in terms of monitoring the various resources that impact energy consumption of
the data centers they manage. To achieve the objective, a monitoring solution is necessary that is
generic, allowing any of the scenarios that are meant to be controlled to be addressed, comprehensive,
allowing the different problems that arise from the solution itself (network hardware, servers, Cloud
services and applications, or complementary elements in the environment such as cooling systems) to
be addressed, and flexible, allowing customization of the monitoring solution to meet the needs of
the organization.

The current sub-process should define the conceptual data model to satisfy the specific
requirements intrinsic in data processing environments. To execute the sub-process, the types of
data related to energy consumption in the study’s context have been identified, including how they are

Energies 2016, 9, 515 7 of 25

acquired, processed, stored and offered, as well as the values that are useful in the energy consumption
decision-making phase.

The review of the various studies found that a large amount of monitoring data related to energy
savings exist.

The most important measure to evaluate energy consumption is power usage effectiveness (PUE),
proposed by the green grid. This measure is the ratio between the total energy consumption and the
IT equipment energy consumption. The reciprocal of this measure is the data center infrastructure
efficiency (DCiE), and it is also often used to evaluate the energy consumption. The corporate average
data center efficiency (CADE) is another measure used to evaluate the energy consumption of a data
center; it is derived from the product of the Facility Efficiency and the IT asset efficiency.

It is also possible to adapt the key performance indicators (KPIs) used in other environments to
measure Energy Efficiency. For example, in [24], a set of KPIs associated with energy efficiency exist in
the industrial domain.

Kipp et al. [25] proposed energy consumption in IT centers to be characterized through a set
of metrics called green performance indicators (GPI). The proposal groups the metrics into four
categories: IT resource usage GPIs, application lifecycle KPIs, Energy Impact GPIs and organizational
GPIs. The proposal is framed by the European Union (EU) Project, Green Active Management of
Energy in IT Service Centres (GAMES), a project oriented toward Green data centers. Anghel et al. [26]
used a set of KPIs and GPIs with the objective of reducing energy consumption.

In our case, and from the point of view of monitoring, we have categorized the existing indicators
based on their nature and acquisition method.

‚ Atomic indicators. These measures are obtained through consultation, capturing or soliciting
and represent atomic and instantaneous values of the state of a particular element that can be
modified. Based on the origin of these data, these measures could be divided as follows:

˝ Device indicators. Values obtained from a particular device: a server, a networking device,
SAI, etc. These values are obtained by a probe using networking protocols such as SNMP or
hypertext transfer protocol (HTTP). Within this type, we would have common measures of
energy saving systems, such as the number of CPUs and amount of memory or storage space,
as well as infrastructure data, such as the energy consumption of the data center or of the
associated infrastructure.

˝ Applications and services indicators. These measure the performance of the applications and
services of the systems to be managed. Examples of these types of measures could be the
number of requests processed in an interval by a web or database server. For these cases, given
that the probe is an element external to the monitored servers, values would have to be sent to
the probe through network protocols.

˝ Network indicators. Values obtained from a traffic analysis of the network connected to the
probe. This information can be used to estimate the network load. The measures may be
obtained through direct inspection of the network traffic with the probe acting as a network
sniffer connected to a hub or to the span port/mirroring port of a switch. In certain scenarios,
this information may be collected from the network infrastructure itself through SNMP/RMON.

‚ Calculated indicators. Values from other indicators may be combined into calculated indicators.
This allows other data to be used in the creation of indicators such as the CADE, or an indicator
such as the mean network load over the last 15 min can be calculated from historic data from
a specific time.

‚ Static indicators. These pertain to data that are more or less constant in nature, that cannot be
obtained automatically, and that are established in the system administratively. These values
have as a main purpose the complementing of certain calculated indicators that depend on
values that cannot be monitored, such as the dimensions of an enclosure or the total number of
available servers.

Energies 2016, 9, 515 8 of 25

Once the different types of indicators that might be monitored by the probe have been identified,
a conceptual data model for the MS is proposed, which allows for gathering of all the elements of
which it is composed, as well as the existing relationships between them.

The MS is defined as the set of energy savings indicators GPI, the set of devices to monitor
(Network—N), the set of rules (R) that defines how the monitoring is conducted, and the set of
values (V) associated with the indicators that have been monitored and stored.

MS “ pGPI, N, R, Vq (1)

The indicators, as described previously, are composed of atomic, calculated and static indicators.

GPI “ AI Y CI Y SI (2)

AI represents the set of atomic indicators. All of these indicators, i “ ps, p, f , tq P AI, will be
formed by a scheme(s) that represents the method or protocol used to obtain the indicator, a filter
function (f) that allows determining the cases in which the data should and should not be processed
and stored, and a transforming function (t) that allows processing of the data to adapt or normalize
them before they are stored.

CI represents the set of calculated indicators, of which each ci “ pa, cq P CI will have a set of
input arguments (a Ď P pVq), where P is the power set, which will carry other monitoring values, and
a calculation function (c : A Ñ V) that, given input arguments, returns a new value.

Lastly, SI references the set of static indicators whose values are introduced administratively into
the probe.

The rules (r “ pi, target, time, decisionq P R) allow configuring the fundamental behavior
of the MS, capturing which indicators belonging to which devices must be monitored and the
corresponding monitoring frequency. Therefore, for each rule, it must be determined which set
of indicators are to be monitored (i P P pGPIq), which elements of the system will be targeted
(target P P pNq) and how often (time). Additionally, each rule will be associated with a decision
function (decision : P pVq Ñ P pGPI ˆ Nq) that, taking as arguments the calculated variables in each
iteration, will decide if it executes a notification or alert to another device. It is in this function that the
proactivity of the probe is modeled.

Values pv “ pd, ts, i, deviceq P V) represents the set of values being monitored. This is the set of
data captured by the probe that will be exploited by the management systems for energy savings.
Each of these values is composed of a datum (d) obtained (from an atomic indicator), calculated (from
a calculated indicator) or introduced (from a static indicator), a time stamp (ts), an indicator associated
with a value (i P GPI) and, optionally, the device from which it was obtained (device P N).

Data Access Model

To facilitate access to the registered values, a set of procedures is put forward that allows accessing
the information in a fast and compact way.

These procedures allow filtering the information through different criteria that can be combined
with each other. The filters are as follows:

‚ Temporary range. Allows filtering of the values registered in a specific period.

˝ Date/Time From
˝ Date/Time To

‚ Numeric range. Allows filtering of a maximum number of records to be obtained.

˝ First N records
˝ Last N records

‚ Rule. Allows obtaining the records generated by a specific rule.
‚ Device. Allows obtaining the records generated for a specific device.
‚ Indicator. Allows obtaining the records generated for a specific indicator.

Energies 2016, 9, 515 9 of 25

Additionally, once the records are filtered, the procedure allows for indications as to how we wish
to obtain the data.

‚ Records: list all the filtered records.
‚ Maximum: record with the maximum value.
‚ Minimum: record with the minimum value.
‚ Mean: average value of all the records (only for numeric values).
‚ Sum: sum of all values (only for numeric values).
‚ Count: number of filtered records.

3.2. Definition of Functional Model

The previous sub-process was the first step to reach part of the objectives; however, it is necessary
to solve the limitations of the current proposals with respect to the necessary acquisition of information
and how to make that information useful to facilitate decision-making. As described previously,
the related studies were focused on ad hoc solutions to solve very specific aspects in controlled
environments; they offered only partial solutions. The main functionalities of their monitoring
modules were focused only on data acquisition for the specific case study, and such data were offered
raw, as captured, to carry out a specific analysis, without previous processing that would allow for
decision-making.

Therefore, the objective of the sub-process is to define the functional architecture of the monitoring
model with the initial objectives:

(i) the acquisition of any information related (necessary for knowledge) to energy consumption
transparently, regardless of the environment and the information structure, as long as it can be
obtained through the network infrastructure; and

(ii) processing the acquired information to transform it into data with value added that aids in
decision-making for energy management. Lastly, the proposed model must be directed toward
providing an autonomous and reusable approach so that, on its own, it can be used by other
energy consumption management systems such as those reviewed in the state of the art.

To reach these objectives, the proposed model is composed of three functional modules
(acquisition, processing and notification), a configuration module (setup) and a central coordination
element (monitoring coordinator), as seen in Figure 3.

The acquisition module is one of the principal elements of the functional monitoring model; it is
responsible for acquiring information (atomic indicators) in heterogeneous environments, such as data
processing centers, independently of the source or format. It offers a valid solution for any type of
environment for the resources to be monitored. To achieve transparency, this module incorporates
integration patterns: denominated bridging, message filter, data model transformation and data format
transformation patterns [27,28]. The protocol-bridging design pattern is implemented by various
transport modules for different schemes and protocols for data acquisition. By means of this, generality
and flexibility are contributed to the model, allowing the probe to adapt to the needs of the monitored
system. In this way, a set of indicators obtained by different network protocols could be added to
the MS including: management protocols, such as SNMP; control protocols, such as internet control
message protocol (ICMP); transfer protocols, such as HTTP; log messages protocols, such as Syslog;
and, in general, any standard protocol based on Internet standards. This represents one of the main
novelties of the proposal, unlike other systems that are dependent on specific protocols. The message
filter pattern is implemented by the Filter component, which is responsible for determining which
information acquired is valid and which is to be discarded. The other two patterns are implemented
by the transformer component, shown in Figure 3. The objective of the transformer is to normalize
the format of the message through which the data were received to store and process the information.
In this way, we can automatically remove the heterogeneity problems associated to the message
structure, the data format, and the communication protocol used by the acquisition module.

Energies 2016, 9, 515 10 of 25

Energies 2016, 9, 515 9 of 24

3.2. Definition of Functional Model

The previous sub-process was the first step to reach part of the objectives; however, it is

necessary to solve the limitations of the current proposals with respect to the necessary acquisition

of information and how to make that information useful to facilitate decision-making. As described

previously, the related studies were focused on ad hoc solutions to solve very specific aspects in

controlled environments; they offered only partial solutions. The main functionalities of their

monitoring modules were focused only on data acquisition for the specific case study, and such data

were offered raw, as captured, to carry out a specific analysis, without previous processing that

would allow for decision-making.

Therefore, the objective of the sub-process is to define the functional architecture of the

monitoring model with the initial objectives:

(i) the acquisition of any information related (necessary for knowledge) to energy consumption

transparently, regardless of the environment and the information structure, as long as it can be

obtained through the network infrastructure; and

(ii) processing the acquired information to transform it into data with value added that aids in

decision-making for energy management. Lastly, the proposed model must be directed toward

providing an autonomous and reusable approach so that, on its own, it can be used by other

energy consumption management systems such as those reviewed in the state of the art.

To reach these objectives, the proposed model is composed of three functional modules

(acquisition, processing and notification), a configuration module (setup) and a central coordination

element (monitoring coordinator), as seen in Figure 3.

Figure 3. Functional monitoring architectural model.

The acquisition module is one of the principal elements of the functional monitoring model; it is

responsible for acquiring information (atomic indicators) in heterogeneous environments, such as

data processing centers, independently of the source or format. It offers a valid solution for any type

of environment for the resources to be monitored. To achieve transparency, this module incorporates

integration patterns: denominated bridging, message filter, data model transformation and data

format transformation patterns [27,28]. The protocol-bridging design pattern is implemented by

various transport modules for different schemes and protocols for data acquisition. By means of this,

generality and flexibility are contributed to the model, allowing the probe to adapt to the needs of

the monitored system. In this way, a set of indicators obtained by different network protocols could

Intranet

B

Monitoring Coordinator

Setup Module Query Module

Query

Query

…

Query

Processing
Module

Action

Action

…

Action

Adquisition Module

Transport

Transport

Transport

…
Transport

Fi
lt

er

Tr
an

sf
o

rm
er

Monitor
Rule

Notification
Module

Alert

Alert

…

Alert

Persistent Module

Service
provider

C

Service Consumer

Monitoring
Data Model

A

D

Monitor
Rule

Monitor
Rule

…
Monitor

Rule

Figure 3. Functional monitoring architectural model.

The second component, the processing module, is responsible for transforming the information
obtained into useful data for the consumers of the system. To that end, the module is composed of
a series of self-contained units termed Actions that determine how the transformation operations are
to be performed to obtain the calculated indicators. Each indicator defined by the organization will be
associated with an action; this will allow the system to create as many calculated values as needed for
decision-making, increasing the capacity for system adaptation and flexibility.

The third functional component, the notification module, gives the system proactivity by
establishing a set of alerts and notices that are launched when a monitoring rule detects, for example,
that an indicator is outside pre-established values. The notices will be directed to a series of destinations
interested in the event. This functionality is encapsulated through the components termed Alert
(Figure 3).

All of the functionalities of the system described previously, along with the setup module, are
used by the monitoring coordinator (Figure 3). This is the central nucleus of the architecture and
provides the flexibility characteristics to the proposal by allowing it to adapt quickly to each type of
scenario. This element is responsible for asynchronously coordinating the execution of each of the
monitoring rules defined previously. Each of these rules represents an autonomous and independent
monitoring flow executed through a rule-monitoring agent (monitoring rule) created by the monitoring
coordinator. The monitoring coordinator initially uses the setup module to configure and parametrize
its own operation and that of the monitoring rules.

The flows executed by each of the monitoring rule agents, through the orchestration of their
elements, implement all of the objective functions of the network probe: acquisition of monitoring
information, processing of the data, or combinations of both. The objective is to obtain the atomic and
calculated indicators and send alerts and notifications.

In one case, a rule agent may launch a flow for acquisition of monitoring information through the
acquisition module and its elements. This flow may orchestrate the incorporation of several connectors,
filters and transformers to obtain the desired atomic indicators.

A second case is centered on workflows for information processing to obtain the calculated
indicators that contribute added value to consumers and aid in decision-making. When the monitoring
rule agent is launched by the coordinator, it calls on the action component associated with the
indicator in the processing module. The action component requests the necessary information from the

Energies 2016, 9, 515 11 of 25

monitoring rule agent to carry out the calculations, which, depending on the information required, uses
both the acquisition module, obtaining atomic indicators in real time, and the query module, obtaining
information from the monitoring history. When the monitoring rule agent responsible for that flow
acquires all the information, it returns it to the action component, which calculates the indicator,
subsequently returning it to the monitoring rule agent, which stores it in the monitoring database.

The last type of flow is related to the sending of notifications by way of the notification module,
as indicated previously.

3.3. Definition of Provisioning Model

Another novel aspect of this proposal with respect to related studies is the interaction with external
entities and systems. While monitoring has been presented as an element that is part of the system,
with a strong coupling and dependence on the rest of the modules, this proposed model is presented as
an interoperable and proactive value-added service, independent and autonomous, capable of offering
its results as useful information to third parties to satisfy their needs. These objectives are conducted
in the present sub-process.

In addition, due to the distributed approach of the proposal, the system must be capable
of growing to support complex environments with large processing needs when acquiring and
transforming the information (scalability). The detected absence of this in the current proposals
results in an important deficiency for the efficient functioning of data centers.

The service proposed is provided through the two interaction models: B2B (business to business)
and B2C (business to customer). In both cases, the proposal is based on providing a service based on
the principles of the SOA paradigm [27,28], implemented through the RESTful architectural style, and
offering the resulting information through the Javascript object notation (JSON) format so that it is light
and easily interpreted. Achieving a model aligned with SOA principles (interoperability, discovery,
well-defined contract, reusability, autonomy, composable, decoupling, coarse grained functionalities,
business-aligned) we derived a set of benefits deemed necessary to resolve the problems found in the
related works.

The approach based on the B2B paradigm is geared toward the interaction of the service with
external consumers, contributing the consumption indicators through an interoperable application
programming interface (API). The external consumers could be, on the one hand, energy management
systems that need information from the probe for decision-making or, on the other hand, other
monitoring probes that require the indicators to carry out their own monitoring flows. This module
implements two types of message exchange patterns. A first approach is based on the request–response
pattern, exhibiting passive behavior in the probe when the consumer requests the indicators needed
for its operation and the monitoring service provides them. A second novel approach implements
the proactive behavior of the monitoring service through a notification pattern, which complies with
the SOA eventing principle. In this approach, consumers that were previously configured for specific
indicators in the monitoring probe are alerted when the indicators take on anomalous values, also
previously parametrized. This last approach offers a more efficient and unattended model.

To increase the interoperability, the monitoring service exposes its functionalities through
a well-defined contract based on the RESTful API modeling language (RAML) language, as shown in
Figure 4. This both enables and ensures that information published about the proposed service and its
functionality is readily discoverable and interpretable. This is achieved because our proposal model is
aligned with the SOA discovery principle.

The second approach, B2C, is sustained on the service capacities of the previous model.
However, it is geared toward providing an interface for human–machine interaction that allows
a user to directly interact with the MS, for example, through a light client such as a Web browser.
The access interface of this approach defines the access to the different indicators, their creation and
classification, the subscription to alarms for specific indicators and the parametrization of the system
or the definition of flows, among other things.

Energies 2016, 9, 515 12 of 25

Lastly, the proposals analyzed to this point were focused on controlled and very specific scenarios.
However, the proposal presented here can address complex, general-purpose and uncontrolled
scenarios. Both information acquisition and its subsequent processing could represent an excessive load
for the system’s capacity, leading to a possible loss of information in the process of acquiring it or to the
generation of unreliable values due to their slow processing. The design with the various modules and
flows defined in the previous sub-process, along with the distribution and communication capacities
conferred by the SOA approach, provide the monitoring probe with a high capacity for scaling, another
of the objectives of the formulated problem. This design enables the distribution of acquisition and
processing flows to dedicated probes to avoid bottlenecks and ensures that the results can be used as
input information for an external energy management system or for another monitoring probe.

Energies 2016, 9, 515 12 of 24

that the results can be used as input information for an external energy management system or for

another monitoring probe.

Figure 4. Fragment of the monitoring service contract definition in representational state transfer

(RESTful) API modeling language (RAML).

3.4. Definition of Deployment Model

This process has the objective of establishing the physical architecture to support the

implementation and deployment of the elements and functionalities identified in the previous

processes, which constitute the monitoring model.

There are three main options for this design. First, one can choose to locate the various elements

of the model in the servers of the data center themselves; this would affect the performance of the

servers, their services and their tolerance to errors because an error in the MS could provoke server

breakdown. Second, one can implement the model in dedicated monitoring servers. However, this

option presents the disadvantages of increasing energy consumption, which is intended to be

reduced, and increasing cost.

Considering the disadvantages of the first two options, our proposal is based on using a distributed

architecture of autonomous embedded devices. This design presents the following advantages:

 Autonomy. As a result of the devices being independent, they manage monitoring

autonomously, without affecting the performance of the data center servers.

 Scalability. The distributed architecture of the system facilitates scalability by simply adding

more embedded devices as the resources of the data center increase.

 Robustness. It is a dedicated platform used exclusively for the service.

 Low cost. The cost of embedded devices is considerably lower than that of dedicated servers.

 Low energy consumption. As with the previous point, energy consumption of embedded

devices is much lower than that of dedicated servers.

Figure 4. Fragment of the monitoring service contract definition in representational state transfer
(RESTful) API modeling language (RAML).

3.4. Definition of Deployment Model

This process has the objective of establishing the physical architecture to support the
implementation and deployment of the elements and functionalities identified in the previous
processes, which constitute the monitoring model.

Energies 2016, 9, 515 13 of 25

There are three main options for this design. First, one can choose to locate the various elements
of the model in the servers of the data center themselves; this would affect the performance of the
servers, their services and their tolerance to errors because an error in the MS could provoke server
breakdown. Second, one can implement the model in dedicated monitoring servers. However, this
option presents the disadvantages of increasing energy consumption, which is intended to be reduced,
and increasing cost.

Considering the disadvantages of the first two options, our proposal is based on using
a distributed architecture of autonomous embedded devices. This design presents the
following advantages:

‚ Autonomy. As a result of the devices being independent, they manage monitoring autonomously,
without affecting the performance of the data center servers.

‚ Scalability. The distributed architecture of the system facilitates scalability by simply adding more
embedded devices as the resources of the data center increase.

‚ Robustness. It is a dedicated platform used exclusively for the service.
‚ Low cost. The cost of embedded devices is considerably lower than that of dedicated servers.
‚ Low energy consumption. As with the previous point, energy consumption of embedded devices

is much lower than that of dedicated servers.

Therefore, the MS will be deployed in an embedded device to attempt to reduce the energy
consumption contributed by the monitoring model itself as much as possible. This is feasible because
the system does not require high hardware performance.

Physically, the system has been designed as an intelligent sensor with three main elements:
a sensor, a microprocessor and memory. The sensor, strictly speaking, will monitor energy consumption
information obtained directly from the data center infrastructure: fundamentally, a network adapter
on the local area network (LAN) whose traffic is to be monitored, which will provide the device with
connectivity to the systems to which it offers its service. This element provides the sensory capacity:
a microprocessor. It will have embedded additional functionality as an intelligent probe, obtaining
calculated variables, applying defined filters, etc. In addition to processing capacity, the sensor has
been given a non-volatile internal memory to store the information obtained and calculated by the
intelligent probe relative to the data model, giving the probe the capacity of persistence.

The embedded device has sensory, processing, memory and communication capacities, which
make it an intelligent sensor or probe.

If the MS can be considered physically an intelligent sensor, functionally the system can be
considered a monitoring «service», whose software architecture is organized into layers as follows
(Figure 5).

Energies 2016, 9, 515 13 of 24

Therefore, the MS will be deployed in an embedded device to attempt to reduce the energy

consumption contributed by the monitoring model itself as much as possible. This is feasible because

the system does not require high hardware performance.

Physically, the system has been designed as an intelligent sensor with three main elements: a

sensor, a microprocessor and memory. The sensor, strictly speaking, will monitor energy consumption

information obtained directly from the data center infrastructure: fundamentally, a network adapter

on the local area network (LAN) whose traffic is to be monitored, which will provide the device with

connectivity to the systems to which it offers its service. This element provides the sensory capacity:

a microprocessor. It will have embedded additional functionality as an intelligent probe, obtaining

calculated variables, applying defined filters, etc. In addition to processing capacity, the sensor has

been given a non-volatile internal memory to store the information obtained and calculated by the

intelligent probe relative to the data model, giving the probe the capacity of persistence.

The embedded device has sensory, processing, memory and communication capacities, which

make it an intelligent sensor or probe.

If the MS can be considered physically an intelligent sensor, functionally the system can be

considered a monitoring «service», whose software architecture is organized into layers as follows

(Figure 5).

Figure 5. Software architecture of the smart monitoring probe.

A. Physical layer

Functionally, this layer encompasses the physical resources of the device or the medium to

which it is connected: specifically, the data center network interface, from which information is

obtained, the principal memory of the device and the secondary storage memory in which the raw

or processed information will be stored persistently.

B. Operating system layer

This layer contains the modules that provide access to the basic resources of the physical layer

(network adapters, memories), encapsulating them and providing a uniform vision to the upper

layer, free from physical details. The principal modules needed by the operating system are the

network and disk E/S management modules in addition to a simple file system to facilitate non-

volatile memory management and the implementation of the TCP/IP stack, which is fundamental for

all the application layer processes.

C. Runtime engine layer

Given that flexibility is a primary objective and that both information processing and creating

complex variables through calculations with other variables are needed, a base platform was selected

based on an interpreted language that allows quick editing of formulas and algorithms without

needing a re-compile with each modification. Although platforms based on interpreted languages

have lower performance than those based on compiled languages, they contribute valuable

characteristics such as independence from the platform, reflection, dynamic data types, flexibility and

Network Memory

Runtime Engine

Information

System

Service

Provider

Physical

Layer

Middleware

Layer

Application

Layer

Operating System

Storage

Smart

Monitoring

Probe

System

Layer

Figure 5. Software architecture of the smart monitoring probe.

Energies 2016, 9, 515 14 of 25

A. Physical layer

Functionally, this layer encompasses the physical resources of the device or the medium to which
it is connected: specifically, the data center network interface, from which information is obtained, the
principal memory of the device and the secondary storage memory in which the raw or processed
information will be stored persistently.

B. Operating system layer

This layer contains the modules that provide access to the basic resources of the physical layer
(network adapters, memories), encapsulating them and providing a uniform vision to the upper layer,
free from physical details. The principal modules needed by the operating system are the network and
disk E/S management modules in addition to a simple file system to facilitate non-volatile memory
management and the implementation of the TCP/IP stack, which is fundamental for all the application
layer processes.

C. Runtime engine layer

Given that flexibility is a primary objective and that both information processing and creating
complex variables through calculations with other variables are needed, a base platform was selected
based on an interpreted language that allows quick editing of formulas and algorithms without needing
a re-compile with each modification. Although platforms based on interpreted languages have lower
performance than those based on compiled languages, they contribute valuable characteristics such as
independence from the platform, reflection, dynamic data types, flexibility and agility [29]. In addition,
by using in-flight compilation techniques, performance differences are increasingly less significant.

D. Application layer

Functionally, this is the most important layer; it includes the main functional components of the
device. Depending on the probe design as previously described, the global functionality of the system
has three main components: the intelligent monitoring probe, the information service and the service
providing module. The functionality of each of the modules in the application layer has been described
in previous paragraphs.

4. Tests and Validation

This section outlines the design and implementation of a software prototype for the smart
monitoring model as well as a set of hardware prototypes. Subsequently, a series of tests were
conducted in two different scenarios that allowed us to evaluate the performance of the different
hardware prototypes as well as the viability of the proposal.

4.1. Prototype (Software Architecture)

Currently, there are a many interpreted languages, some of which, such as Perl or Python, have
significant impacts in network management environments. We selected EMACScript (commonly
known as JavaScript) because it is a widely used language with a syntax close to other programming
languages (such as C, C++, Java or C#), making it easy to learn, and because it is directly associated
with web programming, allowing easy integration with web applications and services. Specifically, we
selected Node.JS as the execution platform, an open source multiplatform runtime environment for the
execution of JavaScript servers. Currently, this platform is extensive, has a large number of modules
and libraries developed by the community, and has proven to exhibit very good performance and
scalability characteristics [30].

To provide persistence to the information system, we selected the MySQL 5.4 database. This is
a widely used relational database that exhibits good performance and adequately supports large
volumes of records. Although the storage space consumed by MySQL itself is low, one must consider
the problems associated with the growth of the database in devices with small storage capacities.

Energies 2016, 9, 515 15 of 25

This can be solved easily through procedures to eliminate records based on criteria such as priority
or age.

Table 2 shows the modules of the probe that have been implemented and what types of
dependences exist with other Node.JS modules. To validate the generality of the proposal, we have
implemented a heterogeneous set of connectors.

Table 2. Modules of the probe implemented. SNMP: simple network management protocol; and HTTP:
hypertext transfer protocol.

Module Node Modules Version

Query Module - -
Persistent Module MySQL 2.10.2

Setup Module - -
Monitoring Coordinator - -

Service Provider
Express 4.13.4

Body-parser 1.15.0
Multer 1.1.0

Notification Module - -
Processing Module - -
Acquisition Module - -

SNMP Connector NetSNMP 1.1.15
Network Probe Connector Cap 0.1.1

HTTP Connector - -
RESTful Connector Node-rest-client 1.4.3

The network probe connector allows capturing and filtering the network packages as a function of
a pattern provided by the indicator configuration and it keeps count of the number of packages
captured as well as their sizes in bytes. For this connector, we used the Cap library, which in
turn is based on Libpcap, a general-purpose library for capturing and analyzing network packages.
The module is configured with a 175 MB processing buffer to avoid losses as much as possible during
processing and filtering of packages.

The rest of the connectors (SNMP, HTTP and RESTful) act as specific clients to send requests to
the nodes of the network and process their responses.

The modular nature of Node.JS allows for easy incorporation of other connectors using a plugin
philosophy that allows extending the behavior and support of the probe’s protocols (Figure 6).

Energies 2016, 9, 515 15 of 24

The network probe connector allows capturing and filtering the network packages as a function

of a pattern provided by the indicator configuration and it keeps count of the number of packages

captured as well as their sizes in bytes. For this connector, we used the Cap library, which in turn is

based on Libpcap, a general-purpose library for capturing and analyzing network packages. The

module is configured with a 175 MB processing buffer to avoid losses as much as possible during

processing and filtering of packages.

The rest of the connectors (SNMP, HTTP and RESTful) act as specific clients to send requests to

the nodes of the network and process their responses.

The modular nature of Node.JS allows for easy incorporation of other connectors using a plugin

philosophy that allows extending the behavior and support of the probe’s protocols (Figure 6).

Figure 6. Software architecture of the prototype.

4.2. Hardware Prototypes

To validate the suitability of the proposal for low-cost embedded devices, we created several

hardware prototypes with different specifications to determine the minimum hardware that can

support the proposed service. The characteristics of each of the prototypes are listed in Table 3. In

addition, we have also incorporated a reference device, a general-purpose PC that allows for

comparing the different prototypes with a computational platform that is not embedded.

Furthermore, this validates that the MS can be deployed in the existing infrastructure of the

monitored system.

Table 3. Characteristics of each prototype. SD: secure digital; and USB: universal serial bus.

Feature Reference Device CX-W8 Cubietruck (v3) Raspberry Pi 2 Raspberry Pi 3

Processor
Intel Core 2 duo

2.4 GHz

Intel Bay Trail-T

CT Atom™

Z3735F

ARM® Cortex™-A7

Dual-Core

Broadcom

BCM2836 900

MHz quad-core

ARM Cortex A7

Broadcom

BCM2837 1.2 GHz

64-bit quad-core

ARM Cortex-A53

Cores 2 4 2 4 4

Memory 2 GB
2GB DDR3L-RS

1333 MHz
2 GB DDR3 480 MHz 1 GB 1 GB

Storage 160 GB
16 GB eMMC

Flash + SD
SD SD SD

Cabling

Network

PCI-E Gigabit

Ethernet

10/100 Ethernet

RTL8152

10/100/1000 RTL8211E

Gigabit Ethernet

10/100 Ethernet

(USB)
10/100 Ethernet

Wireless -

Wi-Fi b/g/n,

Bluetooth 4.0.

Chipset rtl8723bs

Wi-Fi and Bluetooth on

board with PCB antenna

(Broadcom

BCM4329/BCM40181)

-
802.11n wireless

Bluetooth 4.1

OS Linux Debian 8.3 Linux Debian 8.3 Linux Linaro 13.09
Raspbian Jessie

Lite

Raspbian Jessie

Lite

Kernel 3.16 3.16 3.4.79 4.1.18 4.1.18

Price 600$ 75$ 100$ 35$ 35$

Embedded Hardware platform

Node.JS Libpcap

Linux OS

Node.JS Modules

MySQL

Figure 6. Software architecture of the prototype.

4.2. Hardware Prototypes

To validate the suitability of the proposal for low-cost embedded devices, we created several
hardware prototypes with different specifications to determine the minimum hardware that can

Energies 2016, 9, 515 16 of 25

support the proposed service. The characteristics of each of the prototypes are listed in Table 3.
In addition, we have also incorporated a reference device, a general-purpose PC that allows
for comparing the different prototypes with a computational platform that is not embedded.
Furthermore, this validates that the MS can be deployed in the existing infrastructure of the
monitored system.

Table 3. Characteristics of each prototype. SD: secure digital; and USB: universal serial bus.

Feature Reference
Device CX-W8 Cubietruck (v3) Raspberry Pi 2 Raspberry Pi 3

Processor Intel Core 2
duo 2.4 GHz

Intel Bay Trail-T
CT Atom™

Z3735F

ARM® Cortex™-A7
Dual-Core

Broadcom
BCM2836 900

MHz quad-core
ARM Cortex A7

Broadcom BCM2837
1.2 GHz 64-bit quad-core

ARM Cortex-A53

Cores 2 4 2 4 4

Memory 2 GB 2GB DDR3L-RS
1333 MHz 2 GB DDR3 480 MHz 1 GB 1 GB

Storage 160 GB 16 GB eMMC
Flash + SD SD SD SD

Cabling
Network

PCI-E Gigabit
Ethernet

10/100 Ethernet
RTL8152

10/100/1000 RTL8211E
Gigabit Ethernet

10/100 Ethernet
(USB) 10/100 Ethernet

Wireless -
Wi-Fi b/g/n,
Bluetooth 4.0.

Chipset rtl8723bs

Wi-Fi and Bluetooth on
board with PCB antenna

(Broadcom
BCM4329/BCM40181)

- 802.11n wireless
Bluetooth 4.1

OS Linux Debian
8.3 Linux Debian 8.3 Linux Linaro 13.09 Raspbian Jessie

Lite Raspbian Jessie Lite

Kernel 3.16 3.16 3.4.79 4.1.18 4.1.18

Price 600$ 75$ 100$ 35$ 35$

4.3. Test Design

4.3.1. Scenario 1. Controlled Network

The first testing scenario was designed to validate the performance of the prototypes as well as
the model objectives associated with robustness, low consumption, low cost and generality.

The test consisted of an isolated and controlled network in which the four prototypes were
connected, as well as the reference platform (Figure 7). Although, in a realistic environment it would be
more common to encounter a switch-based network infrastructure, in this case, we used a 10/100 hub
(3Com Superstack II model) because it allowed us to launch the tests simultaneously with all the
prototypes in the case of tests intended to measure the performance of probes while varying the
network load. In addition to the prototypes, the network contained additional units. Four were to
be monitored as objectives of the MS, while another four were used as active elements in the system,
injecting traffic into it or acting as clients of the service.

Energies 2016, 9, 515 16 of 24

4.3. Test Design

4.3.1. Scenario 1. Controlled Network

The first testing scenario was designed to validate the performance of the prototypes as well as

the model objectives associated with robustness, low consumption, low cost and generality.

The test consisted of an isolated and controlled network in which the four prototypes were

connected, as well as the reference platform (Figure 7). Although, in a realistic environment it would

be more common to encounter a switch-based network infrastructure, in this case, we used a 10/100

hub (3Com Superstack II model) because it allowed us to launch the tests simultaneously with all the

prototypes in the case of tests intended to measure the performance of probes while varying the

network load. In addition to the prototypes, the network contained additional units. Four were to be

monitored as objectives of the MS, while another four were used as active elements in the system,

injecting traffic into it or acting as clients of the service.

Figure 7. First testing scenario.

Test 1.1. Prototype Performance

The objective of this test was to evaluate the performance of the prototypes under variable

network traffic loads. The test was intended to verify that the embedded prototypes function with

significant traffic loads while continuing to provide the monitoring service, mainly when behaving

as network traffic probes (sniffers). Several checks were conducted during the development of the

tests in this scenario, increasing network load levels from 0 Mbps to 100 Mbps over a period of 10 min.

For each prototype, we introduced a light resource analyzer to interfere as little as possible with

the test, gathering second-by-second statistics regarding CPU load, memory and packages captured

by the network interface.

To evaluate the performance of the prototypes, we focused on five variables: the percentage of

the CPU used, the percentage of the CPU in the most saturated core (which is an indicator that some

process in the core may be saturated), the percentage of memory used (not accounting for cache or

buffer memory), the percentage of packages captured by the network interface with respect to those

injected, and the percentage of packages analyzed by our connector with respect to those injected.

Figure 8 shows the result of the tests; each graphic corresponds to an analyzed prototype.

These tests reveal that the average CPU usage in all the devices was proportional to the network

load, and as can be observed in the graphs, neither the reference device nor the CX-W8 saturate any

cores, demonstrating that their performance is generally adequate for the processing needs of our

probe. These devices are also the only ones that captured all the packages they received at their

network interface and were able to process them.

As can be observed in the graph for Raspberry Pi 2, this prototype began to lose packages when

the network load exceeded 18 Mbps (possibly due to the NIC being connected to the universal serial

bus (USB) bus), with the connector processing all the packages captured by the NIC until the CPU

became saturated (for network loads higher than 55 Mbps), losing at that point almost 15% of the

injected packages.

Figure 7. First testing scenario.

Energies 2016, 9, 515 17 of 25

Test 1.1. Prototype Performance

The objective of this test was to evaluate the performance of the prototypes under variable network
traffic loads. The test was intended to verify that the embedded prototypes function with significant
traffic loads while continuing to provide the monitoring service, mainly when behaving as network
traffic probes (sniffers). Several checks were conducted during the development of the tests in this
scenario, increasing network load levels from 0 Mbps to 100 Mbps over a period of 10 min.

For each prototype, we introduced a light resource analyzer to interfere as little as possible with
the test, gathering second-by-second statistics regarding CPU load, memory and packages captured by
the network interface.

To evaluate the performance of the prototypes, we focused on five variables: the percentage of
the CPU used, the percentage of the CPU in the most saturated core (which is an indicator that some
process in the core may be saturated), the percentage of memory used (not accounting for cache or
buffer memory), the percentage of packages captured by the network interface with respect to those
injected, and the percentage of packages analyzed by our connector with respect to those injected.

Figure 8 shows the result of the tests; each graphic corresponds to an analyzed prototype.Energies 2016, 9, 515 17 of 24

Figure 8. Result of the tests for prototypes: (a) reference device; (b) CX-W8; (c) Cubietruck;

(d) Raspberry Pi 2; and (e) Raspberry Pi 3.

The prototype based on Cubietruck began failing to capture all the injected packets at loads

above 30 Mbps (at this point, the losses were 1.5%); above 45 Mbps, with a saturated core, it was not

able to process 100% of the captured packages (it processed 98.4% at that load). At that load level,

both the percentage of captured packets and the percentage of those processed declined as the

network load increased and one core remained saturated: the maximum loss of injected packets was

6% and the level of processed packets went down to 39.52% when the network load reached 90 Mbps.

The prototype based on Raspberry Pi 3 exhibited acceptable packet-capture behavior. The

maximum loss of packets was 3%, occurring at load levels higher than 90 Mbps. In addition, it was

capable of processing all the captured packets for load levels below 35 Mbps, beginning to decrease

at that level despite not having a saturated core. This was due to an increase in CPU times in I/O and

system operations, which, when stabilized, allowed improving the level of packet processing even

when increasing the CPU load (with more than 80% of packets processed).

As can be observed in Figure 8, the use of volatile memory remained constant during the entire

process in all the analyzed devices.

Test 1.2. Power Consumption

The objective of this test was to measure the power consumptions of the different prototypes.

Given that the level of loads on the CPUs were not constant and that this may affect their power

consumptions, a test was conducted in which the network again varied from 0 Mbps to 100 Mbps.

A USB current gauge was used to measure power consumption, given that the prototypes are

powered through a USB.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

P
er

fo
rm

an
ce

 (
%

)

Network load (mbps)

(b)

CX-W8

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

P
er

fo
rm

an
ce

 (
%

)

Network load (mbps)

(a)

Reference device

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

P
er

fo
rm

an
ce

 (
%

)

Network load (mbps)

(c)

Cubietruck

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

P
er

fo
rm

an
ce

 (
%

)

Network load (mbps)

(d)

Raspberry Pi 2

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

P
er

fo
rm

an
ce

 (
%

)

Network load (mbps)

(e)

Raspberry Pi 3

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

P
er

fo
rm

an
ce

 (
%

)

Network load (mbps)

(d) Raspberry Pi 2

CPU

CPU Max

Memory

NIC performance

Probe performance (sniffer)

Figure 8. Result of the tests for prototypes: (a) reference device; (b) CX-W8; (c) Cubietruck;
(d) Raspberry Pi 2; and (e) Raspberry Pi 3.

These tests reveal that the average CPU usage in all the devices was proportional to the network
load, and as can be observed in the graphs, neither the reference device nor the CX-W8 saturate any
cores, demonstrating that their performance is generally adequate for the processing needs of our

Energies 2016, 9, 515 18 of 25

probe. These devices are also the only ones that captured all the packages they received at their
network interface and were able to process them.

As can be observed in the graph for Raspberry Pi 2, this prototype began to lose packages when
the network load exceeded 18 Mbps (possibly due to the NIC being connected to the universal serial
bus (USB) bus), with the connector processing all the packages captured by the NIC until the CPU
became saturated (for network loads higher than 55 Mbps), losing at that point almost 15% of the
injected packages.

The prototype based on Cubietruck began failing to capture all the injected packets at loads above
30 Mbps (at this point, the losses were 1.5%); above 45 Mbps, with a saturated core, it was not able to
process 100% of the captured packages (it processed 98.4% at that load). At that load level, both the
percentage of captured packets and the percentage of those processed declined as the network load
increased and one core remained saturated: the maximum loss of injected packets was 6% and the
level of processed packets went down to 39.52% when the network load reached 90 Mbps.

The prototype based on Raspberry Pi 3 exhibited acceptable packet-capture behavior. The maximum
loss of packets was 3%, occurring at load levels higher than 90 Mbps. In addition, it was capable of
processing all the captured packets for load levels below 35 Mbps, beginning to decrease at that level
despite not having a saturated core. This was due to an increase in CPU times in I/O and system
operations, which, when stabilized, allowed improving the level of packet processing even when
increasing the CPU load (with more than 80% of packets processed).

As can be observed in Figure 8, the use of volatile memory remained constant during the entire
process in all the analyzed devices.

Test 1.2. Power Consumption

The objective of this test was to measure the power consumptions of the different prototypes.
Given that the level of loads on the CPUs were not constant and that this may affect their power
consumptions, a test was conducted in which the network again varied from 0 Mbps to 100 Mbps.

A USB current gauge was used to measure power consumption, given that the prototypes are
powered through a USB.

As can be observed in Figure 9, all of the prototypes had low and quite constant power
consumption during the test, exhibiting a slight increment at the beginning and stabilizing above
10 Mbps. Among them, the ARM devices exhibited the lowest consumption: Raspberry PI 2 used
a mean of 22.88 watts, Raspberry Pi 3 24.29 watts and Cubietruck 29.92 watts. The highest consumption
corresponded to the CX-W8, with 33.5 watts, which is 6%–10% higher than that of Cubietruck and
30%–40% higher than that of Raspberry PI2, although its performance was much higher.

1

10

100

0 8 16 24 32 40 48 56 64 72 80 88 96 100

Po
w

er
 c

on
su

m
pt

in
o

(w
at

ts
)

Network Load (mbps)

Reference device CX-W8 Cubietruck Raspberry Pi 2 Raspberry Pi 3

Figure 9. Result of the power consumption tests.

Energies 2016, 9, 515 19 of 25

Test 1.3. SNMP Connector

This test was intended to evaluate the performance of the prototypes in obtaining variables
offered through the SNMP protocol by other devices. In the test, the prototypes issued 100 service
requests per minute over 30 min; the time it took to request and store the variable for each request was
measured. Figure 10 shows the mean times for each prototype.

Energies 2016, 9, 515 18 of 24

As can be observed in Figure 9, all of the prototypes had low and quite constant power

consumption during the test, exhibiting a slight increment at the beginning and stabilizing above 10

Mbps. Among them, the ARM devices exhibited the lowest consumption: Raspberry PI 2 used a mean

of 22.88 watts, Raspberry Pi 3 24.29 watts and Cubietruck 29.92 watts. The highest consumption

corresponded to the CX-W8, with 33.5 watts, which is 6%–10% higher than that of Cubietruck and

30%–40% higher than that of Raspberry PI2, although its performance was much higher.

Figure 9. Result of the power consumption tests.

Test 1.3. SNMP Connector

This test was intended to evaluate the performance of the prototypes in obtaining variables

offered through the SNMP protocol by other devices. In the test, the prototypes issued 100 service

requests per minute over 30 min; the time it took to request and store the variable for each request

was measured. Figure 10 shows the mean times for each prototype.

Figure 10. Mean times of SNMP protocol.

As seen, all the prototypes exhibited adequate response time levels, with the fastest being the

CX-W8 (7.71 ms). The response time of the slowest prototype (Raspberry Pi 2) was 24.36 ms, an

acceptable time for the characteristics of our model.

Test 1.4. Service Consumption

The objective of this test was to measure the performance of the service offered by the probe in

each of the prototypes.

In Node.JS Paradigms and Benchmarks, tests were performed in simulated environments with

high concurrency and low network load, concluding that Node exceeds both Apache and

EventMachine. In this case, we analyzed the behavior of the service implemented in embedded

devices with low costs, resources and power consumption. That is, we evaluated the service capacity

of each of these devices.

0

5

10

15

20

25

30

Reference device CX-W8 Cubietruck Raspberry Pi 2 Raspberry Pi 3

Ti
m

e
(m

s)

Figure 10. Mean times of SNMP protocol.

As seen, all the prototypes exhibited adequate response time levels, with the fastest being
the CX-W8 (7.71 ms). The response time of the slowest prototype (Raspberry Pi 2) was 24.36 ms,
an acceptable time for the characteristics of our model.

Test 1.4. Service Consumption

The objective of this test was to measure the performance of the service offered by the probe in
each of the prototypes.

In Node.JS Paradigms and Benchmarks, tests were performed in simulated environments
with high concurrency and low network load, concluding that Node exceeds both Apache and
EventMachine. In this case, we analyzed the behavior of the service implemented in embedded devices
with low costs, resources and power consumption. That is, we evaluated the service capacity of each
of these devices.

To execute the test, a series of different RESTful requests was launched at the probes. Each request
covered a complete cycle in the probe: processing of the request, consulting the database and creating
a response. The size of the response to these requests was fixed at 1 MB so that response times were
not dependent on the size but instead on the device’s resources. The number of requests in parallel
was increased from 10 to 150 to verify the performance of the service. The tests measured the mean
response time of the service as well as the mean processing time used by each prototype (not counting
the transfer time).

As seen in Figure 11, as the number of parallel requests grew, the response and processing times
became longer. Even so, the service times of the CX-W8 device were good for very high workloads
(less than 2 s for loads under 50 parallel requests). The times corresponding to Raspberry PI 3 were also
acceptable (below 2 s for fewer than 40 parallel requests), with the main difference, compared to the
CX-W8 and the reference device, in the processing of the service being due to the lower specifications
of the CPUs of each device.

Energies 2016, 9, 515 20 of 25

Energies 2016, 9, 515 19 of 24

To execute the test, a series of different RESTful requests was launched at the probes. Each

request covered a complete cycle in the probe: processing of the request, consulting the database and

creating a response. The size of the response to these requests was fixed at 1 MB so that response

times were not dependent on the size but instead on the device’s resources. The number of requests

in parallel was increased from 10 to 150 to verify the performance of the service. The tests measured

the mean response time of the service as well as the mean processing time used by each prototype

(not counting the transfer time).

As seen in Figure 11, as the number of parallel requests grew, the response and processing times

became longer. Even so, the service times of the CX-W8 device were good for very high workloads

(less than 2 s for loads under 50 parallel requests). The times corresponding to Raspberry PI 3 were

also acceptable (below 2 s for fewer than 40 parallel requests), with the main difference, compared to

the CX-W8 and the reference device, in the processing of the service being due to the lower

specifications of the CPUs of each device.

(a) (b)

Figure 11. (a) Response; and (b) processing times of service consumption.

Results of Scenario 1

The radar chart (Figure 12) shows a comparative summary of the results obtained in the first

scenario and the degree of fulfillment of the proposed objectives. Each of the variables measured in

the tests is represented such that the larger the value on the axis is, the greater the degree of fulfillment

for that characteristic. Devices exhibiting a larger area will be the most adequate for the proposal.

Figure 12. Comparative summary of the results obtained in the first scenario.

As seen in the chart, the reference device exhibits the best performance except for power

consumption and cost. The prototype with the CX-W8 device exhibits performance, robustness, and

traffic capture and analysis capacity similar to the reference device, with much lower power

consumption and cost (a higher degree of correlation for these variables with the objectives of our

model), making it the ideal prototype for our model. Another prototype suitable for our objectives,

except in operation as a network probe, is the one based on Raspberry Pi 3, which exhibits better cost

and power consumption.

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Se
rv

ic
e

re
sp

o
n

se
 t

im
e

(s
)

Parallel requests

(a)

Service response

Reference device

CX-W8

Cubietruck

Raspberry Pi 2

Raspberry Pi 3
0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Se
rv

ic
e

p
ro

ce
ss

in
g

ti
m

e
(s

)

Paralel requests

(b)

Service processing

Reference device

CX-W8

Cubietruck

Raspberry Pi 2

Raspberry Pi 3

Figure 11. (a) Response; and (b) processing times of service consumption.

Results of Scenario 1

The radar chart (Figure 12) shows a comparative summary of the results obtained in the first
scenario and the degree of fulfillment of the proposed objectives. Each of the variables measured in
the tests is represented such that the larger the value on the axis is, the greater the degree of fulfillment
for that characteristic. Devices exhibiting a larger area will be the most adequate for the proposal.

SNMP Probe

Low Power Comsuption

Cost

Service Response

Service ProcessingCPU

Memory

NIC performance

Network Probe performance
(sniffer)

Prototype comparative

PC

Wintel

CT

PI2

PI3

Figure 12. Comparative summary of the results obtained in the first scenario.

As seen in the chart, the reference device exhibits the best performance except for power
consumption and cost. The prototype with the CX-W8 device exhibits performance, robustness,
and traffic capture and analysis capacity similar to the reference device, with much lower power
consumption and cost (a higher degree of correlation for these variables with the objectives of our
model), making it the ideal prototype for our model. Another prototype suitable for our objectives,
except in operation as a network probe, is the one based on Raspberry Pi 3, which exhibits better cost
and power consumption.

4.3.2. Scenario 2. Real Network

The second battery of tests had the objective of validating the proposal, not so much the
performance of the different hardware prototypes but instead the fulfillment of the functional objectives
by the software developed. This allowed evaluating the proposal’s flexibility, scalability, integrity and
ability to support heterogeneity.

Energies 2016, 9, 515 21 of 25

For this case, probes were implanted in the real environment of the network infrastructure
of the computing service at Escuela Politécnica Superior at the Universidad de Alicante. A web
application was developed for the validation process; it used standard technologies and the AngularJS
development framework. The application used the services offered by the probes, acting as a client of
the proposed service (Figure 13).

1

Figure 13. Monitoring system (MS) for energy saving application.

Test 2.1

Using the developed application, a complete functional cycle of the probe was carried out, which
consisted of the following steps.

(1) A total of 5 network probes were installed, one for each 1 Gbps switched network that composes
the data center. An additional probe was incorporated to gather and centralize the data from the
rest of the probes, using a hierarchical structure. This hierarchically distributed architecture can
be extended to multiple levels, providing a high degree of scalability.

(2) All the devices in the data center that were capable of being monitored were included.
This included a set of 123 servers, 12 physical and 111 virtual, including web servers, data
base servers, Lightweight Directory Access Protocol (LDAP) directory servers, etc. In addition,
the uninterruptible power supply (UPS) (Model SLC-200-CUBE3 B1) providing uninterrupted
power to the monitored infrastructure was also included. The UPS has network connectivity for
its monitoring.

Energies 2016, 9, 515 22 of 25

(3) Different monitoring indicators were created for the monitored devices, which have been created
in a few minutes through the implemented web application without the needed to source code
edit, compile, or deploy. This permits a high level of flexibility compared to other existing ad hoc
approaches:

(a) For the servers, loads were obtained from the CPU, memory, network and disk.
The monitoring was done through SNMP.

(b) SNMP was used for electrical consumption as well because the UPS supports that protocol
natively using the standard MIB (management information base) branch (1.3.6.1.2.1.33).

(c) In 2 networks, we monitored network traffic through a network connector, accounting for
total traffic, broadcast traffic, IP traffic and web traffic (port 80).

(d) In 3 networks in which the installed switch had internal network characteristics, we
monitored the network through SNMP/RMON with the SNMP connector.

(e) Different indicators were created, which were calculated based on other obtained
indicators, such as Corporate Average Data Centre Efficiency; PUE; and Compute Power
Efficiency. The MS adds value over other proposals due to its ability to define complex
indicators based on other ones.

(f) The Apache web servers were monitored using the mod-apache-snmp module, which
offers such information through SNMP.

(4) A series of rules were established that allowed us to link each indicator with the corresponding
devices. The sampling time for the rules was 10 s. For the coordinating probe, specific rules were
established for gathering information from the other probes, calculating a mean of the partial
values obtained. In addition, a series of alerts were configured for the delegated probes to notify
the coordinator when the monitored values exceeded specific thresholds. This configuration
shows the proactivity of the system.

The system was in operation for a week and the behavior was as expected, obtaining adequate
performance levels and service times.

This scenario, which was realistic, complex, and heterogeneous, allowed us to validate the
generality of the proposal. We covered all the phases of the process, from configuration of the probe
(rules, devices and indicators) to obtaining the monitored data.

4.3.3. Summary

The prototypes, scenarios and tests have allowed us to achieve all the formulated objectives (see
Table 4). The embedded devices have proved to be an adequate platform to contain a monitoring
service, offering a robust, cheap and low-power-consumption solution.

Table 4. Formulated objectives achieved.

Title Tests Analyzed Proposals
Feature 1.1 1.2 1.3 1.4 2.1

Robustness
‘ ‘ ‘ ‘ ‘

16.66
Flexibility - - - -

‘

25
Scalability - - - -

‘

25
Low

Consumption -
‘

- - - 0

Low Cost
‘ ‘ ‘ ‘

- 0
Autonomy

‘ ‘ ‘ ‘ ‘

8.33
General - - - -

‘

75
Comprehensive - - - -

‘

61.11
Value Added - - - -

‘

0
Proactive - - - -

‘

8.33

Energies 2016, 9, 515 23 of 25

In the last column of the Table 4 the achievement percentage of other proposals in each feature is
indicated in order to show a comparative study between our proposal and the systems analyzed in the
“related work” section.

5. Conclusions

Information technology, including data centers, communication networks, office or individual
computers, and mobile devices, is known to be responsible for approximately 2% of CO2 emissions
world-wide. The energy sustainability of large data centers can be managed efficiently through the use
of IT themselves, a focus that is currently being applied successfully.

We conducted a complete review of the current proposals for managing data centers in terms
of energy savings, identifying the monitoring phase as a key aspect when making decisions in each
environment and, therefore, in being more efficient. This study concluded that all the proposals
analyzed are focused on solutions that are partial, specific, and highly coupled to the management
system. They do not provide global solutions to the problem of monitoring data centers.

This study has proposed a model for monitoring data centers while serving as the basis for energy
saving systems; this model, provided and delivered through an embedded service approach, is novel
and provides the following contributions:

‚ General. This is a model that allows for incorporation of the different scenarios to which it must
be applied.

‚ Comprehensive. It is a single approach for the different formulated problems (network hardware,
servers, Cloud services and applications or complementary elements in the environment, such as
refrigeration).

‚ Flexible. It allows for adaptation and personalization of the monitoring solution based on the
needs of the organizations and changes in the environment.

‚ Interoperable. It is a decoupled model, offered through services to any energy
management system.

‚ Proactive. It has the ability to alert when monitoring anomalies are detected. The model provides
this feature through the event-driven SOA principle.

‚ Autonomous. It is an independent and re-usable model that does not interfere with the rest of the
system elements.

‚ Adds value. The model provides the necessary functionality based on integration techniques
which transforms the data from the environment into useful information for decision-making.

‚ Scalable. The distributed architecture of the model facilitates scalability by simply adding more
embedded devices as the resources of the data center grow.

‚ Robust. The model has been designed to be deployed in a dedicated platform and to be used
exclusively for our service.

‚ Low cost. The cost of embedded devices is significantly lower than that of dedicated servers.
‚ Low energy consumption. Energy consumption of embedded devices is significantly lower than

that of dedicated servers

Based on the model obtained, we have implemented a prototype that has been validated
in different scenarios. This has allowed us to verify the feasibility of the proposal and present
a comparative study addressing the different devices tested.

Acknowledgments: This work was supported in part by the Conselleria d'Educació, Cultura i Esport,
Generalitat Valenciana. Grant GV/2015/122.

Author Contributions: This work was leaded by Diego Marcos-Jorquera. The modeling process has been
performed by Diego Marcos-Jorquera, Virgilio Gilart-Iglesias and Francisco José Mora-Gimeno. Simulation and
analysis of the results have been performed by Diego Marcos-Jorquera and Juan Antonio Gil-Martínez-Abarca.

Conflicts of Interest: The authors declare no conflicts of interest.

Energies 2016, 9, 515 24 of 25

References

1. Dayarathna, M.; Wen, Y.; Fan, R. Data Center Energy Consumption Modeling: A Survey. IEEE Commun.
Surv. Tutor. 2016, 18, 732–794. [CrossRef]

2. Mahadevan, P.; Sharma, P.; Banerjee, S.; Ranganathan, P. Energy Aware Network Operations. In Proceedings
of the IEEE INFOCOM Workshop, Rio de Janeiro, Brazil, 19–25 April 2009.

3. Moshnyaga, V.G.; Tamaru, K. Energy Saving Techniques for Architecture Design of Portable Embedded
Devices. In Proceedings of the IEEE International ASIC Conference and Exhibit, Portland, OR, USA,
7–10 September 1997.

4. The Green Grid Data Center Power Efficiency Metrics: PUE and DCiE. Available online:
http://www.thegreengrid.org/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-
Efficiency-Metrics-PUE-and-DCiE (accessed on 15 March 2016).

5. Shang, Y.; Li, D.; Xu, M. Energy-aware Routing in Data Center Network. In Proceedings of the ACM
SIGCOMM Workshop on Green Networking, New Delhi, India, 1–3 September 2010.

6. Chase, J.S.; Anderson, D.C.; Thakar, P.N.; Vahdat, A.M. Managing Energy and Server Resources in Hosting
Centers. In Proceedings of the ACM Symposium on Operating Systems Principles, Banff, AB, Canada,
21–24 October 2001.

7. Thanh, N.H.; Cuong, B.D.; Thien, T.D.; Nam, P.N.; Thu, N.Q.; Huong, T.T.; Nam, T.M. ECODANE:
A Customizable Hybrid Testbed for Green Data Center Networks. In Proceedings of the International
Conference on Advanced Technologies for Communications, Hochiminh, Vietnam, 16–18 October 2013.

8. Reich, J.; Goraczko, M.; Kansal, A.; Padhye, J. Sleepless in Seattle No Longer. In Proceedings of the USENIX
Annual Technical Conference, Boston, MA, USA, 23–25 June 2010.

9. Agarwal, Y.; Savage, S.; Gupta, R. SleepServer: A Software-Only Approach for Reducing the Energy
Consumption of PCs within Enterprise Environments. In Proceedings of the USENIX Annual Technical
Conference, Boston, MA, USA, 23–25 June 2010.

10. Das, T.; Padala, P.; Padmanabhan, V.N. LiteGreen: Saving Energy in Networked Desktops Using
Virtualization. In Proceedings of the USENIX Annual Technical Conference, Boston, MA, USA,
23–25 June 2010.

11. Heller, B.; Seetharaman, S.; Mahadevan, P.; Yiakoumis, Y.; Sharma, P.; Banerjee, S.; McKeown, N. ElasticTree:
Saving Energy in Data Center Networks. In Proceedings of the USENIX Conference on Networked Systems
Design and Implementation, San Jose, CA, USA, 28–30 April 2010.

12. Lawton, G. Powering Down the Computing Infrastructure. IEEE Comput. 2007, 40, 16–19. [CrossRef]
13. Chen, G.; He, W.; Liu, J.; Nath, S.; Rigas, L.; Xiao, L.; Zhao, F. Energy-Aware Server Provisioning and

Load Dispatching for Connection-Intensive Internet Services. In Proceedings of the USENIX Conference on
Networked Systems Design and Implementation, San Francisco, CA, USA, 16–18 April 2008.

14. Wang, X.; Yao, Y.; Wang, X.; Lu, K.; Cao, Q. CARPO: Correlation-Aware Power Optimization in Data Center
Networks. In Proceedings of the IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012.

15. Chiaraviglio, L.; Bruschi, R.; Cianfrani, A.; Jaramillo, O.M.; Koutitas, G. The TREND Meter: Monitoring the
Energy Consumption of Networked Devices. Int. J. Bus. Data Commun. Netw. 2013, 9, 27–44. [CrossRef]

16. Mastelic, T.; Brandic, I. Recent Trends in Energy-Efficient Cloud Computing. IEEE Cloud Comput. 2015, 2,
40–47. [CrossRef]

17. Macia-Perez, F.; Mora-Gimeno, F.J.; Marcos-Jorquera, D.; Gil-Martinez-Abarca, J.A.; Ramos-Morillo, H.;
Lorenzo-Fonseca, I. Network Intrusion Detection System Embedded on a Smart Sensor. IEEE Trans. Ind. Elec.
2011, 58, 722–732. [CrossRef]

18. Macia-Perez, F.; Gil-Martinez-Abarca, J.A.; Ramos-Morillo, H.; Mora-Gimeno, F.J.; Marcos-Jorquera, D.;
Gilart-Iglesias, V. Wake on LAN over the Internet as Web Service System on Chip. IEEE Trans. Ind. Electron.
2011, 58, 839–849. [CrossRef]

19. Tarutani, Y.; Ohsita, Y.; Murata, M. Virtual Network Reconfiguration for Reducing Energy Consumption in
Optical Data Centers. IEEE J. Opt. Commun. Netw. 2014, 6, 925–942. [CrossRef]

20. Wang, L.; Zhang, F.; Arjona, J.; Vasilakos, A.V.; Zheng, K.; Hou, C.; Li, D.; Liu, Z. GreenDCN: A General
Framework for Achieving Energy Efficiency in Data Center Networks. IEEE J. Sel. Areas Commun. 2014, 32,
4–15. [CrossRef]

Energies 2016, 9, 515 25 of 25

21. Andújar, M.D.; Gilart, V.; Montoyo, A.; Marcos, D. A construction management framework for mass
customization in traditional construction. Sustainability 2015, 7, 5182–5210. [CrossRef]

22. Mora, H.; Gilart, V.; Gil, D.; Sirvent, A. A Computational Architecture Based on RFID Sensors for Traceability
in Smart Cities. Sensors 2015, 15, 13591–13626. [CrossRef] [PubMed]

23. Eriksson, H.E.; Penker, M. Business Modelling with UML, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001.
24. Zhang, B.; Postelnicu, C.; Lastra, J.L. Key Performance Indicators for Energy Efficient Asset Management in

a Factory Automation Testbed. In Proceedings of the IEEE International Conference on Industrial Informatics,
Beijing, China, 25–27 July 2012.

25. Kipp, A.; Jiang, T.; Fugini, M.; Salomie, J. Layered Green Performance Indicators. Future Gener. Comput. Syst.
2012, 28, 478–489. [CrossRef]

26. Anghel, I.; Cioara, T.; Salomie, I.; Copil, G. An Autonomic Algorithm for Energy Efficiency in Service
Centers. In Proceedings of the IEEE International Conference on Intelligent Computer Communication and
Processing, Cluj-Napoca, Romania, 26–28 August 2010.

27. Erl, T. SOA Design Patterns, 1st ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009.
28. Hohpe, G.; Woolf, B. Enterprise Integration Patterns, 1st ed.; Addison-Wesley: Boston, MA, USA, 2004.
29. Chaniotis, I.K.; Kyriakou, K.D.; Tselikas, N. Is Node.js a viable option for building modern web applications?

A performance evaluation study. Computer 2015, 97, 1023–1044. [CrossRef]
30. Tilkov, S.; Vinoski, S. Node.js: Using JavaScript to Build High-Performance Network Programs.

IEEE Internet Comput. 2010, 14, 80–83. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

