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Abstract: In existing forecasting research papers support vector regression with chaotic mapping
function and evolutionary algorithms have shown their advantages in terms of forecasting accuracy
improvement. However, for classical particle swarm optimization (PSO) algorithms, trapping in local
optima results in an earlier standstill of the particles and lost activities, thus, its core drawback is that
eventually it produces low forecasting accuracy. To continue exploring possible improvements of
the PSO algorithm, such as expanding the search space, this paper applies quantum mechanics to
empower each particle to possess quantum behavior, to enlarge its search space, then, to improve
the forecasting accuracy. This investigation presents a support vector regression (SVR)-based load
forecasting model which hybridizes the chaotic mapping function and quantum particle swarm
optimization algorithm with a support vector regression model, namely the SVRCQPSO (support
vector regression with chaotic quantum particle swarm optimization) model, to achieve more accurate
forecasting performance. Experimental results indicate that the proposed SVRCQPSO model achieves
more accurate forecasting results than other alternatives.

Keywords: support vector regression (SVR); chaotic quantum particle swarm optimization (CQPSO);
quantum behavior; electric load forecasting

1. Introduction

Electric demand forecasting plays the critical role in the daily operational and economic
management of power systems, such as energy transfer scheduling, transaction evaluation,
unit commitment, fuel allocation, load dispatch, hydrothermal coordination, contingency planning
load shedding, and so on [1]. Therefore, a given percentage of forecasting error implies great losses
for the utility industries in the increasingly competitive market, as decision makers take advantage of
accurate forecasts to make optimal action plans. As mentioned by Bunn and Farmer [2], a 1% increase
in electric demand forecasting error represents a £10 million increase in operating costs. Thus, it is
essential to improve the forecasting accuracy or to develop new approaches, particularly for those
countries with limited energy [3].

In the past decades, many researchers have proposed lots of methodologies to improve electric
demand forecasting accuracy, including traditional linear models, such as the ARIMA (auto-regressive
integrated moving average) model [4], exponential smoothing models [5], Bayesian estimation
model [6], state space and Kalman filtering technologies [7,8], regression models [9], and other time
series technologies [10]. Due to the complexity of load forecasting, with these mentioned models
it is difficult to illustrate well the nonlinear characteristics among historical data and exogenous
factors, and they cannot always achieve satisfactory performance in terms of electric demand
forecasting accuracy.
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Since the 1980s, due to superior nonlinear mapping ability, the intelligent techniques like expert
systems, fuzzy inference, and artificial neural networks (ANNs) [11] have become very successful
applications in dealing with electric demand forecasting. In addition, these intelligent approaches
can be hybridized to form new novel forecasting models, for example, the random fuzzy variables
with ANNs [12], the hybrid Monte Carlo algorithm with the Bayesian neural network [13], adaptive
network-based fuzzy inference system with RBF neural network [14], extreme learning machine with
hybrid artificial bee colony algorithm [15], fuzzy neural network (WFNN) [16], knowledge-based
feedback tuning fuzzy system with multi-layer perceptron artificial neural network (MLPANN) [17],
and so on. Due to their multi-layer structure and corresponding outstanding ability to learn non-linear
characteristics, ANN models have the ability to achieve more accurate performance of a continuous
function described by Kromogol’s theorem. However, the main shortcoming of the ANN models are
their structure parameter determination [18]. Complete discussions for the load forecasting modeling
by ANNs are shown in references [19,20].

Support vector regression (SVR) [21], which has been widely applied in the electric demand
forecasting field [11,22–33], hybridizes different evolutionary algorithms with various chaotic mapping
functions (logistic function, cat mapping function) to simultaneously and carefully optimize the three
parameter combination, to obtain better forecasting performance. As concluded in Hong’s series of
studies, determination of these three parameters will critically influence the forecasting performance,
i.e., low forecasting accuracy (premature convergence and trapped in local optimum) results from the
theoretical limitations of the original evolutionary algorithms. Therefore, Hong and his successors
have done a series of trials on hybridization of evolutionary algorithms with a SVR model. However,
each algorithm has its embedded drawbacks, so to overcome these shortcomings, they continue
applying chaotic mapping functions to enrich the searching ergodically over the whole space to do
more compact searching in chaotic space, and also apply cloud theory to solve well the decreasing
temperature problem during the annealing process to meet the requirement of continuous decrease
in actual physical annealing processes, and then, improve the search quality of simulated annealing
algorithms, eventually, improving the forecasting accuracy.

Inspired by Hong’s efforts mentioned above, the author considers the core drawback of the
classical PSO algorithm, which results in an earlier standstill of the particles and loss of activities,
eventually causing low forecasting accuracy, therefore, this paper continues to explore possible
improvements of the PSO algorithm. As known in the classical PSO algorithm, the particle moving in
the search space follows Newtonian dynamics [34], so the particle velocity is always limited, the search
process is limited and it cannot cover the entire feasible area. Thus, the PSO algorithm is not guaranteed
to converge to the global optimum and may even fail to find local optima. In 2004, Sun et al. [35]
applied quantum mechanics to propose the quantum delta potential well PSO (QDPSO) algorithm
by empowering the particles to have quantum behaviors. In a quantum system, any trajectory of
any particles is non-determined, i.e., any particles can appear at any position in the feasible space
if it has better fitness value, even far away from the current one. Therefore, this quantum behavior
can efficiently enable each particle to expand the search space and to avoid being trapped in local
minima. Many improved quantum-behaved swarm optimization methods have been proposed to
achieve more satisfactory performance. Davoodi et al. [36] proposed an improved quantum-behaved
PSO-simplex method (IQPSOS) to solve power system load flow problems; Kamberaj [37] also
proposed a quantum-behaved PSO algorithm (q-GSQPO) to forecast the global minimum of potential
energy functions; Li et al. [38] proposed a dynamic-context cooperative quantum-behaved PSO
algorithm by incorporating the context vector with other particles while a cooperation operation
is completed. In addition, Coelho [39] proposed an improved quantum-behaved PSO by hybridization
with a chaotic mutation operator. However, like the PSO algorithm, the QPSO algorithm still easily
suffers from shortcomings in iterative operations, such as premature convergence problems.

In this paper, the author applies quantum mechanics to empower each particle in the PSO
algorithm to possess quantum behavior to enlarge the search space, then, a chaotic mapping function
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is employed to help the particles break away the local optima while the premature condition
appears in each iterative searching process, eventually, improving the forecasting accuracy. Finally,
the forecasting performance of the proposed hybrid chaotic quantum PSO algorithm with an SVR
model, named SVRCQPSO model, is compared with four other existing forecasting approaches
proposed in Hong [33] to illustrate its superiority in terms of forecasting accuracy.

This paper is organized as follows: Section 2 illustrates the detailed processes of the proposed
SVRCQPSO model. The basic formulation of SVR, the QPSO algorithm, and the CQPSO algorithm
will be further introduced. Section 3 employs two numerical examples and conducts the significant
comparison among alternatives presented in an existing published paper in terms of forecasting
accuracy. Finally, some meaningful conclusions are provided in Section 4.

2. Methodology of SVRCQPSO Model

2.1. Support Vector Regression (SVR) Model

The brief introduction of an SVR model is illustrated as follows. A nonlinear mapping function,
φp¨q, is used to map the training data set into a high dimensional feature space. In the feature space,
an optimal linear function, f, is theoretically found to formulate the relationship between training
fed-in data and fed-out data. This kind of optimal linear function is called SVR function and is shown
as Equation (1):

f pxq “ wTφpxq ` b (1)

where f pxq denotes the forecasting values; the coefficients w and b are adjustable. SVR method aims at
minimizing the training error, that is the so-called empirical risk, as shown in Equation (2):

Rempp f q “
1
N

N
ř

i“1
Θεpyi, wTφpxiq ` bq

Θεpy, f pxqq “

#

| f pxq ´ y| ´ ε, if | f pxq ´ y| ě ε

0, otherwise

(2)

where Θεpy, f pxqq is the ε-insensitive loss function. The ε-insensitive loss function is used to find out
an optimum hyper plane on the high dimensional feature space to maximize the distance separating
the training data into two subsets. Thus, the SVR focuses on finding the optimum hyperplane and
minimizing the training error between the training data and the ε-insensitive loss function. The SVR
model then minimizes the overall errors as shown in Equation (3):

Min
w,b,ξ˚,ξ

Rεpw, ξ˚, ξq “
1
2

wTw` C
N
ř

i“1
pξ˚i ` ξiq

with the constraints

yi ´wTφpxiq ´ b ď ε` ξ˚i , i “ 1, 2, . . . , N

´yi `wTφpxiq ` b ď ε` ξi, i “ 1, 2, . . . , N

ξ˚i ě 0, i “ 1, 2, . . . , N

ξi ě 0, i “ 1, 2, . . . , N

(3)

The first term of Equation (3), by employed the concept of maximizing the distance of two
separated training data, is used to regularize weight sizes, to penalize large weights, and to maintain
regression function flatness. The second term, to penalize the training errors of f (x) and y, decides the
balance between confidence risk and experience risk by using the ε-insensitive loss function. C is a
parameter to trade off these two terms. Training errors above ε are denoted as ξ˚i , whereas training
errors below ´ε are denoted as ξi.
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After the quadratic optimization problem with inequality constraints is solved, the parameter
vector w in Equation (1) is obtained with Equation (4):

w “

N
ÿ

i“1

pα˚i ´αiqφpxiq (4)

where α˚i , αi are obtained by solving a quadratic program and are the Lagrangian multipliers. Finally,
the SVR regression function is obtained as Equation (5) in the dual space:

f pxq “
N
ÿ

i“1

pα˚i ´αiqKpxi, xjq ` b (5)

where Kpxi, xjq is so-called the kernel function, and the value of the kernel equals the inner product of
two vectors, xi and xj, in the feature spaceφpxiq andφpxjq, respectively; that is, Kpxi, xjq “ φpxiq ˝φpxjq.
There are several types of kernel function, and it is hard to determine the best type of kernel functions
for specific data patterns [40]. However, in practice, the Gaussian radial basis functions (RBF) with
a width of σ: Kpxi, xjq “ exp

´

´0.5
ˇ

ˇ

ˇ

ˇxi ´ xj
ˇ

ˇ

ˇ

ˇ

2
{σ2

¯

is not only easier to implement, but also capable of
nonlinearly mapping the training data into an infinite dimensional space. Therefore, the Gaussian RBF
kernel function is employed in this study.

It is well known that good determination of the three parameters (including hyperparameters, C, ε,
and the kernel parameter, σ) in an SVR model will seriously affect its forecasting accuracy. Thus, to look
for an efficient approach to simultaneously determine well the parameter combination is becoming
an important research issue. As mentioned above, inspired by Hong’s series of efforts in hybridizing
chaotic sequences with optimization algorithms for parameter determination to overcome the most
embedded drawback of evolutionary algorithms—the premature convergence problem—this paper
will continue exploring any solutions (such as empowering each particle with quantum behaviors) to
overcome the embedded drawbacks of PSO, namely the QPSO algorithm, and the superiority of hybrid
chaotic mapping function with the QPSO algorithms. Thus, the chaotic QPSO (CQPSO) algorithm is
hybridized with an SVR model, named the SVRCQPSO model, to optimize the parameter selection to
achieve more satisfactory forecasting accuracy.

2.2. Chaotic Quantum Particle Swarm Optimization Algorithm

2.2.1. Quantum Particle Swarm Optimization Algorithm

In the classical PSO algorithm, a particle’s action can be addressed completely by its position and
velocity which determine the trajectory of the particle, i.e., any particles move along a deterministic
trajectory in the search space by following Newtonian mechanics [34]. In the meanwhile, this situation
also limits the possibility that the PSO algorithm could look for global optima and leads it to be trapped
into local optima, i.e., premature convergence. To overcome this embedded drawback of the PSO
algorithm, to solve the limitation of the deterministic particle trajectory, lots of efforts in the physics
literature are focused on empowering each particle trajectory with stochasticity, i.e., empowering each
particle’s movement with quantum mechanics.

Based on Heisenberg’s uncertainty principle [41], under quantum conditions, the position (x)
and velocity (v) of a particle cannot be determined simultaneously, therefore, in the quantum search
space, the probability of finding a particle at a particular position should be, via a “collapsing” process,
mapped into its certain position in the solution space. Eventually, by employing the Monte Carlo
method, the position of a particle can be updated using Equation (6):

xpt` 1q “ pptq ˘
1
2

Lptqln
ˆ

1
uptq

˙

(6)

where u(t) is a uniform random number distributed in [0, 1]; p(t) is the particle’s local attractor, and it
is defined as Equation (7):



Energies 2016, 9, 426 5 of 16

pptq “ βpidptq ` p1´βqpgdptq (7)

where β is also a random number uniformly distributed in [0, 1]; pid(t) and pgd(t) are the ith pbest
particle and the gbest particle in the dth dimension, respectively. L(t) is the length of the potential
field [35], and is given by Equation (8):

Lptq “ 2γ |pptq ´ xptq| (8)

where parameter γ is the so-called the creativity coefficient or contraction expansion coefficient, and
is used to control the convergence speed of the particle. QPSO algorithm can obtain good results by
linear decreasing value of γ from 1.0 to 0.5, as shown in Equation (9) [42]:

γ “ p1´ 0.5q ˆ pItermax ´ tq {Itermax ` 0.5 (9)

where Itermax is the maximum of iteration numbers, in this paper, it is set as 10,000.
Considering that the critical position of L(t) will seriously influence the convergence rate and the

performance of the QPSO algorithm, thus, we define the mean best position (mbest) as the center of
pbest position of the swarm, shown in Equation (10):

mbestptq “ pmbest1ptq, mbest2ptq, . . . , mbestDptq

“

˜

1
S

S
ř

i“1
pi1ptq,

1
S

S
ř

i“1
pi2ptq, . . . ,

1
S

S
ř

i“1
piDptq

¸

(10)

where S is the size of population, D is the number of dimensions, pij(t) is the pbest position of each
particle in the jth dimension.

Then, we use Equation (10) to replace the p(t) in Equation (8), thus, the new evaluation equation
of L(t) is Equation (11):

Lptq “ 2γ |mbestptq ´ xptq| (11)

Finally, by substituting Equations (7) and (11) into Equation (6), the particle’s position is updated
by Equation (12):

xpt` 1q “ βpidptq ` p1´βqpgdptq ˘ γ |mbestptq ´ xptq| ln
ˆ

1
uptq

˙

(12)

2.2.2. Chaotic Mapping Function for QPSO Algorithm

As mentioned that chaotic variable can be adopted by applying chaotic phenomenon in keeping
the diversities among particles to prevent the PSO algorithm from being trapped into a local optima,
i.e., premature convergence. Therefore, the CQPSO algorithm is based on the QPSO algorithm by
employing chaotic strategy while premature convergence appears during the iterative searching
processes, else, the QPSO algorithm is still implemented as illustrated in Section 2.2.1.

On the other hand, for strengthening the effect of chaotic characteristics, lots of studies mostly
apply the logistic mapping function as chaotic sequence generator. The biggest disadvantage of the
logistic mapping function is that it distributes at both ends and less in the middle. On the contrary,
the Cat mapping function has better chaotic distribution characteristic, thus, its application in chaos
disturbance of the PSO algorithm can better strengthen the swarm diversity [43]. Therefore, this paper
will employ the Cat mapping function as chaotic sequence generator.

The classical Cat mapping function is the two-dimensional Cat mapping function [44], shown as
Equation (13):

#

xn`1 “ pxn ` ynqmod 1

yn`1 “ pxn ` 2ynqmod 1
(13)
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where x mod 1 = x ´ [x], mod, the so-called modulo operation, is used for the fractional parts of a real
number x by subtracting an appropriate integer.

2.2.3. Implementation Steps of CQPSO Algorithm

The procedure of hybrid CQPSO algorithm with an SVR model is illustrated as follows and the
corresponding flowchart is shown as Figure 1.
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Step 1: Initialization.

Initialize a defined population of particle pairs pCi, εi,σiq with random positions pxCi, xεi, xσiq,
where each particle contains n variables.

Step 2: Objective Values.

Compute the objective values (forecasting errors) of all particle pairs. Let the particle’s own best
position be pid ptq “ ppCiptq, pεiptq, pσiptqq of each particle pair and its objective value fbest i equal its
initial position and objective value. Let the global best position be pgdptq “

`

pCgptq, pεgptq, pσgptq
˘

and
its objective value fglobalbest i equal to the best initial particle pair’s position and its objective value.

Step 3: Calculate Objective Values.

Employ Equation (10) to calculate the mean best position (mbest), the center of pbest position of
the three particle pairs, then, use Equations (11) and (12) to update the position for each particle pair,
and calculate the objective values for all particle pairs.

Step 4: Update.

For each particle pair, compare its current objective value with fbest i. If current value is better
(with smaller forecasting accuracy index value), then, update ppCiptq, pεiptq, pσiptqq and its objective
value with the current position and objective value.

Step 5: Determine the Best Position and Objective.

Determine the best particle pair of whole population based on the best objective value. If the
objective value is smaller than fglobalbest i, then update

`

pCgptq, pεgptq, pσgptq
˘

, and, use Equation (7)
to update the particle pair’s local attractor. Finally, update its objective value with the current best
particle pair’s position.

Step 6: Premature Convergence Test.

Calculate the mean square error (MSE), shown as Equation (14), to evaluate the premature
convergence status, set the expected criteria, δ:

MSE “
1
S

S
ÿ

i“1

ˆ

fi ´ favg

f

˙

2

(14)

where fi is the current objective value of the current particles; favg is average objective value of the
current swarm; f can be obtained by Equation (15):

f “ max
"

1, max
@iPS

 
ˇ

ˇ fi ´ favg
ˇ

ˇ

(

*

(15)

If the value of MSE is less than δ, it can be seen that premature convergence appears. Thus, the Cat
mapping function, Equation (13), is then employed to look for new optima, and set the new optimal
value as the optimal solution of the current particles.

Step 7: Stop Criteria.

If a stopping threshold (forecasting accuracy) is reached, then
`

PCg, Pεg, Pσg
˘

and its fglobalbest i
would be determined; otherwise go back to Step 3.

In this paper, the mean absolute percentage error (MAPE) as the forecasting accuracy index, shown
in Equation (16), is employed for calculating the objective value to determine suitable parameters in
Steps 4 and 5 of QPSO algorithm:
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MAPE “
1
N

N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

yi ´ fi
yi

ˇ

ˇ

ˇ

ˇ

ˆ 100% (16)

where N is the number of forecasting periods; yi is the actual value at period i; fi denotes is the
forecasting value at period i.

3. Numerical Examples

3.1. Data Set of Numerical Examples

3.1.1. Regional Load Data

The first numerical example applies Taiwan regional electric demand data from an existing
published paper [33] to construct the proposed SVRCQPSO model, and the forecasting accuracy of
the proposed model and other alternatives is compared. Therefore, in this example, the total load
values in four regions of Taiwan from 1981 to 2000 (20 years) serve as experimental data. To be based
on the same comparison basis, these load data are divided into three subsets, the training data set
(from 1981 to 1992, i.e., 12 load data), the validation data set (from 1993 to 1996, that is four load data),
and the testing data set (from 1997 to 2000, i.e., four load data). The forecasting accuracy is measured
by Equation (16).

During the training process, the rolling-based forecasting procedure proposed by Hong [33] is
employed, which divides training data into two subsets, namely fed-in (eight load data) and fed-out
(four load data) respectively. The training error can be obtained in each iteration. While training
error is decreasing, the three parameters determined by QPSO algorithm are employed to calculate
the validation error. Then, those parameters with minimum validation error are selected as the most
appropriate candidates. Notice that the testing data set is never employed while modeling. Eventually,
the desired four-years forecasting loads in each region are forecasted. Along with the smallest testing
MAPE value, the proposed model is the most suitable model in this example.

3.1.2. Annual Load Data

The second numerical example also uses Taiwan annual electric demand data from an existing
paper [33]. The total annual electric demand values from 1945 to 2003 (59 years) serve as the
experimental data. To be based on the same comparison basis, these employed load data are also
divided into three data sets, the training data set (from 1945 to 1984, i.e., 40 years), the validation
data set (from 1985 to 1994, that is 10 years), and the testing data set (from 1995 to 2003, i.e., nine
years). Similarly, the forecasting accuracy is also measured by MAPE. Meanwhile, the rolling-based
forecasting procedure, the structural risk minimization principle to minimize the training error, the
procedure to determine parameter combination, and so on, are also implemented the same as in the
first numerical example.

3.1.3. Load Data in 2014 Global Energy Forecasting Competition (GEFCOM 2014)

The third numerical example is suggested to use the historical hourly load data issued in 2014
Global Energy Forecasting Competition [45]. The total hourly load values, from 00:00 1 December
2011 to 00:00 1 January 2012 (744 h), serve as experimental data. These load data are divided into
three data sets, the training data set (from 01:00 1 December 2011 to 00:00 24 December 2011, i.e.,
552 h load data), the validation data set (from 01:00 24 December 2011 to 00:00 18 December 2011,
that is 96 h load data), and the testing data set (from 01:00 28 December 2011 to 00:00 1 January 2012,
i.e., 96 h load data). Similarly, the forecasting accuracy is also measured by MAPE; the rolling-based
forecasting procedure, the structural risk minimization principle to minimize the training error, and the
procedure to determine parameter combination are also implemented as the same as in the previous
two numerical examples.
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3.2. The SVRCQPSO Load Forecasting Model

3.2.1. Parameter Setting in the CQPSO Algorithm

Proper tuning of control parameters for convergence of the classical PSO algorithm is not easy, on
the contrary, there is only one parameter control in the CQPSO algorithm, i.e., the creativity coefficient
or contraction expansion coefficient, γ, given by Equation (9). Other settings, such as the population
sizes, are 20 in both examples; the total number of iterations (Itermax) is both fixed as 10,000; σ P r0, 5s,
ε P r0, 100s in both examples, C P r0, 20000s in example one, C P

“

0, 3ˆ 1010‰ in example two; δ is both
set as 0.001.

3.2.2. Three Parameter Determination of SVRQPSO and SVRCQPSO Models in Regional Load Data

For the first numerical example, the potential models with well determined parameter values by
QPSO algorithm and CQPSO algorithm which have the smallest testing MAPE value will be selected
as the most suitable models. The determined parameters for four regions in Taiwan are illustrated in
Table 1.

Table 1. Parameters determination of SVRCQPSO and SVRQPSO models (example one).

Regions
SVRCQPSO Parameters

MAPE of Testing (%)
σ C ε

Northern 10.0000 0.9000 ˆ 1010 0.7200 1.1070
Central 10.0000 1.8000 ˆ 1010 0.4800 1.2840

Southern 4.0000 0.8000 ˆ 1010 0.2500 1.1840
Eastern 3.0000 1.2000 ˆ 1010 0.3400 1.5940

Regions
SVRQPSO Parameters

MAPE of Testing (%)
σ C ε

Northern 8.0000 1.4000 ˆ 1010 0.6500 1.3370
Central 8.0000 0.8000 ˆ 1010 0.4300 1.6890

Southern 4.0000 0.6000 ˆ 1010 0.6500 1.3590
Eastern 12.0000 1.0000 ˆ 1010 0.5600 1.9830

Meanwhile, based on the same forecasting duration in each region, Table 2 shows the MAPE values
and forecasting results of various forecasting models in each region, including SVRCQPSO (hybridizing
chaotic function, quantum mechanics, and PSO with SVR), SVRQPSO (hybridizing quantum mechanics
and PSO with SVR), SVMG (hybridizing genetic algorithm with SVM), and RSVMG (hybridizing
recurrent mechanism and genetic algorithm with SVM) models. In Table 2, the SVRQPSO model
has almost outperformed SVRPSO models that hybridize classical PSO algorithm with an SVR
model. It also demonstrates that empowering the particles to have quantum behaviors, i.e., applying
quantum mechanics in the PSO algorithm, is a feasible approach to improve the solution, to improve
the forecasting accuracy while the PSO algorithm is hybridized with an SVR model. In addition,
the SVRCQPSO model eventually achieves a smaller MAPE value than other alternative models,
except the RSVMG model in the northern region. It also illustrates that the Cat mapping function
has done a good job of looking for more satisfactory solutions while suffering from the premature
convergence problem during the QPSO algorithm processing. Once again, it also obviously illustrates
the performance of the chaotic mapping function in overcoming the premature convergence problem.
For example, in the northern region, we had done our best by using the QPSO algorithm, we could
only to look for the solution, (σ, C, ε) = (8.0000, 1.4000 ˆ 1010, 0.6500), with forecasting error, 1.3370%,
as mentioned above that it is superior to classical PSO algorithm. However, the solution still could
be improved by the CQPSO algorithm to (σ, C, ε) = (10.0000, 0.9000 ˆ 1010, 0.7200) with more
accurate forecasting performance, 1.1070%. Similarly, for other regions, the solutions of the QPSO
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algorithm with forecasting errors, 1.6890% (the central region), 1.3590% (the southern region) and
1.9830% (the eastern region), all could be further searched for more accurate forecasting performance
by applying the Cat mapping function, i.e., the CQPSO algorithm, to receive more satisfactory
results, such as 1.2840% (the central region), 1.1840% (the southern region), and 1.5940% (the eastern
region), respectively.

Table 2. Forecasting results of SVRCQPSO, SVRQPSO, and other models (example one) (unit: 106 MWh).

Year
Northern Region

Actual SVRCQPSO SVRQPSO SVRCPSO SVRPSO SVMG RSVMG

1997 11,222 11,339 11,046 11,232 11,245 11,213 11,252
1998 11,642 11,779 11,787 11,628 11,621 11,747 11,644
1999 11,981 11,832 12,144 12,016 12,023 12,173 12,219
2000 12,924 12,798 12,772 12,306 12,306 12,543 12,826

MAPE (%) - 1.1070 1.3370 1.3187 1.3786 1.3891 0.7498

Year
Central Region

Actual SVRCQPSO SVRQPSO SVRCPSO SVRPSO SVMG RSVMG

1997 5061 4987 5140 5066 5085 5060 5065
1998 5246 5317 5342 5168 5141 5203 5231
1999 5233 5172 5130 5232 5236 5230 5385
2000 5633 5569 5554 5313 5343 5297 5522

MAPE (%) - 1.2840 1.6890 1.8100 1.9173 1.8146 1.3026

Year
Southern Region

Actual SVRCQPSO SVRQPSO SVRCPSO SVRPSO SVMG RSVMG

1997 6336 6262 6265 6297 6272 6265 6200
1998 6318 6401 6418 6311 6314 6389 6156
1999 6259 6179 6178 6324 6327 6346 6261
2000 6804 6738 6901 6516 6519 6513 6661

MAPE (%) - 1.1840 1.3590 1.4937 1.5899 2.0243 1.7530

Year
Eastern Region

Actual SVRCQPSO SVRQPSO SVRCPSO SVRPSO SVMG RSVMG

1997 358 353 350 370 367 358 367
1998 397 404 390 376 374 373 381
1999 401 394 410 411 409 397 401
2000 420 414 413 418 415 408 416

MAPE (%) - 1.5940 1.9830 2.1860 2.3094 2.6475 1.8955

Furthermore, to ensure the significant improvement in forecasting accuracy for the proposed
SVRQPSO and SVRCQPSO models, as Diebold and Mariano [46] recommend, a suitable statistical
test, namely the Wilcoxon signed-rank test, is then implemented. The test can be implemented at two
different significance levels, i.e., α = 0.025 and α = 0.05, by one-tail-tests. The test results are shown in
Table 3, which indicates that the SVRCQPSO model only achives significantly better performance than
other alternatives in the northern and eastern regions in terms of MAPE. It also implies that in these
two regions, the load tendency is approaching a mature status, i.e., in northern Taiwan, it is highly
commercial and residential electricity usage type; in eastern Taiwan, the highly concentrated natural
resources only reflects its low electricity usage type. In both regions, the electricity load tendency
and trend no doubt could be easily captured by the proposed SVRCQPSO model, thus, the proposed
SVRCQPSO model can significantly outperform other alternatives.
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Table 3. Wilcoxon signed-rank test (example one).

Compared Models

Wilcoxon Signed-Rank Test

α = 0.025; W = 0 α = 0.05; W = 0

Northern
Region

Central
Region

Southern
Region

Eastern
Region

Northern
Region

Central
Region

Southern
Region

Eastern
Region

SVRCQPSO vs. SVMG 0 a 1 1 0 a 0 a 1 1 0 a

SVRCQPSO vs. RSVMG 1 1 0 a 0a 1 1 0 a 0 a

SVRCQPSO vs. SVRPSO 0 a 1 1 0 a 0 a 1 1 0 a

SVRCQPSO vs. SVRCPSO 0 a 1 1 0 a 0 a 1 1 0 a

SVRCQPSO vs. SVRQPSO 1 1 0 a 0 a 1 1 0 a 0 a

a denotes that the SVRCQPSO model significantly outperforms other alternative models.

On the other hand, in the central and southern regions, the SVRCQPSO model almost could not
achieve significant accuracy improvements compared to the other models. It also reflects the facts
that these two regions in Taiwan are both high-density population centers, the electricity usage types
would be very flexible almost along with population immigration or emigration, thus, although the
proposed SVRCQPSO model captures the data tendencies this time, however, it could not guarantee
it will also achieve highly accurate forecasting performance when new data is obtained. Therefore,
this is also the next research topic.

3.2.3. Three Parameters Determination of SVRQPSO and SVRCQPSO Models in Annual Load Data

For the second numerical example, the processing steps are similar to the example one.
The parameters in an SVR model will also be determined by the proposed QPSO algorithm and
CQPSO algorithm. Then, the selected models would be with the smallest testing MAPE values.
The determined parameters for annual loads in Taiwan (example two) are illustrated in Table 4.
For benchmarking comparison with other algorithms, Table 4 lists all results in relevant papers with
SVR-based modeling, such as the Pai and Hong [47] proposed SVMSA model by employing SA
algorithm and the Hong [33] proposed SVRCPSO and SVRPSO models by using the CPSO algorithm
and PSO algorithm, respectively.

Table 4. Parameter determination of SVRCQPSO and SVRQPSO models (example two).

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

SA algorithm [46] 0.2707 2.8414 ˆ 1011 39.127 1.7602
PSO algorithm [33] 0.2293 1.7557 ˆ 1011 10.175 3.1429

CPSO algorithm [33] 0.2380 2.3365 ˆ 1011 39.296 1.6134
QPSO algorithm 12.0000 0.8000 ˆ 1011 0.380 1.3460

CQPSO algorithm 10.0000 1.5000 ˆ 1011 0.560 1.1850

Figure 2 illustrates the real values and forecasting values of different models, including the
hybridizing simulated annealing algorithm with SVM (SVMSA), SVRPSO, SVRCPSO, SVRQPSO,
and SVRCQPSO models. In Table 4, similarly, the SVRQPSO model is superior to SVRPSO models that
hybridize a classical PSO algorithm with an SVR model. Once again, it also demonstrates that applying
quantum mechanics in the PSO algorithm is a feasible approach to improve the forecasting accuracy of
any SVR-based forecasting model. In addition, the SVRCQPSO model eventually achieves the smallest
MAPE value than other alternative models. Of course, the Cat mapping function provides its excellent
improvement in overcoming the premature convergence problem. It can be clearly to see that based
on the QPSO algorithm, we could only look for the solution, (σ, C, ε) = (12.0000, 0.8000 ˆ 1011, 0.380),
with a 1.3460% forecasting error, although it is superior to the classical PSO algorithm. Then, the Cat
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mapping function is excellent to shift the solution of the QPSO algorithm to another better solution,
(σ, C, ε) = (10.0000, 1.5000 ˆ 1011, 0.560) with a forecasting error of 1.1850%.

To verify the significance of the proposed SVRCQPSO model in this annual load forecasting
example, similarly, the Wilcoxon signed-rank test is also taken into account. The test results are shown
in Table 5, which indicate that the SVRCQPSO model has completely achieved a more significant
performance than other alternatives in terms of MAPE, i.e., the annual load tendency in Taiwan reflects
an increasing trend due to the strong annual economic growth. The electricity load tendency and
trend no doubt could be easily captured by the proposed SVRCQPSO model; therefore, the proposed
SVRCQPSO model can significantly outperform other alternatives.
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Figure 2. Actual values and forecasting values of SVRCQPSO, SVRQPSO, and other models (example two).

Table 5. Wilcoxon signed-rank test (example two).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 5 α = 0.05; W = 8

SVRCQPSO vs. SVMSA 2 a 2 a

SVRCQPSO vs. SVRPSO 3 a 3 a

SVRCQPSO vs. SVRCPSO 2 a 2 a

SVRCQPSO vs. SVRQPSO 2 a 2 a

a denotes that the SVRCQPSO model significantly outperforms other alternative models.

3.2.4. Three Parameter Determination of SVRQPSO and SVRCQPSO Models in GEFCOM 2014

For the third numerical example, the processing steps are to be conducted similarly.
The determined parameters in an SVR model by the proposed QPSO algorithm and CQPSO algorithm
will have the smallest MAPE values in the test data set. The determined parameters for GEFCOM 2014
(example three) are illustrated in Table 6. In addition, the parameters determined by other famous
algorithms, such as GA, CGA, PSO, CPSO algorithms, are also listed in Table 6. Because GEFCOM
2014 load data is a completely new case for the author, to correctly assess the improvements of the
proposed models, a naïve model is introduced, which is appropriately to be a random search of the
hyper-parameters. Therefore, the randomly determined parameters are also illustrated in Table 6.
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Table 6. Parameters determination of SVRCQPSO and SVRQPSO models (example three).

Optimization Algorithms
Parameters

MAPE of Testing (%)
σ C ε

Naïve 23.000 43.000 0.6700 3.2200
CGA 19.000 28.000 0.2700 2.9100

PSO algorithm 7.000 34.000 0.9400 3.1500
CPSO algorithm 22.000 19.000 0.6900 2.8600
QPSO algorithm 9.000 42.000 0.1800 1.9600

CQPSO algorithm 19.000 35.000 0.8200 1.2900

For the forecasting performance comparison, the author also considers two famous forecasting
models, the ARIMA(0, 1, 1) model, and the back propagation neural networks (BPNN) model to
conduct benchmark comparisons. Figure 3 illustrates the real values and forecasting results, including
the ARIMA, BPNN, Naïve, SVRCGA, SVRPSO, SVRCPSO, SVRQPSO, and SVRCQPSO models.
In Figure 3, it also indicates that the SVRQPSO model achives more accurate forecasting performance
than the SVRPSO and SVRCPSO models that hybridize classical PSO algorithms or chaotic sequences
with an SVR model. It also illustrates the application of quantum mechanics in the PSO algorithm
is a potential approach to improve the performance issues of any SVR-based model. In addition,
the SVRCQPSO model eventually achieves a smaller MAPE value than the SVRQPSO model.
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Figure 3. Actual values and forecasting values of SVRCQPSO, SVRQPSO, and other models
(example three).

Finally, the results of Wilcoxon signed-rank test are presented in Table 7, which indicates that the
proposed SVRCQPSO model achieves superior significance in terms of MAPE, i.e., the hourly electric
load reflects a cyclic trend which is captured exactly by the proposed SVRCQPSO model; therefore,
the proposed SVRCQPSO model can significantly outperform other alternatives.
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Table 7. Wilcoxon signed-rank test (example three).

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 2,328 α = 0.05; W = 2,328

SVRCQPSO vs. ARIMA 1612 a 1612 a

SVRCQPSO vs. BPNN 1715 a 1715 a

SVRCQPSO vs. Naïve 1650 a 1650 a

SVRCQPSO vs. SVRPSO 1713 a 1713 a

SVRCQPSO vs. SVRCPSO 1654.5 a 1654.5 a

SVRCQPSO vs. SVRQPSO 1700 a 1700 a

SVRCQPSO vs. SVRCGA 1767 a 1767 a

a denotes that the SVRCQPSO model significantly outperforms other alternative models.

4. Conclusions

This paper presents an SVR model hybridized with the chaotic Cat mapping function
and quantum particle swarm optimization algorithm (CQPSO) for electric demand forecasting.
The experimental results demonstrate that the proposed model obtains the best forecasting performance
among other SVR-based forecasting models in the literature, even though overall the forecasting
superiority does not meet the significance test. This paper applies quantum mechanics to empower
particles to have quantum behaviors to improve the premature convergence of the PSO algorithm and
then, improve the forecasting accuracy. Chaotic Cat mapping is also employed to help with unexpected
trapping into local optima while the QPSO algorithm is working in its searching process. This paper
also illustrates the good feasibility of hybridizing quantum mechanics to expand the search space
which is usually limited by Newtonian dynamics. In future research, as mentioned in Section 3.2.2,
how to enhance the power of the QPSO algorithm to capture the tendency changes of electricity load
data along with population immigration or emigration to guarantee the SVRCQPSO model achieves
highly accurate forecasting performance will be studied.

Conflicts of Interest: The author declares no conflict of interest.
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