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Abstract: A computational tool is developed for the estimation of the energy requirements of
Miscanthus x giganteus on individual fields that includes a detailed analysis and account of the
involved in-field and transport operations. The tool takes into account all the individual involved
in-field and transport operations and provides a detailed analysis on the energy requirements of the
components that contribute to the energy input. A basic scenario was implemented to demonstrate
the capabilities of the tool. Specifically, the variability of the energy requirements as a function of
field area and field-storage distance changes was shown. The field-storage distance highly affects
the energy requirements resulting in a variation in the efficiency if energy (output/input ratio)
from 15.8 up to 23.7 for the targeted cases. Not only the field-distance highly affects the energy
requirements but also the biomass transportation system. Based on the presented example, different
transportation systems adhering to the same configuration of the production system creates variation
in the efficiency of energy (EoE) between 12.9 and 17.5. The presented tool provides individualized
results that can be used for the processes of designing or evaluating a specific production system
since the outcomes are not based on average norms.

Keywords: biomass; operations analysis; biomass logistics

1. Introduction

Miscanthus x giganteus has recently been identified as a crop with a high potential for energy
production [1–3]. It is a C4 photosynthetic plant with a high content of lignin and linocellulose fibre [4].
Another attractive feature of Miscanthus is its adaption capability to various climates and soils. Overall,
Miscanthus is a genus of highly resistant plants countering disadvantageous ecological factors. Its
evolution in regions of the world with wide temperature fluctuations between seasons has led to
characteristics that make the plant resistant to heat, frost, drought and flood, though its biomass yield
may vary under different conditions [4]. Alhough temperatures below 12 ˝C limit productivity of C4

crops, Miscanthus is an exception to this rule by remaining productive and with high CO2 assimilation
efficiency [5]. Even though the crop prefers warmer climates, it can be grown throughout Europe in
reasonable yields.

Various studies have reported the efficiency of Miscanthus as an energy crop. Angelini et al. [6]
found a mean net energy yield of 467 GJ¨ha´1¨y´1 for a twelve-year cycle period of Miscanthus.
Mantineo et al. [7] have reported an efficiency of energy (EoE), that is the energy output/input ratio, of
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11.5 and a yearly net energy yield amounting to 221 GJ¨ha´1¨ y´1 for the first three years of production.
Ercoli et al. [8] have evaluated the energy input for irrigated and rain-fed Miscanthus crops for different
nitrogen levels. For irrigated crop (4 year crop cycle) with 50 kg¨ha´1 nitrogen fertilization, the
energy input was approximately 17 GJ¨ha´1 for the first year and approximately 8.5 GJ¨ha´1 for the
following years.

In general, the reports on the energy requirements (or efficient of energy index) of Miscanthus
production and its use as an energy crop show that there is a considerable spread in the estimated
values. This is a result of the multiparametric nature of agricultural production systems. There
are numerous factors that can significantly affect input requirements and the output of a biomass
production system as well [9,10]. For example, different distances between the field and the
storage/processing facilities, variations in the machinery systems, and material input dosages can
lead to different energy input requirements for each individual field. Although the outcomes of
estimating task times based on average norms are useful for providing a general picture that can be
valuable for strategic planning decisions, the task of designing a specific production system (e.g., a
bioenergy plant and the allocated field area around the plant) require tools that provide individualized
results [11,12]. To that effect, in this paper a computational tool is presented for the estimation of
the energy requirements of Miscanthus on individual fields and including a detailed analysis and
accounting of the involved in-field and transport operations.

2. Materials and Methods

2.1. System Boundary

The system boundary of the presented approach is shown in Figure 1. The system regards the
in-field operations and the corresponding field-farm transports of the machinery and the materials
applied in the field, and the biomass field-storage transportation. The storage of biomass (or any
further processing of the biomass) is not taken into account in this approach. The indirect inputs in
the system regard the embodied energy of machinery performing the field operations, the materials
applied in the field, and the fuels.
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Figure 1. System boundaries of the energy inputs.

2.2. Inputs

The input parameters for the estimation process (Figure 2) can be categorized in the following sets:

‚ Production-related input parameters. This set includes the field features (e.g., field area, field-farm
distance, and field-storage distance), and the crop features (e.g., yield, bulk density, moisture
content of the harvested crop, and rhizome density),

‚ Machinery-related input parameters. This set includes the tractors features (e.g., type of tractor,
machine power, mass, and repair and maintenance coefficients), equipment features (e.g.,
operating width and equipment mass),

‚ Operation-related input parameters. This set includes operational information (list of operations
and years that each operation is performed, assignment of tractor to equipment for each
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operation) and parameters related to the execution of the operation (e.g., operating speed, and
field efficiency),

‚ Material-related input parameters. This set includes the parameters for agrochemicals, fertilizers,
and the propagation means, as it regards the corresponding dosages and the energy content
coefficients of any type these inputs.
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Figure 2. The general inputs for the input energy estimation process.

2.3. Operations

Field operations can be separated into three types, namely, neutral material flow (NMF)
operations—(where there is no material flow during the operation—e.g., tillage, and ploughing);
input material flow (IMF) operations (e.g., fertilizing and spraying); and output material flow (OMF)
operations (i.e., harvesting) [13]. In order to accommodate these types, three modules have been
developed in the tool.

‚ The first module refers to the in-field part of the operations (this module is involved in all of the
three types of operations defined above),

‚ The second module refers to the field-farm transport (this module is involved in all of the three
types of operations defined above),

‚ The third module refers to the biomass transport (this module is only involved in the OMF type).

The estimation of the energy requirements for each one of the three modules are presented in the
following sections.

2.3.1. In-Field Operation Part Module

This module calculates the energy requirements for the execution of the in-field part of each
operation. As mentioned previously, this operation part regards all types of field operations. In all
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cases, the estimated input energy elements constitute the fuel (and lubricant) energy and the machinery
embodied energy, while in the case of IMF operations the applied material energy is also estimated
(Figure 3).
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Figure 3. Estimation process of energy elements for the in-field part of an operation (the dotted lines
correspond to input material flow (IMF) operations).

As a first step, the in-field capacity (h¨ha´1) is estimated for the specific machinery system based
on the working speed, the working width, and the field efficiency of the specific system. The field
capacity provides the in-field task time of the specific operation in a given field area. The in-field task
time of an operation includes the effective in-field operation time (the time that a machine produces
work) and the non-effective time (that includes times for loading/unloading—in the case of the
material-handling operations, machinery adjustments and time that is allocated for headland turns).
The relation between the effective and non-effective time is described by the term of “time efficiency”,
et, which represents the ratio of the time a machine is effectively operating to the total time the machine
is committed to the operation [14]. Based on the time efficiency the field capacity (C) is calculated by:

C “ s ¨w ¨ et ¨ c (1)

where s is the operating speed (km¨h´1), w is the rated width of the implement (m, the product s¨w
expresses the theoretical capacity), and c is a unit conversion factor.

For the calculation of field capacity data from ASABE standards for the field efficiency for each
operation and the average operational speed are used [15]. Based on the field area, a (ha), the total task
time for a field operation is estimated for the particular field:

t “ a ¨ C´1 (2)
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For the fuel consumption estimation, the specific volumetric fuel consumption equation given in
the American Society of Agricultural and Biological Engineers (ASABE) standard [16] is used:

Q “ p2.64X` 3.91´ 0.203
?

738X` 173q ¨ X ¨ Ppto (3)

where, Q is the fuel consumption (for a diesel engine) at partial load for operation (in L¨h´1),
X = P/Prated is the ratio of equivalent PTO (power-take-off ) power (P) in a specific operation to
the rated PTO power (Prated ) that is normally considered as the 83% of the gross flywheel.

The equivalent PTO power is given by:

P “ Pdb{pEmEtq ` Ppto (4)

where Em is the mechanical efficiency of the transmission and power train, typically 0.86 for tractors
with gear transmission. Et is the tractive efficiency, that depends on the tractor type and tractive
condition (e.g., Et is 0.75 for a 4WD tractor on a tilled soil surface, from Figure 1 of the ASABE
standards [17], Ppto and Pdb are the PTO and drawbar power (kW), respectively, required by
the implement.

The PTO power requirement is given by:

Ppto “ a` b ¨w` cF (5)

where a,b,c are machine-specific parameters ([16], w the working width, and F is the material feed rate
(t¨h´1), while the drawbar power requirement is given by:

Pdb “ D ¨ s{3.6 (6)

where D is the implement draft given by:

D “ Wori

”

A` Bs` Cs2
ı

¨w ¨ de (7)

where parameters A,B,C are machine-specific parameters given in ASABE D497 standards [16], and de
is the tillage depth.

Lubricant consumption (L¨h´1), is given by:

L “ 0.00059 ¨ P` 0.02169 (8)

where P (kW) is the machine power as presented in ASABE D497 [16].
Farm machinery contributes to the energy input, not only directly through the fuel and lubricant

consumption, but also through the embodied energy of each machinery, implement or tractor. This
energy includes the energy of raw materials that are used in the manufacture of farm machinery, the
energy for transport to the final consumer, and the energy for repair and maintenance of machinery. A
number of studies in the literature [18,19] have estimated the calculation of the total embodied energy
of an agricultural machine (tractor, implement, self-propelled machine) which is allocated to the whole
life time of the machine and usually are expressed as MJ¨kg´1 of embodied energy for various types
of machinery. For the estimation of the portion of the embodied energy corresponding to an operation,
the lifetime of the machine [16] and the task time for a particular field were taken into account.

In the case of IMF operations, where input material handling is involved, and in addition to the
energy inputs mentioned above, the material energy input (i.e., propagation means, fertilizers, and
agrochemicals) should be calculated also. Regarding the propagation means, the planting density is
taken into account, while in the case of the fertilizers, the yearly dosage is taken into account. Irrigation
has also been considered as a field operation (although it does not directly involve an agricultural
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machine). From the relevant literature, for the calculation of consumed energy regarding irrigation,
the mathematical equation adapted from Ercoli et al. [8]:

Eir “ 550 ¨ L ¨ A (9)

where Eir is the irrigation energy in MJ¨ha´1, L is the lift (m) and A is the amount of pumped water in
m¨ha´1. It was also assumed that water is delivered to the field with a 20% loss due to transport and
application [8].

2.3.2. Farm-Field Transportation Module

The machinery (and material in IMF operations) transport cycle farm-field-farm is taken into
account in every field operation considered. The calculation of energy consumed for this transport
cycle varies if the field operation includes material application or not, since in the former case a
number of trips might be required. For IMF operations (Figure 4), and the associated fuel energy
input estimation, the required number of trips, the fuel consumption per trip, the maximum wagon
volume (in case of planting) and the maximum tanker weight (in case of fertilization and agrochemicals’
spreading) are taken into account. For the embodied energy input estimation of the tractor and the
wagon/tanker, the estimated lifetime, the weight, the number of trips, the farm-field distance, and the
average road speed is taken into account.
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For the estimation of the fuels consumption during the farm-field-farm routing, the same approach
as in the in-field operations is followed with the difference [20] that the implement draft force is given
now by:

D “ Rsc `MR (10)

where Rsc is the road surface resistance and MR the total motion resistance. For these transportations
the hard soil coefficient is considered.

The total implement motion resistance is given by:

MR “
ÿ

RM (11)

as the summation of each individual wheel of the implement. It has been assumed that:

RM “ 0.55m (12)

where m is the dynamic wheel load and the 0.55 coefficient has been considered as an assumption for a
concrete surface [16].
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2.4. Biomass Transport

The energy inputs of the biomass transport consider the transport of the harvested product from
field to biomass storage-processing facilities. Logistics field-storage operations (Figure 5) also include
the same categories of energy inputs, fuels and embodied energy. For the energy input calculation
the same approach as described previously for the material farm-field transport was applied. The
approach is divided into a pre-processing stage where the required trips are estimated (Figure 5). In
order to avoid any idle times for the harvester during execution, the number of transport carts that are
allocated for supporting the operation was estimated as a function of the cycle time for travel from the
field to the storage facility, unloading, and drive back to the field, the carrying capacity of the wagon
and the in-field capacity of the harvester (processed biomass per unit time).Energies 2016, 9, 392 
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3. Results

3.1. Production Scenario

The presented production scenario is based on the Miscanthus production practices followed by
various farmers in Italy. All followed practices and prevailing cultivation conditions were derived from
interviews with farmers and machinery contractors. Based on the interviews, the various parameters
of the production scenario (e.g., average field area and distances, agrochemicals and fertilizers dosages,
field operations, machinery selection, etc.) were determined in a way that the scenario represents a
realistic Miscanthus production case. In the presented study, a ten-year production period has been
considering for the demonstration of the model. The operations performed during this period and for
each individual year are listed in Table 1.

Concerning the field preparation, Miscanthus cultivation requires limited soil management [6].
Thus, plowing up to 20 cm depth was considered as a first preparation of the soil and afterwards a
disk-harrowing. Before the establishment of the crop and after soil preparation it is very important to
thoroughly control perennial weeds that can affect competitively on the new-established Miscanthus
plants. However, after the early growth the crop has the ability to protect itself from the weeds. In the
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presented production scenario one herbicide application has been considered as a pre-planting weed
control in the first year.

Table 1. Field operations for the ten-year period.

Field Operations Year

1 2 3 4 5 6 7 8 9 10

Plowing
‘

- - - - - - - - -
Disk-harrowing

‘

- - - - - - - - -
Pre-planting herbicide spreading

‘

- - - - - - - - -
Planting

‘

- - - - - - - - -
Fertilization

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Harvesting -
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Biomass Transport -
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Irrigation
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

For the planting operation, the case of a row crop planter similar to the one implemented for
planting seed potatoes was adopted. The desired final plant population should be approximately
between 10,000 and 12,000 plants per ha [21], and since large rhizome survival usually averages
60%–70% [21,22], approximately 15,000 to 17,000 rhizomes per ha are needed to reach the final
recommended stand density. In the presented scenario, 16,000 rhizomes per ha has been considered
(app. 0.8 m ˆ 0.8 m inter-row and intra-row spacing).

After planting, the irrigation of the newly planted Miscanthus plants during the first growing
season improves establishment rates [23]. Irrigation is applied every year in order to cover water
requirements in parallel with rainfall and ensure considerable yields.

Generally, Miscanthus has low nutrient requirements because the soil is able to supply much of
the needed nutrients to the crop. However, the addition of nitrogen, phosphorus and potassium might
be necessary depending on the specific nutrient soil conditions. It has been reported that 50 kg N,
21 kg P2O5, and 45 kg K2O per ha per year are sufficient to support adequate yields [24]. This nutrient
allocation was assumed in the presented study, also.

Harvesting of the crop usually occurs every year from the second year on. At the end of the
growing season, Miscanthus usually drops most of its leaves as it senesces, and the senesced stems
are typically harvested during the period from November until late March [5]. Harvesting is usually
carried out using conventional forage harvesters for cutting and chipping the biomass supported by
transport carts (usually a tractor-wagon combination) moving in parallel to the harvester for unloading
the processed material. The yield of the crop was considered as 21.87 t¨ha´1 corresponding to an
energy content of the harvested biomass of 16.4 MJ¨kg´1 of dry matter [7].

3.2. Input Parameters

As mentioned in the production scenario description, the yearly application of 50 kg N, 21 kg P2O5,
and 45 kg K2O per ha was adopted. According to these requirements, urea, single superphosphate, and
potassium chloride, were selected as fertilization means. Specifically, the application of 108 kg¨ha´1

urea, 116 kg¨ha´1 single superphosphate, and 112 kg¨ha´1 potassium chloride was considered. The
same amount of fertilizer was assumed for each individual year of the production.

The energy requirement of Miscanthus rhizomes in the presented study was based on the approach
presented in [7] and corresponded to 0.0862 MJ¨kg´1 of rhizomes, given that each rhizome weighs
approximately 50 g.

Finally, the weed control was selected to be implemented with a pre-planting herbicide application
Glyphosate was adopted as an appropriate commercially available, environmentally friendly herbicide
with many benefits for our crop. The embodied energy of this herbicide was adopted from [18].

Table 2 summarizes the values of the energy input parameters for the selected case study. The
material input elements are summarized in Table 3.
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Table 2. Inputs per farm operation.

Inputs Plough Disk-Harrow Harvest Agrochemical
Spreading Fertilization Planting Transport Irrigation

Operating width (1) (m) 2 4.5 1.83 14.4 14.4 2 - -
Operating speed (2) (km¨ h´1) 7 10 5 11 11 9 - -

Field efficiency (2) 0.85 0.80 0.70 0.70 0.70 0.65 - -
Irrigation lift (m) - - - - - - - 10

Water amount (m¨ ha´1) (3) - - - - - - - 0.20
Tractor embodied energy (4) (MJ¨ kg´1) 138 138 138 138 138 138 - -

Implement embodied energy (4) (MJ¨ kg´1) 180 149 116 129 129 133 - -
Tractor weight (5) (103 kg) 6.94 6.94 6.94 3.93 3.93 6.94 6.94 -

Implement weight (1) (103 kg) 2.30 1.80 0.90 3.35 3.35 1.20 - -
Tractor estimated life (2) (103 h) 16 16 16 12 12 12 - -

Implement estimated life (2) (103 h) 2.00 2.00 2.50 1.20 1.20 1.50 - -
Average road speed (km¨ h´1) 20 20 20 20 20 20 20 -

Tanker/wagon weight (kg) - - - 1500 1500 1500 4000 -
Tanker/wagon embodied energy (MJ¨ kg´1) - - 108 108 108 108 108 -

Tanker/wagon estimated life (2) (103 h) - - 3 3 3 3 3 -
Fuel energy content (5),(6) (MJ¨ L´1) 41.20 41.20 41.20 41.20 41.20 41.20 41.20 -

Tractor power (kW) 120 120 120 50 50 50 120 -
Lubricants energy content (7) (MJ L´1) 46 46 46 46 46 46 46 -

Crop bulk density (kg¨ m´3) - - - - - - 240 -
Wagon full volume (1) (m3) - - - - - - 40 -

(1) Commercial Values; (2) [16]; (3) [23]; (4) [18]; (5) [19]; (6) [25]; (7) [26].
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Table 3. Energy content per unit mass and dosage for the input materials.

Input Material Energy Content (MJ¨ kg´1) Dosage (kg¨ ha´1)

Herbicide (Glyphosate) 454 * (1) 20
Propagation means 0.0862 (2) 800
Nitrogen fertilizer 78.1 (3) 50 (1)

Phosphorus fertilizer 17.4 (3) 21 (1)

Potassium fertilizer 13.7 (3) 45 (1)

* (MJ¨ kg´1 of active ingredient); (1) [18]; (2) [7]; (3) [24].

3.3. Demonstration of the Method

3.3.1. Basic Scenario Analysis

A field area unit of 5 ha located 5 km from the farm and 10 km from the biomass storage-processing
facilities is selected as the basic scenario for the demonstration and analysis of the approach. By taking
into account all the energy inputs for the Miscanthus crop, the consumed energy per farm operation
has been extracted and is presented in Table 4.

Table 4. Energy requirements for each operation in the basic scenario.

Operation Stage Energy (MJ¨ ha´1)

Fuel Embodied Material Total

Ploughing In-field 882 138 -
1053Farm-field 8 25 -

Cultivation
In-field 272 20 -

311Farm-field 8 11 -

Disc-harrowing In-field 437 49 -
512Farm-field 8 18 -

Spraying In-field 52 21 18,160
18,243Farm-field 4 6 -

Fertilizing In-field 520 210 48,870
50,070Farm-field 120 350 -

Planting In-field 534 76 69
718Farm-field 16 23 -

Harvesting In-field 24,590 1270 -
26,020Farm-field 80 80 -

Irrigation - - - - 29,700

Transport In-field 2460 730 -
33,530Field-storage 7380 22,960 -

For the basic scenario, the total energy input requirements amounted to 14.8 GJ¨ha´1¨ y´1, the total
energy output amounted to 322.9 GJ¨ha´1¨ y´1, resulting in a net energy amount of 308.1 GJ¨ha´1¨ y´1

and an efficiency of energy of 21.2. Figure 6a presents the distribution of the energy input in the
various operations for the ten-year period of the considered production. Figure 6b presents the
distribution of the energy corresponding to the fuels (and lubricants) consumption of the machinery
in the various operations. Finally, Figure 6c presents the contribution of the embodied energy in the
various operations for the whole production period which includes the embodied energy for both
machinery and input materials.
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As mentioned previously, three activity types have been considered, namely, in-field operations,
farm-field transportation, and field-storage transportation. In Figure 7, the amount of energy
contributed by each of the activities is presented for the fuels consumption and the embedded
energy categories.
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The energy inputs for the field operations are detailed in Figure 8 where it can be seen that
the harvesting operation is the most energy demanding operation. Note that in the input material
operations only the machinery originated energy requirements (direct and indirect) are included (not
the embedded energy of the input material).
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3.3.2. Variability of the Energy Requirements on Field Area and Field-Storage Distance

The energy requirements, and subsequently, the EoE of the studied crop are affected from the
field-storage distance and the field area. The EoE for field areas ranging from 1 to 30 ha and for
field-storage distances ranging from 1 to 30 km are shown in Figure 9 as a surface graph. It is clear
that the major effect on the energy requirements derives from the distance variations and less from the
variations due to the field area. For the selected variations of field-storage distances and field areas the
EoE varies from a minimum of 15.8 (for the case of 1 ha field area and 30 km field-storage distance)
to a maximum of 23.7 (for the case of 30 ha field area and 1 km field-storage distance). For these two
marginal cases the input energy accounts to 20.4 GJ¨ha´1¨y´1 and 13.6 GJ¨ha´1¨y´1, respectively
for the minimum and maximum EoE case, while the range of the net energy between the minimum
and maximum is 6.8 GJ¨ha´1¨y´1 (302.5 GJ¨ha´1¨y´1 and 309.3 GJ¨ha´1¨y´1, respectively). This
difference is mainly a result of the increased travelled distance for the biomass transportation. This
can be elaborated in Figure 10 which shows the contribution of the transport energy in the total energy
requirements for various distances starting form 15% for a distance of 5 km and increasing to 33% for
the distance of 30 km.
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energy input for various filed-to-storage distances (field area: 10 ha, farm-field distance: 5 km).

Is has to be further noted that the transportation system also highly affects the energy requirements
since it affects the number of trips (and the number of transport units used), the waiting times, and the
level of utilization of each unit. Figure 11 shows the biomass transport energy requirements for three
different wagon capacities and field-storage distances ranging from 1 km to 30 km and field areas
ranging from 1 ha to 30 ha. The variations in the energy requirements for the biomass transportation
lead to considerable variation in the EoE indices of the production systems. For the middle case (15 ha
field area; 15 km field-storage distance) the EoE amounts to 17.5, 15.6, and 12.9 for the cases of 40 m3,
20 m3, and 103 wagons capacity, respectively. For the case of basic scenario (5 ha field area, 10 km
field-storage distance) the EoE amounts to 21.2, 20.0, and 18.0 for the cases of 40 m3, 20 m3, and 10 m3

wagons capacity, respectively.
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4. Discussion

A computational tool for the estimation of the energy requirements in biomass production was
presented using as a case study the Miscanthus crop. The tool takes into account all the individual
involved in-field and transport operations and provides a detailed analysis on the energy requirements
of the components that contribute to the energy input.

A basic scenario was implemented to demonstrate the capabilities of the tool. Furthermore,
the variability of the energy requirements in field area and field-storage distance changes was also
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demonstrated. The field-storage distance highly affects the energy requirements resulting to a variation
in the EoE form 15.84 up to 23.74 for the examined cases. 302.5 GJ¨ha´1¨y´1 and 309.3 GJ¨ha´1¨y´1,
respectively, As compared to other studies on Miscanthus as an energy crop, the resulting EoE for the
examined cases is higher than the one reported in Mantineo et al. [7] (i.e., EoE of 11.5 and yearly net
energy of 221 GJ¨ha´1¨y´1). However, the later corresponds to the first three years of production
where input requirements are higher (e.g., soil preparation, planting, and spraying operations) while
the harvested yield is reduced. The opposite stands for the case reported in Angelini et al. [6] where
a mean net energy yield of 467 GJ¨ha´1¨y´1 was found since it refers to a twelve-year production
period which compared to the ten-year production period the total energy output is increased while
the energy input for the first year (which is the most intensive in terms of energy input requirements)
remains the same.

Not only the field-distance highly affects the energy requirements but also the biomass
transportation system. Based on the presented example, for different transportation systems and
keeping the same configuration of the production system the variation in the EoE was between 12.87
and 17.52. Regarding the field area, it affects only slightly the energy requirements. However, this is
not a proven result since in the presented modelling the actual field shape and the in-field operation
execution practice were not taken into account. Of course, the user can change the field efficiency factor
to roughly cope with this issue, but this cannot provide accurate results nor is it a recognized standard
way of comparison. The connection in the tool of models that take into account the detailed features
that affect field efficiency (e.g., [27,28]) as well as of models for various harvesting and transportation
chains (e.g., [29–31]), is an issue of further research.

The presented tool provides individualized results that can be used for the processes of designing
or evaluating a specific production system since the outcomes are not based on average norms. The tool
can be used as a decision support system for the evaluation of different agronomical practices that can
apply in the same crop (e.g., different levels of irrigation, fertilizing, and spraying, and also different
levels of output production). Furthermore, different crops for bioenergy production can be compared
on their feasibility and performance for energy production. Finally, the individual field-specific output
of the tool makes it feasible for its implementation in an optimization process for the solution of the
crop allocation problem in geographical dispersed fields (e.g., around a bioenergy production plant)
under the criterion of the maximization of the net-energy production.
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