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Abstract: Reliable and quick response fault diagnosis is crucial for the wind turbine generator
system (WTGS) to avoid unplanned interruption and to reduce the maintenance cost. However,
the conditional data generated from WTGS operating in a tough environment is always dynamical
and high-dimensional. To address these challenges, we propose a new fault diagnosis scheme
which is composed of multiple extreme learning machines (ELM) in a hierarchical structure, where
a forwarding list of ELM layers is concatenated and each of them is processed independently for
its corresponding role. The framework enables both representational feature learning and fault
classification. The multi-layered ELM based representational learning covers functions including data
preprocessing, feature extraction and dimension reduction. An ELM based autoencoder is trained to
generate a hidden layer output weight matrix, which is then used to transform the input dataset into
a new feature representation. Compared with the traditional feature extraction methods which may
empirically wipe off some “insignificant’ feature information that in fact conveys certain undiscovered
important knowledge, the introduced representational learning method could overcome the loss
of information content. The computed output weight matrix projects the high dimensional input
vector into a compressed and orthogonally weighted distribution. The last single layer of ELM
is applied for fault classification. Unlike the greedy layer wise learning method adopted in back
propagation based deep learning (DL), the proposed framework does not need iterative fine-tuning
of parameters. To evaluate its experimental performance, comparison tests are carried out on a wind
turbine generator simulator. The results show that the proposed diagnostic framework achieves the
best performance among the compared approaches in terms of accuracy and efficiency in multiple
faults detection of wind turbines.

Keywords: fault diagnosis; wind turbine; classification; extreme learning machines (ELM);
autoencoder (AE)

1. Introduction

Wind turbine generator systems (WTGS) are the fastest-growing applications in renewable power
industry. The structure of WTGS is complex, its reliability becomes an important issue. As wind
power generators are widely mounted on high mountains or offshore islands, it is costly for routine
maintenance [1]. Continuously condition monitoring and fault diagnosis technologies are therefore
necessary so as to reduce unnecessary maintenance cost and keep system working reliably without
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unexpected shutdown. A typical WTGS includes gearbox, power generator, control cabinet and rotary
motor, etc., (as shown in Figure 1a), where the gearbox is statistically more vulnerable compared with
other components. It shed light upon the importance of the condition monitoring of gearbox. More
specifically, the faults of gearbox mainly results from two major components: gears and bearings,
which include broken tooth, chipped tooth, wear-off of outer race or rolling elements of bearing, etc. [2].
Real-time monitoring and fault diagnosis aim to detect and identify any potential abnormalities and
faults, so as to take corresponding actions to avoid serious component damage or system disaster.

(a) (b)

Figure 1. Diagram and fault simulator for wind turbine generator system (WTGS). (a) The diagram of
WTGS; (b) the simulation platform of WTGS.

Nowadays, a large body of research shows that fault detection based on a machine learning-based
approach is feasible. Machine learning methods, such as neural networks (NNs), support vector
machine (SVM) and deep learning (DL) may be promising solutions to classify the normal and
abnormal patterns. A brief workflow of machine learning methods for fault diagnosis includes analog
signal acquisition, data pre-processing and pattern recognition. Regarding the feature information
sources (e.g., vibration signals, acoustic and temperature signals), the vibration signals are often
adopted for their ease of acquisition and sensitivity to a wide range of faults. Moreover, intelligent fault
diagnosis of WTGS relies on the effectiveness of signal processing and classification methods. The raw
vibration signals contain high-dimensional information and abundant noise (includes irrelevant
and redundant signals), which cannot be feasibly fed into the fault diagnostic system directly [3].
Many studies focus on the improvement of data pre-processing and feature extraction from the
raw vibration signals [4,5]. Generally, a good intermediate representation method is required to
retain the information of its original input, while at the same time being consistent to a given form
(i.e., a real-valued vector of a given size in case of an autoencoder) [6]. Therefore, it is essential to
extract the compact feature information from raw vibration signals. The data processing method
simplifies the computational expense and benefits the improvement of the generation performance.
Some typical feature extraction methods, such as wavelet packet transform (WPT) [7–10], empirical
mode decomposition (EMD) [11], time-domain statistical features (TDSF) [12,13] and independent
component analysis (ICA) [14–17] have been proved to be equivalent to a large-scale matrix
factorization problem (i.e., there may be still some irrelevant or redundant noise in the extracted
features) [18]. In order to resolve this problem, a feature selection method could be employed to
wipe off irrelevant and redundant information so that the dimension of extracted feature is reduced.
Typical feature selection approaches include compensation distance evaluation technique (CDET) [19],
principal component analysis (PCA) and kernel principal component analysis (KPCA) [16,20,21] and
the genetic algorithm (GA) based methods [22–24]. However, these linear methods have a common
shortcoming in an attempt to extract nonlinear characteristics, which may result in a weak performance
in the downstream pattern recognition process.

The raw vibration signals obtained from WTGS are characterized with high dimensional and
nonlinear patterns, which is difficult for direct classification. In order to extract the features from the
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raw vibration signals, this paper introduces the concept of autoencoder and explores its application.
Unlike PCA and its variants, autoencoder does not impose the dictionary elements be orthogonal,
which makes it flexible to be adapted to the fluctuation in data representation [18]. In the structure
of autoencoder, each layer in the stack architecture can be treated as an independent module [25].
The procedure shows briefly as follows. Each layer is firstly trained to produce a new (hidden)
representation of the observed patterns (input data). It optimizes a local supervised criterion based on
its received input representation from forehead layer. Each layer Li produces a new representation
that is more abstract than the previous level Li−1 [6]. After representational learning for a feature
mapping that produces a high level intermediate representations (e.g., a high-dimensional intermediate
matrix) of the input pattern, whereas, it is still complex and hard to compute directly. Therefore, it is
necessary to decode the high-dimensional representations into a relatively low-dimensional and simple
representations. Currently, there are only very limited algorithms that could work well for this purpose:
restricted boltzmann machines (RBMs) [26–28] trained with contrastive divergence on one hand, and
various types of autoencoders on the other. Regarding algorithms for classification, artificial neural
networks (ANN) and multi-layer perception (MLP), are widely used for fault diagnosis of rotating
machinery [3,29,30]. However, MLP has inevitable drawbacks which mainly reflects in local minima,
time-consuming and over-fitting. Additionally, most classifiers are designed for binary classification.
Regarding multiclass classification, the common methods actually employ a combination of binary
classifiers with one-versus-all (1va) or one-versus-one (1v1) strategies [3]. Obviously, the combination
with many binary classifiers increases computational burden and training time. Nowadays, researches
show that SVM works well at recognizing the rotating equipment faults [31,32]. Compared with early
machine learning methods, global optimum and relatively high generalization performance are the
obvious advantages of SVM, while it has the same demerits with MLP, namely, time-consuming and
local minimal. Considering that more than one type of fault may co-exist at the same time, it may be
significant to propose a classifier which could offer the probabilities of all possible faults. In order to
realize this assumption, the probabilistic neural network (PNN) [33,34] is employed as a probabilistic
classifier. It is testified that the performance of PNN is superior to the SVM based method [29]. It
trained a probabilistic classifier with a model using the Bayesian framework. However, the work [29]
failed to explain clearly the principle of decision threshold. The value of decision threshold depends
on some specific validation datasets and is not generally applicable for other areas.

Recent studies show that extreme learning machines (ELM) has better scalability and achieves
much faster learning speed than SVM [35,36]. From the structural point of view, ELM is a multi-input
and multi-output or single-output structure with single-hidden layer feedforward networks (SLFNs).
Thus, ELM algorithm is more appropriate to multiclass classification. This paper extends the capability
of ELM to the scope of feature learning, and proposes a multi-layered ELM network for feature learning
and fault diagnosis. This paper proposes an ELM based autoencoder for feature mapping, and then
the new representations are fed into the ELM based classifier for multi-label recognition. The proposed
multi-layered ELM network consists of an ELM based autoencoder, dimension transformation, and
supervised feature recognition. The autoencoder and dimension transform reconstruct the raw data
into three types of representation (i.e., compressed, equal and sparse dimension). The original ELM
classifier is applied for the final decision making.

The paper is organized as follows. Section 2 presents the structure of the proposed fault diagnostic
framework and the involved algorithms. Experimental rig setup and signals sample data acquisition
with a simulated WTGS are implemented in Section 3. Section 4 discusses the experimental results
of the framework and its comparisons with other methods including SVM and ML-ELM. Section 5
concludes the study.

2. The Proposed Fault Diagnostic Framework

As shown in Figure 2, the proposed fault diagnosis framework is divided into three submodules:
(a) ELM based autoencoder for feature extraction; (b) Matrix compression for dimension reduction;
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and (c) ELM based classifier for fault classification. The ELM based autoencoder enables three scales
of data transformations and representations. Firstly, the raw dataset, which is usually in the form of
a high-dimensional matrix, is fed into autoencoder. The autocoder network could be trained using
multi-layered ELM networks, each of which is set with a different number of hidden layer nodes L.
The dimension of the output layer is set to equal with the input dataset. The output weight vector
β is calculated in the ELM output mapping. Secondly, the dimensional transformation compresses
the output of autoencoder with a simple matrix transform. The raw dataset is thus converted into
a low-dimensioned feature matrix, which is described in detail in Section 2.2. In order to optimize
the number of hidden-layer nodes L, a method using multiple sets of contrast tests is introduced in
Section 3.2. Finally, one classic ELM classification slice is applied for the final decision making with the
input of the converted feature matrix. It is notable that the number of hidden-layer nodes is the only
adjustable parameter in the proposed method. The two weighting vectors β and δ are independent
in two ELM networks (ELM-based autoencoder and ELM classifier). The former one is applied for
regression, while the later is used for classification.
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Figure 2. The proposed fault diagnostic framework using an extreme learning machine (ELM) based
autoencoder and classifier. (a) ELM-autoencoder (AE) output weights β1 with respect to input data x
are the 1st layer weights of Multilayered (ML)-ELM; (b) The output weights βi+1 of ELM-AE, with
respect to ith hidden layer output hi of ML-ELM are the i + 1th layer weights of Multilayered-ELM;
(c) The Multilayered-ELM output layer weights are calculated using regularized least squares.

2.1. Extreme Learning Machines Based Autoencoder

ELM is a recently prevailing machine learning method that has been successfully adopted
for various applications [37,38]. ELM is characterized with its single hidden layer structure, of
which the parameters are initialized randomly. The parameters of the hidden layer are independent
upon the target function and the training dataset [39,40]. The output weights which link the
hidden layer to output layer are determined analytically through a Moore-Penrose generalized
inverse [37,41]. Benefited from its simple structure and efficient learning algorithm, ELM owns
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very good generalization capability superior to the traditional ANN and SVM. The basics of ELM is
summarized as follows:

fL(x) =
L
∑

i=1
βihi(x) = h(x)β{

β = [β1, ...,βL]
T

h(x) = [g1(x), ..., gL(x)]

(1)

where βi is the output weight vector between the hidden nodes and the output nodes. h(x) is the
hidden nodes output for the input x and gi(x) is the i-th hidden node activation function.

Given the N training samples {(xi, ti)}N
i=1, the ELM is to resolve the follow problems:

Hβ = T (2)

where T = [t1, ..., tN ]
T is the target labels, the matrix H = [hT(x1), ..., hT(xN)]

T is the hidden
nodes output.

The output weight vector β can be calculated by Equation (3),

β = H†T (3)

where H† is the Moore-Penrose generalized inverse of matrix H.
In order to obtain better generalization performance and to make the solution more robust,

a positive constraint parameter 1
C is added to the diagonal of HTH in the calculation of the output

weight, as shown in Equation (4).

β = (
1
C
+ HTH)−1HTT (4)

To perform autoencoding and feature representation, the ELM algorithm is modified as follows:
the target matrix is set equally to the input data, namely, t = x. The random assigned input weights
and biases of the hidden nodes are chosen to be orthogonal. Widrow [42] introduced a Least Mean
Square (LMS) method implementation for ELM and a corresponding ELM based autoencoder in
which non-orthogonal random hidden parameters (i.e., weights and biases) are used. However,
orthogonalization of randomly generated hidden parameters tends to improve the generalization
performance of ELM autoencoder. Generally, the objective of ELM based autoencoder is to represent
the input features meaningfully in the following three optional representations:

(1) Compressed representation: represent features from a high dimensional input data space to a
low dimensional feature space;

(2) Sparse representation: represent features from a low dimensional input data space to a high
dimensional feature space;

(3) Equal representation: represent features from an input data space dimension equal to feature
space dimension.

Figure 3 shows the structure of random feature mapping. In an ELM based autoencoder, the
orthogonal random weight matrix and biases of the hidden nodes project the input data to a different or
equal dimensional space as shown by Johnson-Lindenstrauss Lemma and calculated by Equation (5):

h = g(ax + b), aTa = I, bTb = 1 (5)

where a = [a1, ..., aL]
T are the orthogonal weight vector and b = [b1, ..., bL]

T is the orthogonal random
bias vector between the input layer and hidden layer.

The output weight β of ELM based autoencoder is applied for learning the transformation from
input dataset to the feature space. For sparse and compressed representation, output weight β is
calculated by Equation (6),

β = (
1
C

+ HTH)−1HTX (6)
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where the vector X = [x1, ..., xN ]
T is the input data and output data, the input data equals to the output

in proposed autoencoder.
For equal dimension representations, the output weight β is calculated by Equation (7),

β = H−1X and βTβ = I (7)
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Figure 3. ELM orthogonal random feature mapping.

2.2. Dimension Compression

This paper adopts the regression method to train the parameters of the autoencoder. However,
the above transform is not enough for the data preprocessing, because the dimension of input data
does not decrease (see Equation (2) and let t = x). The output data with equal dimension of input
data cannot reduce the complexity of the post classifier. After all the parameters of autoencoder are
identified, this paper applies a transform to represent the input data. The eventual representation
vector shows in Equation (8),

YL(x) = (β fL(x))T = (βX)T (8)

where YL(x) is the final output of autoencoder. The dimension of YL(x) is shown as Equation (9).
The subscripts N and L represent the number of input samples and hidden layer nodes, respectively.

YL(x) =
[

Y1(x) . . . YL(x)
]
=

 Y1(x1) . . . YL(x1)
...

...
...

Y1(xN) . . . YL(xN)

 (9)

From the Equations (8) and (9), the procedure from the high-dimensional vector to the
low-dimensional vector can be explained that each element in sample data xi(i∈N) has relationship
with β, in other words, β can be seen as a weight distribution of xi(i∈N). The procedure from xi(i∈N) to
YL(x) is an unsupervised learning as the parameters have been identified in the first part as shown in
Figure 2.

Unlike the concept of DL-based autoencoder, the proposed ELM-based autoencoder shows
differences at the following four aspects:

(1) The proposed autoencoder is a ELM based network composing of a set of single-hidden-layer
slice, whereas the DL-based autoencoder is a multiple hidden layers network.

(2) DL tends to adopt BP algorithm to train all parameters of autoencoder, differently, this paper
employs the ELM to configure the network with supervised learning (i.e., Let the output data
equal to input data, t = x). We can get the final output weight β so as to transform input data into
a new representation through Equation (8). The dimension of converted data is much smaller
than the raw input data.

(3) The DL-based autoencoder tends to map the input dataset into high-dimensional sparse features.
While this research applies a compressed representation of the input data.
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(4) The DL-based autoencoder trained with BP algorithm is a really time-consuming process as it
requires intensive parameters setting and iterative tuning. On the contrary, each ELM slice in the
multi-layered ELM based autocoder can be seen as an independent feature extractor, which relies
only on the feature output of its previous hidden layer. The weights or parameters of the current
hidden layer could be assigned randomly.

2.3. ELM for Classification

Regarding the binary classification problems, the decision function of ELM is:

fL(x) = sign[h(x)δ] (10)

Unlike other learning algorithms, ELM tends to reach not only the smallest training error but also
the smallest norm of output weights. Bartlett’s theory [7,43] mentioned that if a neural network is used
for a pattern recognition problem, the smaller size of weights brings a smaller square error during the
training process, and then realizes a better generalization performance, which doesn’t relate directly to
the number of nodes. In order to reach smaller training error, the smaller the norms of weights tend to
have a better generalization performance. For a m-label classification case, ELM aims to minimize the
training error as well as the norm of the output weights. The problem can be summarized as:

Minimize : ||Hδ− T||2 and ||δ|| (11)

where δ = [δ1, ..., δl ]
T is the vector of the output weight between the hidden layer of l-nodes and the

output nodes.

H =

 h(x1)
...

h(xN)

 =

 h1(x1) . . . hl(x1)
...

...
...

h1(xN) . . . hl(xN)

 (12)

where h (x) = [h1 (x) , ..., hl (x)]
T is the output vector of the hidden layer which maps the data from

the d-dimensional input space to the l-dimensional hidden-layer space H , T is the training data
target matrix.

T =

 tT
1
...

tT
N

 =

 t11 . . . t1m
...

...
...

tN1 . . . tNm

 (13)

In the binary classification case, ELM has just a single output node. The optimal output
value is chosen as the predicted output label. However, for a multiclass identification problem,
this binary classification method could not be applied directly. There are two conditions for
multilabel classification:

(1) If the ELM only has a single-output node, among the multiclass labels, ELM selects the most
closed value as the target label. In this case, the ELM solution to the binary classification case
becomes a specific case of multiclass solution.

(2) If the ELM has multi-output nodes, the index of the output node with the highest output value is
considered as the label of the input data.

According to the conclusion of study [35], the single-output node classification can be considered
a specific case of multi-output nodes classification when the number of output nodes is set to 1.
This paper discuss only the multi-output case.

If the original number of class labels is P, the expected output vector of the M-output nodes is

ti = [0, ..., 0,
P
1, ...,

M
0 ]T. In this case, only the P-th elements of ti = [ti,1, ..., ti,M]T is set to 1, while the rest
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is set to 0. The classification problem (see Equation (11)) for ELM with multi-output nodes can be
formulated as Equation (14),

Minimize : LPELM = 1
2 ||δ||2 + C 1

2

N
∑

i=1
||ξi||2

s.t. h(xi)δ = tT
i − ξT

i , (i = 1, ..., N)
(14)

where ξi = [ξi,1, ..., ξi,M]T is the training error vector of the M-output nodes with respect to the training
sample xi.

Based on the Karush-Kuhn-Tucker (KKT) theorem, to train ELM is equivalent to solve the
following dual optimization problem:

LDELM =
1
2
||δ||2 + C

1
2

N

∑
i=1
||ξi||2 −

N

∑
i=1

M

∑
j=1
αi,j(h(xi)δj − ti,j + ξi,j) (15)

We can have the KKT corresponding optimality conditions as follows:

∂LDELM

∂βj
= 0→ δj =

N

∑
i=1
αi,j(h(xi)

T → δ = HTa (16)

∂LDELM

∂ξi
= 0→ αi = Cξi, i = 1, ..., N (17)

∂LDELM

∂αi
= 0→ h(xi)δ− tT

i + ξT
i , i = 1, ..., N (18)

where ai = [αi,1, ...,αi,M]T. In this case, by substituting Equations (16) and (17) into Equation (18),
the aforementioned equations can be equivalently written as:

(
1
C
+ HHT)α = T (19)

From Equations (16)–(19), we have:

δ = HT(
1
C
+ HHT)−1X (20)

The output function of ELM classifier shows:

f(x) = h(x)δ = h(x)HT
(

1
C
+ HHT

)−1
T (21)

For multiclass cases, the predicted class label of a given testing sample is the index number of the
output node which has the highest output value for the given testing sample. Let f j(x) denoted the
output function of the j-th output node (i.e., f j(x) = [ f1(x), ..., fM(x)]T), and then the predicted class
label of sample x is:

Label(x) = arg max
i∈{1,...,M}

fi(x) (22)

In short, there are very few parameters required to set in ELM algorithm. If the feature mapping
h(x) is already known, only one parameter C needs to be specified. The generalization performance
of ELM is not sensitive to the dimensionality l of the feature space (i.e., the number of hidden nodes)
as long as l is not set to be too small. Different from SVM which usually requests to specify two
parameters (C,γ), single-parameter setting makes ELM easy and efficient in the computation for
feature representation.
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2.4. General Workflow

Table 1 summarizes the ELM training algorithm. The flowchart of the proposed fault diagnostic
system for WTGS shows in Figure 4. It consists of three components, namely, (a) signal acquisition
module; (b) feature extraction module; (c) fault identification module. For the signal acquisition
module, the real-time dataset x new acquisition model uses accelerometers to record the vibration
signals of the WTGS. Two tri-axial accelerometers are mounted on the outboard of the gearbox
along with the shaft transmission, in order to acquire the vibration signals along the horizontal and
vertical directions respectively. The training dataset Dtrain and testing dataset Dtest are recorded from
experiment by accelerometers. In this paper, the real-time signal is processed by the data pre-processing
approaches (i.e., xnew is converted into xproc), which is identified by the simultaneous fault diagnostic
model. In feature extraction module, ELM based autoencoder is employed to generate the most
important information (DAE_train and DAE_test) of the input dataset (Dtrain and Dtest). In order to avoid
domination of largest feature values, DAE_train and DAE_test are normalized into Dnor_train and Dnor_test

which are within [0, 1]. After feature extraction and normalization, the datasets Dnor_train and Dnor_test

are sent into classifier for fault recognition. Regarding the real application of this method, the proposed
scheme can be seen as a fault pattern indicator in the whole wind forms protection system. First,
the real-time vibration signals are collected by accelerators installed on transmission case, and then
the vibrations signals are converted into voltage signals and sent into sampling unit. The sampling
unit modulates these signals and sends the processed signals into recognition unit. Compared with
the proposed scheme, the functions of vibration signals acquisition unit and sampling unit equal
to the module (a) in Figure 4. Second, the pattern recognition unit extracts the input signals and
classifies them into different labels, and then outputs single or multilabels to the decision making unit.
The function of pattern recognition unit equals to the modules (b) and (c) in Figure 4.
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Figure 4. The proposed real-time fault diagnostic scheme for WTGS.
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Table 1. The ELM training algorithm.

The ELM Training Algorithm

Step1, Initializing the hidden nodes L;
Step2, Randomly assign input weightω and bias b;
Step3, Calculate the hidden layer output matrix H;
Step4, Calculate the output weight vector β;
Step5, Calculate the matrix YL(xN) (as shown in eqs (8) and (9));
Step6, Initializing the hidden nodes l;
Step7, Randomly assign input weight ω̂ and bias b̂;
Step8, Calculate the hidden layer output matrix Ĥ;
Step9, Calculate the output weight matrix δ.

3. Case Study and Experimental Setup

To verify the effectiveness of the proposed fault diagnostic framework for WTGS, experimental test
rig is constructed to acquire representative sample data for model construction and analysis. The details
of the experiments are discussed in the following subsections, followed by the corresponding results
and comparisons. All the proposed methods mentioned are implemented with MATLAB R2015b and
executed on a computer with an Intel Core i7-930CPU@ 2.8GHz/12GB RAM.

3.1. Test Rig and Signals Acquisition

The experiments are implemented on a test rig as shown in Figure 1b, which is constructed as the
simulation platform of WTGS. The simulator is consisted of a prime mover, a gearbox, a flywheel and
an asynchronous generator. Because of the high complexity in real WTGS, it is infeasible for the fault
diagnostic system to detect all of the real-time states for all components in the simulation platform.
As described in the first section, the gearbox is the core component of the whole WTGS. The gearbox
of the test rig is selected in this case study as the valuable component for fault detection. Two tri-axial
accelerometers are mounted on the outboard of the gearbox along with the shaft transmission, in order
to acquire the vibration signals along the horizontal and vertical directions respectively. A computer
is connected with data acquisition board for data analysis. The test rig can simulate both systematic
malfunctions, such as unbalance, mechanical misalignment, and looseness, and component faults in
terms of periodic patterns and irregular models, including gear crack, broken tooth, chipped tooth,
wearing of bearing (as shown in Figure 5). Table 2 presents a total of 13 cases (including normal case,
eight single-fault cases and four simultaneous-fault cases) that can be simulated in the test rig for
acquisition of dataset for training and test. It should be noted that some cases can be realized by
specific tools, For example, the mechanical misalignment of the gearbox is simulated by adjusting
height of the gearbox with shims, and the mechanical unbalance case is simulated by adding one
eccentric mass on the output shaft. For data acquisition, as the vibration signal along the axial direction
is not obvious for the fault detection compared with the other direction, the vibration signal along the
axial direction is ignored in the test rig. In the diagnostic model, each simulated single fault is repeated
two hundred times and one hundred times for each simultaneous-fault under various random electric
loads. Each time, vibration signals in a two second window are recorded with a sampling frequency at
10240 Hz. From a feasible data requisition point of view, the sample frequency must be much higher
than the gear meshing frequency, which can ensure no missing signals during the process of sampling.
In other words, each sampling dataset records 40,960 points (2 accelerometers × 2 s × 10,240) in each
2 s time window. Table 3 presents that there are 1800 sample dataset (i.e., (1 normal care + 8 kinds
of single-fault cases) × 200 samples) and 280 simultaneous-fault sample data (i.e., four kinds of
simultaneous-fault data × 100 samples). Table 3 gives the description of the volume of different kinds
of data. Some samples for single-fault and simultaneous-fault patterns are shown in Figures 5 and 6,
respectively. Figure 6 shows that the signal waveforms of simultaneous-faults are very similar.
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3.2. Feature Extraction and Dimension Reduction

The procedure of autoencoder for features extraction and dimension reduction shows in Figure 2.
According to the parameters involved in Table 3, the structure of autoencoder in this paper is set as
40,960 × L × 40,960 and 40,960 × L . The output of the first part equals to dimension representation of
the input matrix, it is a supervised learning. In the second part, this study applies an unsupervised
learning for dimension-reduced transform. Furthermore, statistic feature indicators are extracted
from the original signal as they are important in analyzing the vibration signals. This paper employs
10 types of statistic features as shown in Table 4.

Table 2. Sample single-faults and simultaneous-fault.

Case No. Condition Fault Description

C0 Normal Normal

C1

Single
fault

Unbalance
C2 Looseness
C3 Mechanical misalignment
C4 Wear of cage and rolling elements of bearing
C5 Wear of outer race of bearing
C6 Gear tooth broken
C7 Gear crack
C8 Chipped tooth

C9
Simultaneous

fault

Gear tooth broken and chipped tooth
C10 Chipped tooth and wear of outer race of bearing
C11 Gear tooth broken and wear of cage and rolling elements of bearing
C12 Gear tooth broken and wear of cage and rolling elements of bearing and

wear of outer race of bearing

(a) C6 (b) C7 (c) C8

(d) C3 (e) C4 (f) C1

Figure 5. Singular Component Failure in WTGS. (a) Gear tooth broken fault; (b) gear crack fault;
(c) chipped tooth fault; (d) mechanical misalignment fault; (e) wear of cage and rolling elements of
bearing; (f) Unbalance.
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Table 3. Division of the sample dataset into different subsets.

Dataset Type of Dataset Single Fault Simultaneous Fault

Raw sample data
Training dataset Dtrain1 (1600) Dtrains (200)

Test dataset Dtest1 (200) Dtests (80)

Feature extraction (SAE)
Training dataset Dproctrain1

(1600) Dproctrains
(200)

Test dataset Dproctest1
(200) Dproctests

(80)
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0.8

C9

(a) Waveform of C9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0
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0.6

C10

(b) Waveform of C10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

#104

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

C11

(c) Waveform of C11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

#104

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

C12

(d) Waveform of C12

Figure 6. Sample normalized simultaneous-fault patterns of WTGS. (a) Gear tooth broken and chipped
tooth; (b) chipped tooth and wear of outer race of bearing; (c) gear tooth broken and wear of cage and
rolling elements of bearing; (d) gear tooth broken and wear of cage and rolling elements of bearing and
wear of outer race of bearing.

Table 4. Definition of the selected statistical features for acoustic signal. (Note: xi represents a signal
series for i = 1, ...N. where N is the number of data points of a raw signal.)

Features Equation Features Equation

Mean xm = 1
N

N
∑

i=1
xi Kurtosis xkur =

N
∑

i=1
(xi−xm)

4

(N−1)x4
std

Standard deviation xstd =

√
N
∑

i=1
(xi−xm)

2

N−1 Crest factor CF =
xpk
xrms

Root mean square xrms =

√
1
N

N
∑

i=1
x2

i Clearance factor CLF =
xpk

( 1
N

N
∑

i=1

√
|xi |)

2

Peak xpk = max |xi| Shape factor SF = xrms

1
N

N
∑

i=1
|xi |

Skewness xske =

N
∑

i=1
(xi−xm)

3

(N−1)x3
std

Impulse factor IF =
xpk

1
N

N
∑

i=1
|xi |
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To ensure that all the features have even contribution, all reduced features should go through
normalization. The interval of normalization is restrained in [0, 1]. Each extracted feature is normalized
by Equation (23):

y =
(x− xmin)

(xmax − xmin)
(23)

where x is the output feature, y is the result after normalization.
After normalization, a processed dataset Dporc is obtained. The classifier can be trained by

using Dporc_train.

4. Experimental Results and Discussion

In order to verify the effectiveness of the proposed scheme, this paper applies various
combinations of methods to realize the contrast experiments. Testing accuracy and testing time
are introduced to evaluate the prediction performance of the classifier. As suggested in Section 3, the
ELM based autoencoder can convert the input data space into three types of output data space. In this
paper, we choose the compressed dimensional representation and use the ELM learning method to
train the parameters. The function of autoencoder is to get an optimal matrix β, and the function of
matrix transform is to reduce the dimension of input X. Before the experiments, it is not clear how
many dimensions it is appropriate to cut down. In other words, the model needs proper values of L and
β to improve the testing accuracies. In order to get a set of optimal parameters (i.e., hidden layer nodes
L in autoencoder, hidden layer nodes l in classifier), Dtrain (Dtrain includes dataset Dtrain_l and Dtrain_s)
is applied to train the networks. As shown in Figure 7a,b,we set the number of hidden layer nodes
L = 800, when the number of hidden layer nodes l increase from 1 to 2000 at 10 interval, the largest
accuracy is 95.62% at single fault condition and 93.22% simultaneous-fault condition, respectively.
The optimal hidden layer nodes in the classifier is set as l = 600.
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Figure 7. Testing accuracy in l subspace for the multi-layered ELM when L = 800. (a) Testing accuracy
of single-fault; (b) Testing accuracy of simultaneous-fault.

As suggested in Table 5, a total of 16 kinds of combinations of method are implemented to
compare the generation performance. According to the feature extraction, this paper takes three
kinds of methods as references. They are WPT+TDSF+KPCA combination, EMD+SVD combination
and LMD+TDSF combination, respectively. This paper takes the Db4 (Daubechies) wavelet as the
mother wavelet and sets the level of decomposition at the range from 3 to 5. The radial basis function
(RBF) acts as kernel function for KPCA. In order to reduce the number of trials, the hyperparameter
R of RBF based on 2v is tried for v ranged from – 3 to 3. In the KPCA processing, this paper selects
the polynomial kernel with d = 4 and the RBF kernel with R = 2. After dimension reduction, a
total of 80 principal components are obtained. After feature extraction, the next step is to optimize
parameters of classifiers. This paper takes four kinds of methods, namely PNN, RVM, SVM and ELM.
As mentioned previously, probabilistic based classifiers have their own hyperparameters for tuning.
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PNN uses spread s and RVM employs width ω. In this case study, the value of s is set from 1 to
3 at an interval of 0.5, and the values of ω is selected from 1 to 8 at an interval of 0.5. In order to
find the optimal decision threshold, this paper sets the search region at the range from 0 to 1 at an
interval of 0.01. For the configuration of ELM, this paper takes the sigmoid function as the activation
function and sets the number of hidden modes l as 600 for a trial. According to the experimental
results in Table 4, a total of 80 components are obtained from the feature extractor. It is clear that
the accuracies with autoencoder are higher than those with WPT+TDSF+KPCA. The results can be
explained because the ELM based autoencoder holds all information of the input data during the
representational learning. However, KPCA tends to hold the important information and inevitably
lose some unimportant information.

Table 5. Evaluation of different combinations of methods using the optimal model parameters. Wavelet
packet transform: WPT; time-domain statistical features: TDSF; kernel principal component analysis:
KPCA; empirical mode decomposition: EMD.

Feature Extraction Classifier Accuracies for Test Case (%)
Single-Fault Simultaneous-Fault Overall Fault

WPT+TDSF+KPCA

PNN 83.64 83.64 83.76
RVM 82.99 74.64 81.21
SVM 92.88 89.73 90.78
ELM 91.29 89.72 90.89

EMD+TDSF

PNN 85.64 84.64 84.52
RVM 83.99 77.64 83.21
SVM 95.83 92.87 94.35
ELM 96.20 92.44 94.32

LMD+TDSF

PNN 85.64 84.64 84.52
RVM 83.99 77.64 83.21
SVM 95.25 92.87 93.27
ELM 95.83 93.04 94.44

ELM-AE

PNN 85.64 84.64 84.52
RVM 83.99 77.64 83.21
SVM 95.83 92.87 93.27
ELM 95.62 93.22 94.42

In order to compare the performances of classifiers, this paper sets the contrast experiments
with the same ELM based autoencoder and different classifiers. As shown in Table 5, the number
of hidden nodes L in autoencoder is 800, the last dimensions of training data Dtrain and testing data
Dtest are 1800×800 and 280×800, respectively. As suggested in Figure 7, this optimal value of l is
600. According to the experimental results not listed here, SVM employed polynomial kernel with
C = 10 and d∗ = 4 show the best accuracy. Table 6 shows that the fault detection accuracy of ELM is
similar to that of SVM, while the fault identification time of ELM and SVM take 20 ms and 157 ms
respectively. The performance of ELM is much faster than SVM. Quick recognition is necessary for
real-time fault diagnosis system. In actual WTGS application, the real-time fault diagnostic system is
required to analyze signals for 24 hours per day. In terms of fault identification time, ELM is faster than
SVM by 88.46%. The test results show that ELM and SVM have relatively high testing accuracies, but
the advantage of ELM is embodied in testing time, which is very significant in real situation because
a practical real-time WTGS diagnostic system will analyze more sensor signals than the two sensor
signals used in this case study.
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Table 6. Evaluation of methods using ELM or SVM with ELM based autoencoder (Note: Dimension
reduction from 20,480 to 80).

Feature Extraction Fault Type Accuracies for Test Case (%) Time for Test Case (ms)
SVM ELM SVM ELM

ELM-AE
Single-fault 95.72 ± 2.25 95.62 ± 2.25 156 ± 0.9 18 ± 0.8

Simultaneous-fault 92.98 ± 1.25 93.22 ± 3.25 158 ± 0.8 20 ± 0.5
Overall fault 93.55 ± 3.15 94.42 ± 2.75 157 ± 0.4 20 ± 0.75

5. Conclusions

This paper proposes a new application of ELM to the real-time fault diagnostic system for rotating
machinery. The framework is successfully applied on recognizing fault patterns coming from the
WTGS. At the stage of data preprocessing, this study applies an ELM based autoencoder for data
representational learning, which train a network of ELM slices to acquire the feature reconstruction,
and then the ELM network generates a new low-dimensional representation. Unlike the well adopted
data preprocessing methods using a combination of WPT, TDSF and KPCA, the proposed ELM based
autoencoder could leverage the down-streamed classification accuracy in around 5%–10% for different
corresponding classifiers. Compared with the widely-applied classifiers (e.g., SVM and RVM), ELM
algorithm searches optimal solution from the feature space without any other constraints. Therefore,
ELM network is superior to SVM at producing lightly higher diagnostic accuracy. Besides, ELM aims
to generate a smaller weights and norms, and then gets a faster generalization performance than SVM.
This study makes contributions at the following four aspects: (1) It is the first research to analyze the
ELM based autoencoder as a tool for compressed representation; (2) It is the first application of ELM
based autoencoder to the fault diagnosis for rotating machinery; (3) It is the original application of
the proposed scheme to fault diagnosis of WTGS; (4) It is the first study to solely use ELM method as
a combination of two different training processes in terms of regression and classification, to realize
autoencoding and classification respectively. Since the proposed framework for fault diagnosis of
wind turbine equipment is general, it is suitable to apply to other industrial problems.

Acknowledgments: The authors would like to thank the University of Macau for its funding support under
Grants MYRG2015-00077-FST.

Author Contributions: Zhi-Xin Yang and Xian-Bo Wang conceived and designed the experiments;
Jian-Hua Zhong performed the experiments and contributed analysis tools; Xian-Bo Wang analyzed the data and
wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Amirat, Y.; Benbouzid, M.E.H.; Al-Ahmar, E.; Bensaker, B.; Turri, S. A brief status on condition monitoring
and fault diagnosis in wind energy conversion systems. Renew. Sustain. Energy Rev. 2009, 13, 2629–2636.

2. Yin, S.; Luo, H.; Ding, S.X. Real-time implementation of fault-tolerant control systems with performance
optimization. IEEE Trans. Ind. Electron. 2014, 61, 2402–2411.

3. Wong, P.K.; Yang, Z.; Vong, C.M.; Zhong, J. Real-time fault diagnosis for gas turbine generator systems using
extreme learning machine. Neurocomputing 2014, 128, 249–257.

4. Yan, R.; Gao, R.X.; Chen, X. Wavelets for fault diagnosis of rotary machines: A review with applications.
Signal Process. 2014, 96, 1–15.

5. Fan, W.; Cai, G.; Zhu, Z.; Shen, C.; Huang, W.; Shang, L. Sparse representation of transients in wavelet basis
and its application in gearbox fault feature extraction. Mech. Syst. Signal Process. 2015, 56, 230–245.

6. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning, Helsinki,
Finland, 5–9 July 2008; pp. 1096–1103.



Energies 2016, 9, 379 16 of 17

7. Bianchi, D.; Mayrhofer, E.; Gröschl, M.; Betz, G.; Vernes, A. Wavelet packet transform for detection of single
events in acoustic emission signals. Mech. Syst. Signal Process. 2015, doi:10.1016/j.ymssp.2015.04.014 .

8. Keskes, H.; Braham, A.; Lachiri, Z. Broken rotor bar diagnosis in induction machines through stationary
wavelet packet transform and multiclass wavelet SVM. Electric Power Syst. Res. 2013, 97, 151–157.

9. Li, N.; Zhou, R.; Hu, Q.; Liu, X. Mechanical fault diagnosis based on redundant second generation wavelet
packet transform, neighborhood rough set and support vector machine. Mech. Syst. Signal Process. 2012,
28, 608–621.

10. Wang, Y.; Xu, G.; Liang, L.; Jiang, K. Detection of weak transient signals based on wavelet packet transform
and manifold learning for rolling element bearing fault diagnosis. Mech. Syst. Signal Process. 2015, 54,
259–276.

11. Ebrahimi, F.; Setarehdan, S.K.; Ayala-Moyeda, J.; Nazeran, H. Automatic sleep staging using empirical mode
decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate
variability signals. Comput. Methods Prog. Biomed. 2013, 112, 47–57.

12. Khorshidtalab, A.; Salami, M.J.E.; Hamedi, M. Robust classification of motor imagery EEG signals using
statistical time–domain features. Physiol. Meas. 2013, 34, doi:10.1088/0967-3334/34/11/1563.

13. Li, W.; Zhu, Z.; Jiang, F.; Zhou, G.; Chen, G. Fault diagnosis of rotating machinery with a novel statistical
feature extraction and evaluation method. Mech. Syst. Signal Process. 2015, 50, 414–426.

14. Allen, E.A.; Erhardt, E.B.; Wei, Y.; Eichele, T.; Calhoun, V.D. Capturing inter-subject variability with group
independent component analysis of fMRI data: a simulation study. Neuroimage 2012, 59, 4141–4159.

15. Du, K.L.; Swamy, M. Independent component analysis. In Neural Networks and Statistical Learning; Springer:
New York, NY, USA, 2014; pp. 419–450.

16. Shlens, J. A tutorial on principal component analysis. Available online: http://arxiv.org/pdf/
1404.1100v1.pdf (accessed on 7 April 2014).

17. Waldmann, I.P.; Tinetti, G.; Deroo, P.; Hollis, M.D.; Yurchenko, S.N.; Tennyson, J. Blind extraction
of an exoplanetary spectrum through independent component analysis. Astrophys. J. 2013, 766,
doi:10.1088/0004-637X/766/1/7.

18. Mairal, J.; Bach, F.; Ponce, J. Task-driven dictionary learning. IEEE Trans. Pattern Anal. Mach. Intell. 2012,
34, 791–804.

19. Lei, Y.; He, Z.; Zi, Y.; Chen, X. New clustering algorithm-based fault diagnosis using compensation distance
evaluation technique. Mech. Syst. Signal Process. 2008, 22, 419–435.

20. Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831.
21. Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Principal component analysis. In Robust Data Mining; Springer:

New York, NY, USA, 2013; pp. 21–26.
22. Hoque, M.S.; Mukit, M.; Bikas, M.; Naser, A. An implementation of intrusion detection system using genetic

algorithm. Int. J. Netw. Secur. 2012, 4, 109–120.
23. Johnson, P.; Vandewater, L.; Wilson, W.; Maruff, P.; Savage, G.; Graham, P.; Macaulay, L.S.; Ellis, K.A.;

Szoeke, C.; Martins, R.N. Genetic algorithm with logistic regression for prediction of progression to
Alzheimer’s disease. BMC Bioinform. 2014, 15, doi:10.1186/1471-2105-15-S16-S11.

24. Whitley, D. An executable model of a simple genetic algorithm. Found. Genet. Algorithms 2014, 2, 45–62.
25. Tang, J.; Deng, C.; Huang, G.B. Extreme Learning Machine for Multilayer Perceptron. IEEE Trans. Neural

Netw. Learn. Syst. 2015, 27, 809–821.
26. Hinton, G.E. A practical guide to training restricted boltzmann machines. In Neural Networks: Tricks of the

Trade; Springer: Lake Tahoe, NV, USA, 2012; pp. 599–619.
27. Srivastava, N.; Salakhutdinov, R.R. Multimodal learning with deep boltzmann machines. In Advances in

Neural Information Processing Systems; Springer: Lake Tahoe, NV, USA, 2012; pp. 2222–2230.
28. Fischer, A.; Igel, C. An introduction to restricted Boltzmann machines. In Progress in Pattern Recognition,

Image Analysis, Computer Vision, and Applications; Springer: Buenos Aires, Argentina, 2012; pp. 14–36.
29. Yang, Z.; Wong, P.K.; Vong, C.M.; Zhong, J.; Liang, J. Simultaneous-fault diagnosis of gas turbine

generator systems using a pairwise-coupled probabilistic classifier. Math. Probl. Eng. 2013, 2013,
doi:10.1155/2013/827128.

30. Vong, C.M.; Wong, P.K. Engine ignition signal diagnosis with wavelet packet transform and multi-class least
squares support vector machines. Expert Syst. Appl. 2011, 38, 8563–8570.



Energies 2016, 9, 379 17 of 17

31. Abbasion, S.; Rafsanjani, A.; Farshidianfar, A.; Irani, N. Rolling element bearings multi-fault classification
based on the wavelet denoising and support vector machine. Mech. Syst. Signal Process. 2007, 21, 2933–2945.

32. Widodo, A.; Yang, B.S. Application of nonlinear feature extraction and support vector machines for fault
diagnosis of induction motors. Expert Syst. Appl. 2007, 33, 241–250.

33. Sankari, Z.; Adeli, H. Probabilistic neural networks for diagnosis of Alzheimer’s disease using conventional
and wavelet coherence. J. Neurosci. Methods 2011, 197, 165–170.

34. Othman, M.F.; Basri, M.A.M. Probabilistic neural network for brain tumor classification. In Proceedings
of the 2011 Second International Conference on Intelligent Systems, Modelling and Simulation (ISMS),
Kuala Lumpur, Malaysia, 25–27 January 2011; pp. 136–138.

35. Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass
classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2012, 42, 513–529.

36. Huang, G.B.; Ding, X.; Zhou, H. Optimization method based extreme learning machine for classification.
Neurocomputing 2010, 74, 155–163.

37. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: theory and applications. Neurocomputing 2006,
70, 489–501.

38. Huang, G.B. What are Extreme Learning Machines? Filling the Gap Between Frank Rosenblatt’s Dream and
John von Neumann’s Puzzle. Cognit. Comput. 2015, 7, 263–278.

39. Wong, P.K.; Wong, K.I.; Vong, C.M.; Cheung, C.S. Modeling and optimization of biodiesel engine performance
using kernel-based extreme learning machine and cuckoo search. Renew. Energy 2015, 74, 640–647.

40. Luo, J.; Vong, C.M.; Wong, P.K. Sparse bayesian extreme learning machine for multi-classification. IEEE Trans.
Neural Netw. Learn. Syst. 2014, 25, 836–843.

41. Cambria, E.; Huang, G.B.; Kasun, L.L.C.; Zhou, H.; Vong, C.M.; Lin, J.; Yin, J.; Cai, Z.; Liu, Q.; Li, K.; et al.
Extreme learning machines [trends and controversies]. IEEE Intell. Syst. 2013, 28, 30–59.

42. Widrow, B.; Greenblatt, A.; Kim, Y.; Park, D. The No-Prop algorithm: A new learning algorithm for multilayer
neural networks. Neural Netw. 2013, 37, 182–188.

43. Bartlett, P.L. The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights
is More Important than the Size of the Network. IEEE Trans. Inf. Theory 1998, 44, 525–536.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

