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Abstract: As an important component of the smart grid on the user side, a home energy management
system is the core of optimal operation for a smart home. In this paper, the energy scheduling
problem for a household equipped with photovoltaic devices was investigated. An online energy
management algorithm based on event triggering was proposed. The Lyapunov optimization method
was adopted to schedule controllable load in the household. Without forecasting related variables,
real-time decisions were made based only on the current information. Energy could be rapidly regulated
under the fluctuation of distributed generation, electricity demand and market price. The event-triggering
mechanism was adopted to trigger the execution of the online algorithm, so as to cut down the execution
frequency and unnecessary calculation. A comprehensive result obtained from simulation shows that
the proposed algorithm could effectively decrease the electricity bills of users. Moreover, the required
computational resource is small, which contributes to the low-cost energy management of a smart home.

Keywords: Lyapunov optimization; smart home; event triggering; energy management

1. Introduction

The smart grid is the vision for enhancing the efficiency of electricity utilization from the production
to end-user points, together with enabling consumer participation in the demand-side [1,2]. Along with
the growing importance of the smart grid, smart households that can monitor the use of electricity in real
time have also received more attention in recent years [3]. With the widespread deployment of advanced
metering infrastructure [4], the two-way flow of electricity and real-time information is a remarkable
feature of smart households, which offers numerous technical benefits and flexibilities to both utility
providers and consumers. Those advantages include balancing supply and demand in a timely fashion
and improving energy efficiency [5].

An important way to improve the operation utility of households is through a Home Energy
Management System (HEMS) [6]. It is employed to collect data from household appliances using smart
meters and sensors [7] and then to optimize power supply and management with this information [8,9].
It is expected to guarantee economic efficiency and operation security in households. These functions
make HEMS act as the “core” of smart households. However, there are some major challenges for HEMS
to play a role. The forecasting error increases due to the highly variable and unpredictable nature of
renewable resources [10]. Furthermore, it is challenging to manage energy without the future knowledge
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of time-varying load requirements and electricity prices [11]. Fast and effective energy regulation is needed
to satisfy the increasing demand of real-time decisions.

HEMS has been receiving significant research attention over the past few years [12]. Currently, the
research about HEMS falls into two major categories. In the first kind of HEMS, the electricity demand
curve of household load needs to be forecasted. A large number of historical data needs to be analyzed
statistically; thus, the operational complexity is relatively high. In [13], a non-intrusive load-monitoring
technique is adopted to characterize the physical characteristics of household appliances based on historical
data. The running time of appliances is further estimated. Additionally, the result is used for the power
scheduling of enrolled appliances in order to save on electricity bills. In [14], an autonomous appliance
scheduling method is proposed for a single home. Time-of-use probabilities of each device are used to
generate optimal operating schedules of appliances. In the calculation of probabilities, weather conditions,
day of the week and penetration level of appliances need to be considered.

In the second kind of HEMS, instead of forecasting the operating schedules of appliances, users need
to set the running time interval and preferred time interval for scheduling regularly. Therefore, this method
is not suitable for situations of random demand. Besides, this kind of HEMS mostly adopts traditional
optimization algorithms, which are of high computational complexity. Apart from the consumption
demand, other uncertain factors still need to be predicted, such as prices, distributed generation, outdoor
temperature, and so on. In [15], a multi-objective mixed integer nonlinear programming model is
developed for a single home. Additionally, the energy savings and a comfortable lifestyle are considered.
Residents need to provide the running time range, the preferred time range for scheduling, the length of
operation time and the estimated energy consumption. In [16], an intelligent home energy management
algorithm is proposed for residential consumers. The household appliances are managed according to
their preset priority and the comfort demand of users. The homeowner should set the comfort preference,
load priority and running time range of appliances. In [17], an efficient scheduling method for household
power usage is proposed to reduce electricity expenses and the power peak-to-average ratio. A genetic
algorithm is adopted to solve the problem based on the combination of real-time pricing and the inclining
block rate. It is necessary for residents to set the time parameters for appliances, such as the length of
operation time, the operation time interval and the power consumption per hour. In [18], game theory
is adopted for residential load management to minimize the energy cost and the peak-to-average ratio.
The electricity price adopts the forecasted value. Residents need to select the beginning and the end of
a time interval in which appliances can be scheduled. In [19], a home energy management controller
is presented to reduce the electricity bill of consumers. The controller receives the forecasted outdoor
temperatures and price signals as inputs. Users need to update the settings of appliances several times
during a day, such as the preferred operation time interval of deferrable appliances, the power profile of
non-flexible deferrable appliances, the required energy for flexible deferrable appliances, the preferred
indoor temperature, and so on.

It can be seen that the existing research about HEMS is mostly based on the forecasting model and
user intervention. As for the forecasting model, due to the strong randomness of the household load, the
forecasting error of the load is relatively large [20], which makes the optimal schedule difficult to carry
out. As for the user intervention, HEMS with too many preset parameters cannot perform well under the
random demand of occupants. Meanwhile, the manual intervention of occupants breaks the intelligence
of HEMS and affects the comfort level of occupants. Therefore, an online [21,22] scheduling algorithm that
does not rely on any future information and user intervention is highly desirable [23].

In order to solve the above problems, an online [24–26] energy management algorithm based on
event triggering is proposed. In this algorithm, we tackle the home energy management problem with the
Lyapunov optimization approach, which is a useful technique for solving stochastic network optimization,
particularly in queueing systems [27]. Our main contributions are summarized as follows:
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• An online energy management algorithm based on the Lyapunov optimization method is developed.
It does not rely on any future information and could quickly regulate energy flow under the fluctuation
of distributed generation, demand and price. The decision at each slot can be made by only using the
current observations.

• Occupants do not need to manually preset the operation time interval of appliances. The energy
management is implemented without user intervention, which can deal with the random demand.

• The event-triggering mechanism is adopted to decide when to execute the online energy management
algorithm, which reduces the computational cost significantly. The time complexity of the algorithm is
O(1), which enables the algorithm to be applied in an embedded system and realizes the cost-effective
management of smart households.

The rest of this paper is organized as follows. Section 2 describes the research object and basic models.
Some basic concepts of online energy management algorithms are introduced in Section 3. In Section 4,
the online energy management algorithm is proposed. Case studies and the analysis of the results are
presented in Section 5. Finally, conclusions are given in Section 6.

2. Research Object and Basic Models

2.1. Research Object

An overview of HEMS is shown in Figure 1. It consists of a photovoltaic (PV) power unit, local
load, a monitor and a power controller. The monitor collects information about household demands,
PV generation, market price, and so on. Meanwhile, the monitor performs the function of event triggering.
Based on the information provided by the monitor, the power controller executes the energy management
algorithm and controls the consumption of controllable appliances to lower the cost.

Load

Generation
Event-Triggered 

Control System

Power Controller

PV Power

Power Grid
Monitor

Users

Information

Power

PEV

EWH

HVAC

Baseline

Figure 1. Overview of a Home Energy Management System (HEMS).

2.2. Basic Model

2.2.1. PV Model

The PV power unit consists of PV arrays, inverters and other necessary components. The output of
PV arrays is related to the illumination intensity, environmental temperature and the output voltage [28].
The electricity produced by PV arrays is outputted through inverters and relevant filters. The unit is
controlled by maximum power point tracking, which could guarantee the maximum output of PV arrays.
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The information about PV generation is acquired by the monitor in real time. The instant PV
generation can be denoted as PV(t), t ∈ [1, 2, · · · , T]. T is the number of time slots in the operation cycle.
In consideration of the high cost of energy storage devices, the smart home in this paper would operate
without energy storage equipment. The main function of PV generation PV(t) is to supply household
load instantly.

2.2.2. Load Model

Generally, a certain percentage of the power load of household users is elastic and controllable.
The controllable load could help households realize demand response through adjusting the power level
and operation time. According to the operation properties of appliances, household load is classified into
two groups in this paper:

1. Baseline load: The appliances that must be served immediately at any time or need to be maintained
on standby. This type of appliance includes illumination, computers, televisions and entertainment.
The baseline load is assumed to be fixed and is not involved in the scheduling of HEMS.

2. Controllable load: The appliances that are interruptible and deferrable. After the starting time is set by
users, this type of appliance does not need to run immediately, and the starting time can be deferred
within the permitted time range. During the operation period, the operation status can also be
adjusted, until its task is completed. This types of appliances include Plug-in Electric Vehicles (PEV),
Electric Water Heaters (EWH) and Heating, Ventilation and Air Conditioning (HVAC). This paper
mainly focuses on how to regulate the controllable load to decrease the cost with a guarantee on the
comfort level of users.

In the controllable load, EWH and HVAC are special, as they have the function of storing heat. As a
function of time, their energy consumption could be accurately estimated by an Equivalent Thermal
Parameter (ETP) approach. This approach models the heating loads in a residence or small commercial
building as a function of a few lumped parameters, weather and thermostat setpoints. Due to its accuracy
of modeling residential loads, this modeling approach has been adopted for the current work. The heat
transfer properties are represented by equivalent electrical components with associated parameters for
modeling the thermostatically-controlled system of EWH and HVAC [29].

The modeling of EWH operation involves the heat exchange with the environment and inlet water.
The thermal dynamic behavior of EWH can be described by differential equations [30]. When EWH is on
over the period [tk, tk+1], the water temperature at time tk+1 increases to θk+1, which is given by:

θk+1 = θen + QeRe − (θen + QeRe − θk) exp(− tk+1 − tk
ReCe

) (1)

Otherwise, when EWH is off over the period [tk, tk+1], the water temperature at time tk+1 drops to
θk+1, which is given by:

θk+1 = θen − (θen − θk) exp(− tk+1 − tk
ReCe

) (2)

When the hot water has been used for multiple times and the water volume reaches the lowest bound,
cold water is needed to refill the tank. The water temperature after adding inlet water is given by:

θk+1 = [θk(M− dk) + θendk]/M (3)

where θk is the water temperature at time tk. θen is the temperature of the surroundings, i.e., the temperature
of cold water. Qe, Re and Ce are the related thermodynamic parameters of EWH. M is the capacity of the
water tank. dk is the amount of inlet water added at time tk. Different residences have different preferable
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temperature settings for hot water θset and acceptable variation ranges θb. The comfort constraint for EWH
can be described as:

θset − θb < θ(t) < θset + θb, ∀t (4)

The modeling of HVAC operation needs to consider the heat exchange with surrounding air.
The simplified modeling is well-suited for simulating residential and small commercial buildings. However,
it may be unsuitable for large commercial buildings with multi-zone central heating and cooling systems.
The thermal dynamic behavior of household HVAC can be described by differential equations [31]. When
HVAC is on over the period [tk, tk+1], the indoor temperature at time tk+1 increases to Tk+1, which is
given by:

Tk+1 = T0 + QhRh − (T0 + QhRh − Tk) exp(− tk+1 − tk
RhCh

) (5)

When HVAC is off over the period [tk, tk+1], the indoor temperature at time tk+1 drops to Tk+1, which
is given by:

Tk+1 = T0 − (T0 − Tk) exp(− tk+1 − tk
RhCh

) (6)

where Tk is the indoor temperature at time tk. T0 is the temperature of surrounding air. Qh, Rh and Ch are
the related thermodynamic parameters of HVAC. Different residences have different preferable settings
for indoor temperature Tset and acceptable variation ranges Tb. The comfort constraint for HVAC can be
described as:

Tset − Tb < T(t) < Tset + Tb, ∀t (7)

The comfort level of consumers is reflected by the difference between the resultant temperature and
the corresponding standard temperature. Equations (1)–(3) and (5)–(6) respectively describe the thermal
dynamics of EWH and HVAC, which can be interpreted as a function of thermal parameters, ambient
temperature and on/off statuses. Their thermal models are characterized by several lumped parameters.
Ce and Ch are the equivalent heat capacities (J/◦C). Re and Rh are the equivalent thermal resistances
(◦C/W). Qe and Qh are the equivalent operational heat rates (W) [32,33]. These thermal coefficients can
be estimated with statistical and regression techniques by fitting the observed performance data to the
equations [34].

3. Basic Concepts of the Online Energy Management Algorithm

3.1. Queues of Controllable Load

Controllable load is the regulation object in HEMS. The number of controllable appliances in the
household is assumed to be N. The set of electricity demand for controllable load at time slot t can be
described as:

L(t) , [L1(t), L2(t), · · · , LN(t)], t ∈ [1, 2, · · · , T] (8)

The electricity demand of the i-th controllable load Li(t) needs to satisfy:

0 ≤ Li(t) ≤ Lmax,i (9)

where Lmax,i is the maximum demand of the i-th controllable load.
L(t) is generated randomly by consumers and does not need to be satisfied immediately. It can

be deferred with a guarantee of comfort level for users. The set of actual electricity consumption for
controllable load at time slot t can be described as:

X(t) , [X1(t), X2(t), · · · , XN(t)], t ∈ [1, 2, · · · , T] (10)



Energies 2016, 9, 381 6 of 24

The actual electricity consumption of the i-th controllable load Xi(t) needs to satisfy:

Xi(t) ∈ [0, Wi] (11)

where Wi is the electricity consumption of the i-th controllable load per time slot. Wi can adopt the
fixed rated value and can also change at every slot according to the different working modes of the i-th
controllable load. It can be represented as Wi = ηEi, where Ei is the rated value. η represents the adjustable
interval of energy consumption and changes from zero to one. If the controllable load works under a
fixed mode, Wi adopts the fixed value, and the value of η is one. If the controllable load works under
different modes, Wi can turn into a different value through adjusting the value of η according to the current
working mode.

The uncompleted electricity demands of the i-th controllable load are accumulated and thus form
the queue of the i-th controllable load Qi(t). The queue represents the amount of electricity demand that
needs to be completed. The set of controllable load queues at time slot t can be described as:

Q(t) , [Q1(t), Q2(t), · · · , QN(t)], t ∈ [1, 2, · · · , T] (12)

Controllable load queues have the following properties:

• Nonnegativity: The initial state Q(0) is assumed to be a nonnegative real valued variable. According
to the definition of queues, it can be inferred that Q(t) ≥ 0 for all slots t.

• Time-variability: The states of controllable load queues change with the random demands of
consumers and the execution results of HEMS. Specifically, the future state of Q(t) is driven by
stochastic arrival L(t) and execution process X(t) according to the following dynamic equation:

Qi(t + 1) = Qi(t)− Xi(t) + Li(t), i ∈ [1, 2, · · · , N] (13)

3.2. Information Vector

The household load is supplied by the PV power unit and the power grid jointly. PV power is
preferred to improve the utilization of renewable energy. As the baseline load is fixed and cannot be
scheduled, PV power supplies the baseline load first. After meeting the demands of baseline load, the
extra PV power would be allocated among controllable loads according to priorities. The set of PV power
that every controllable appliance gets at time slot t can be described as:

S(t) , [S1(t), S2(t), · · · , SN(t)], t ∈ [1, 2, · · · , T] (14)

The PV power obtained by the i-th controllable load Si(t) needs to satisfy:

0 ≤ Si(t) ≤Wi (15)

When PV power is not sufficient to satisfy all load demands, consumers need to purchase electricity
from the power grid. The electricity price of the power grid at t can be denoted as R(t).

From the above, as for the i-th controllable load, the information vector Y i(t) could be formed by
electricity demand from consumers Li(t), PV power Si(t) and electricity price R(t).

Y i(t) , [Li(t), Si(t), R(t)], t ∈ [1, 2, · · · , T] (16)

According to [5,35–43], for the same type of problems, the harvested renewable energy, the load
demand and electricity price are considered to be independent and identically distributed (i.i.d.) over
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time slots, such as the energy management problem of a single smart home in [35], the bidirectional
transaction and load scheduling problem of multiple users in [5,36–38], the demand response control
problem of HVAC loads in [39], the PEV charging and vehicle-to-grid control problem in [40,41], the energy
management of storage units in [42,43], etc. Therefore, in this paper, we assume that the information vector
is i.i.d. over time slots. The set of information vectors for all controllable loads can be represented as:

Y(t) , [Y1(t), Y2(t), · · · , Y N(t)], t ∈ [1, 2, · · · , T] (17)

3.3. Problem Formulation

As energy consumption of the baseline load is fixed, the corresponding electricity cost is constant.
Therefore, the main focus of this paper is the cost generated by controllable load. Based on the above
analysis, the amount of electricity that needs to be purchased from the power grid is:

G(t) =
N

∑
i=1

max[Xi(t)− Si(t), 0] =
N

∑
i=1

Xi(t)[1− Si(t)/Wi] (18)

The value of Xi(t) is either zero or Wi. If Xi(t) = 0, the allocated PV power Si(t) cannot be consumed,
which is unreasonable. Therefore, the amount of electricity purchased from the power grid at time slot
t in Equation (18) is further converted to Xi(t)[1− Si(t)/Wi]. When Xi(t) = 0, the amount of electricity
purchased is zero; when Xi(t) = Wi, the amount is Xi(t)− Si(t).

The cost of the i-th controllable load can be denoted as ci(t), and the total electricity cost generated by
all controllable loads at time slot t is:

c(t) =
T

∑
t=1

R(t) · G(t) (19)

The energy management algorithm in HEMS is supposed to lower the cost as much as possible, so as
to reduce the household expenses. Based on the above concepts, the online energy management problem
in this paper can be described as: at time slot t, the power controller receives information vector Y(t). With
a guarantee of comfort level and the stability of controllable load queues Q(t), the power controller aims
at minimizing the electricity cost. Based on information vector Y(t), X(t) is determined to control the
operation statuses of controllable appliances. As time goes on, the controllable load queues evolve based
on Equation (13). The problem can be expressed as:

min lim
t→∞

1
t

t−1

∑
τ=0

c(τ)

s.t. Equations (4), (7) and (11), controllable load queues are mean rate stable ∀i, t.

(20)

3.4. Queue Stability

The queue Qi(t) is mean rate stable if:

lim
t→∞

E{|Qi(t)|}
t

= 0 (21)

The energy management algorithm in HEMS is supposed to guarantee the stability of controllable
load queues apart from minimizing the electricity bills of consumers. It should be ensured that consumers
could accept the degree of load accumulation in queues, which means that the demands of controllable
load will not be put off indefinitely. The stability of controllable load queues can be interpreted as the
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principle of HEMS that the load demand would not be unlimitedly accumulated and should be responded
to as efficiently as possible.

Denote c∗ as the optimal objective value of Equation (20) and c∗i as the optimal cost of the i-th
controllable load. It can be shown that there exists a policy that can achieve the optimal solution as stated
in the following lemma.

Lemma 1. For Equation (20), there exists a stationary randomized policy that makes decisions Xs(t) depending
only on the system state and at the same time satisfies the following conditions:

E[cs
i (t)] ≤ c∗i , (22)

E[Ls
i (t)] ≤ E[Xs

i (t)], ∀i (23)

where Xs(t), cs
i (t), Ls

i (t) and Xs
i (t) are respectively the corresponding values of X(t), ci(t), Li(t) and Xi(t) under

the existing stationary policy. The expectations above are with respect to the stationary distributions of system state
and the randomized control decisions.

Proof. The claims above can be derived from Theorem 4.5 in [44]. In particular, the theorem implies that
the sufficient conditions for the existence of a stationary and randomized policy as described in Lemma 1
are: first, the system state is stationary; second, the system variables satisfy the boundedness assumptions
and the law of large numbers; finally, the problem is feasible.

The existence of such a policy can be used to design our online algorithm and to derive a performance
guarantee for our algorithm, as shown later in Theorem 3. Accordingly, an Online Event-triggered
Algorithm with Lyapunov optimization (OEAL) is proposed to stabilize the demand queues and thus to
solve Equation (20).

4. Online Energy Management Algorithm

4.1. Allocation Strategy of PV Power

PV power at every slot is set to first satisfy the demand of baseline load Lb(t). Define
N(t) = PV(t)− Lb(t) as the excess PV power after meeting demand of Lb(t). The excess PV power
would be allocated to controllable load according to principles of priorities and the maximum delay limit.
The order of precedence for PV power allocation is EWH, HVAC and PEV. The maximum delay limit of
each appliance Dmax,i is set on the basis of their operation properties. The allocation strategy of excess PV
power is described as follows.

(1) At every slot t, the delay condition of controllable load is checked in the order of priority. The length
of controllable load queues represents the uncompleted demand. The value of Xi(t) is either zero or Wi.
According to Equation (13), Qi(t) is composed of demand blocks Wi, which means that Qi(t) is multiples
of Wi. Thus, Qi(t)/Wi can represent the delay time of the i-th controllable load. If the delay time of the
i-th controllable load exceeds the limit, i.e., Qi(t)/Wi > Dmax,i, the appliance would get its corresponding
PV energy Si(t) subject to the constraint Equation (15). The process continues until all of the controllable
appliances are checked or PV power has worn out.

(2) If PV power is still left after the first step, the excess energy would be used to satisfy all of the
accumulated demand in queue backlog Qi(t) in order of priority.

Note that the maximum delay limit Dmax,i and priorities are only used in the allocation strategy of PV
power and are irrelevant to the following strategy of scheduling controllable load.
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4.2. Event-Triggering Mechanism

The event-triggering mechanism is implemented in the monitor and power controller. The monitor
collects the information vector at a fixed rate and decides whether the triggering signal is generated to
send to the power controller. Once the signal is received, the power controller will refresh its control
actions, and the value of decision variables will be redetermined according to the current system state.
Otherwise, decision variables will remain at the last value.

In terms of the event detection logic, the load scheduling process is affected by baseline load,
controllable load, PV generation and electricity price. The monitor will generate a new signal to trigger the
power controller if the following events occur.

• The variation of baseline load exceeds a certain range.

Lb(t)− Lb(t− 1) > 0.05 · Lb(t− 1) (24)

• At least one of the controllable load queues accumulates to a certain degree.

Qi(t)/Wi > 2 (25)

where Wi is the electricity consumption of the i-th controllable load per time slot. Equation (25) means
that the demand of the i-th controllable load has been piled up at least three times, and the power
controller should be triggered to refresh its control actions.

• The variation of PV output exceeds the accepted range.

PV(t)− PV(t− 1) > 0.05 · PV(t− 1) (26)

• The time-of-use electricity price changes.

R(t) 6= R(t− 1) (27)

Note that the above thresholds are chosen empirically through simulation tests. Large thresholds in
the above events could decrease the triggering times and thus reduce the computational cost effectively.
However, the performance of the algorithm would be affected, as the decision variables will remain at
last value. If the last value is zero, the appliances would keep the “off” state, and thus, consumers would
suffer from the excessive delay of controllable load. If the last value is Wi, the appliances would keep
the “on” state, which may incur a large penalty on the electricity cost. On the contrary, small thresholds
could guarantee the timely execution of the algorithm, but increase the triggering times and make the
event-triggering mechanism invalid. In practical applications, the thresholds in the events can be set as
adjustable parameters, which are set according to consumer preferences and weather conditions.

A state machine is well designed to realize the event-triggering mechanism. Three states, “event
monitoring”, “load scheduling” and “execution”, are involved. The “event monitoring” state is at the
beginning of the loop and is the most normal state of the state machine. Once one or more events are
detected, the “load scheduling” state will be triggered to redetermine the operation status of controllable
load. The “execution” state will then be triggered, and the instructions conveyed by the “load scheduling”
state will be executed. After the execution is completed, it will go back to the “event monitoring” state and
enter into the next time slot. The process is shown in Figure 2.
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Event 
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Event2=1

Event3=1 LSdone=1
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Event4=1

Exdone=0

LSdone=0

Figure 2. Diagram of the event-triggering mechanism.

4.3. Lyapunov Optimization

Define Q(t) , [Q1(t), Q2(t), · · · , QN(t)] as the concatenated vector of controllable load queues.
Lyapunov function L(Q(t)) , ∑N

i=1 Qi(t)2/2 is defined as a scalar measure of the congestion of all of the
controllable load queues. Define the Lyapunov drift for slot t:

∆(Q(t)) , E{L(Q(t + 1))− L(Q(t))} (28)

where ∆(Q(t)) is the expected variation of the Lyapunov function over a time slot, which represents the
stability of queues. The expectation depends on the control actions of HEMS and is related to the random
arrival of load demands from consumers.

Based on the drift-plus-penalty method in Lyapunov optimization [44], an online energy management
algorithm is designed in this paper. At every time slot, the current information vector Y(t) is
observed. Based on the information acquired, the value of X(t) is determined to minimize the
drift-plus-penalty expression:

∆(Q(t)) +
N

∑
i=1

Vi ·E{ci(t)} (29)

where the first item is Lyapunov drift, representing the queue stability. In the second item, Vi represents
the importance weight, illustrating how much we emphasize the cost minimization of the i-th controllable
load. The rest of the second item is the cost incurred by the i-th controllable load. Vi represents the tradeoff
between stabilizing queues and minimizing the electricity cost. The physical meaning of Vi (kWh2/RMB)
is the increment on the variation of the Lyapunov function when the electricity cost decreases by 1 RMB.
It unifies the measurement of the two different physical quantities and scales the conversion from the cost
to the drift. Vi is determined based on the power level of the i-th controllable load and the user preference
between cost and delay. If Vi = 0, it corresponds to the pure system stability problem by minimizing
the Lyapunov drift. Minimizing ∆(Q(t)) alone would push all demand queues towards lower backlog,
but would incur a large penalty on the cost. Therefore, the algorithm proposed in this paper minimizes the
weighted sum of drift and penalty.
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Lemma 2. (Drift bound) For any control policy that satisfies the constraints in Equation (20), the drift-plus-penalty
expression satisfies:

∆(Q(t)) +
N

∑
i=1

ViE{ci(t)} ≤
N

∑
i=1

Bi +
N

∑
i=1

ViE{R(t)Xi(t)[1− Si(t)/Wi]}+
N

∑
i=1

E[Qi(t)(Li(t)− Xi(t))] (30)

where the constant Bi is defined as:

Bi ,
Wi

2 + Lmax,i
2

2
(31)

Proof. A bound can be computed on the Lyapunov drift through its definition:

∆(Q(t)) = E{L(Q(t + 1))− L(Q(t))} = 1
2
E{

N

∑
i=1

[Qi(t + 1)2 −Qi(t)2]}

=
1
2
E{

N

∑
i=1

[(Qi(t)− Xi(t) + Li(t))2 −Qi(t)2]}

≤ 1
2
E{

N

∑
i=1

[Li(t)2 + Xi(t)2 + 2Qi(t)(Li(t)− Xi(t))]}

=
1
2
E{

N

∑
i=1

[Li(t)2 + Xi(t)2]}+E{
N

∑
i=1

[Qi(t)(Li(t)− Xi(t))]}

(32)

and thus, Bi can be defined as Equation (31). Using Equations (9) and (11), we have:

∆(Q(t)) ≤
N

∑
i=1

Bi +E{
N

∑
i=1

[Qi(t)(Li(t)− Xi(t))]} (33)

Adding the utility function to both sides, we thus have Equation (30). The proof is concluded.

The original problem Equation (20) is transformed into the following problem by minimizing the
right-hand side of Equation (30).

min
N

∑
i=1

Xi(t) · {ViR(t)[1− Si(t)/Wi]−Qi(t)}

s.t. Equations (4), (7) and (11), ∀i, t.

(34)

The above problem can be further reduced to the following simple threshold rule:

Xi(t) =

{
0, ViR(t)[1− Si(t)/Wi]−Qi(t) > 0
Wi, ViR(t)[1− Si(t)/Wi]−Qi(t) < 0

(35)

It can be seen from Equation (35) that Lyapunov optimization is relatively simple to implement
compared to the traditional optimization method. It does not need a priori statistical knowledge and only
relies on the instant information about the system state at this moment. The complex energy management
problem is transformed into a linear programming problem, which largely reduces the computational
complexity. Furthermore, it has no curse of dimensionality and, hence, can be easily applied in extended
formulations with multiple queues and multiple households. The overall flowchart of the proposed online
energy management algorithm is shown in Figure 3.
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Figure 3. Flowchart of the online energy management algorithm.

4.4. Optimality Analysis

The performance of the online energy management algorithm is analyzed in this section. Some
conclusions of the optimality are given in the following theorem.

Theorem 3. Suppose that the system state Y i(t) is i.i.d. over time. If we use the proposed algorithm every slot t, then:
(1) The proposed algorithm stabilizes the system, which means that the controllable load queues Qi(t) are mean

rate stable and the constraints of original problem Equation (20) are satisfied.
(2) The time average expected cost under the proposed online algorithm is within Bi/Vi of the optimal value.

lim sup
t→∞

1
t

t−1

∑
τ=0

E[ci(τ)] ≤ c∗i +
Bi
Vi

(36)

(3) Suppose there are constants εi > 0 and Ψi(εi) for which the Slater condition of Assumption 1 holds. Then:

lim sup
t→∞

1
t

t−1

∑
τ=0

E[Qi(τ)] ≤
Bi + Vi[Ψi(εi)− c∗i ]

εi
(37)

where [Ψi(εi)− c∗i ] ≤ ci,max − ci,min and ci,min, ci,max are defined as ci,min ≤ E{ci(t)} ≤ ci,max.

Proof. Since the system state Y i(t) is assumed to be i.i.d. over time and the related variables Li(t), Xi(t),
Si(t) and R(t) are all bounded, the conclusion in Lemma 1 holds. At every slot t, our implementation
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comes by minimizing the upper bound of the drift-plus-penalty expression. Plugging the conclusions of
Lemma 1 into the right-hand-side of Equation (30) yields:

∆(Qi(t)) + Vi ·E{ci(t)} ≤ Bi + Vi · c∗i (38)

Fix any slot τ. Take expectations of both sides, and use the law of iterated expectations to yield:

E{L(Qi(τ + 1))} −E{L(Qi(τ))}+ Vi ·E{ci(τ)} ≤ Bi + Vi · c∗i (39)

Summing over τ ∈ {0, 1, · · · t− 1} for some t > 0 and using the law of telescoping sums yields:

E{L(Qi(t))} −E{L(Qi(0))}+ Vi

t−1

∑
τ=0

E{ci(τ)} ≤ (Bi + Vi · c∗i )t (40)

Rearranging terms and neglecting nonnegative terms when appropriate, the following inequality is
obtained for all t > 0:

1
t

t−1

∑
τ=0

E{ci(τ)} ≤ c∗i +
Bi
Vi

+
E{L(Qi(0))}

Vit
(41)

Taking a limit as t→ ∞ proves the conclusion in (2).
To prove the conclusion in (1), the following inequality is derived from Equation (40).

E{L(Qi)} ≤ E{L(Qi(0))}+ (Bi + Vi(c∗i − ci,min))t (42)

where E{ci(t)} ≥ ci,min. Using the definition of the Lyapunov function yields:

1
2
E{Qi(t)2} ≤ E{L(Qi(0))}+ (Bi + Vi(c∗i − ci,min))t (43)

Therefore, for all i ∈ {1, 2, · · · , N}, we have:

E{Qi(t)2} ≤ 2E{L(Qi(0))}+ 2(Bi + Vi(c∗i − ci,min))t (44)

Since the variance of |Qi(t)| cannot be negative, we have E{Qi(t)2} ≥ E{|Qi(t)|}2. Thus, for all slots,
t > 0.

E{|Qi(t)|} ≤
√

2E{L(Qi(0))}+ 2(Bi + Vi(c∗i − ci,min))t (45)

Dividing both sides by tand taking a limit as t→ ∞ yields:

lim
t→∞

E{|Qi(t)|}
t

≤ lim
t→∞

√
2E{L(Qi(0))}

t2 +
2(Bi + Vi(c∗i − ci,min))

t
= 0 (46)

Thus, all controllable load queues Qi(t) are mean rate stable, proving the result in (1). To verify the
conclusion in (3), Assumption 1 is presented as follows.

Assumption 1 (Slater Condition): There exist values εi > 0 and Ψi(εi) (where ci,min ≤ Ψi(εi) ≤ ci,max)
and a policy that only depends on the system state that satisfies:

E{ci(t)} = Ψi(εi)

E{Li(t)} ≤ E{Xi(t)} − εi, ∀i
(47)
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Plugging the above condition into the right-hand side of the drift bound Equation (33) yields:

∆(Qi(t)) + ViE{ci(t)} ≤ Bi + ViΨi(εi)− εiQi(t) (48)

Taking iterated expectations, summing the telescoping series and rearranging terms yields:

1
t

t−1

∑
τ=0

E{Qi(τ)} ≤
Bi + Vi[Ψi(εi)− 1

t ∑t−1
τ=0 E{ci(τ)}]

εi
+

E{L(Qi(0))
εit

(49)

However, the limiting time average expectation for ci(t) cannot be better than c∗i :

lim inf
t→∞

1
t

t−1

∑
τ=0

E{ci(τ)} ≥ c∗i (50)

Taking a limit of Equation (49) as t→ ∞ and using Equation (50) could yield Equation (37). The proof
is concluded.

This theorem demonstrates the [O(1/V), O(V)] performance-delay tradeoff, which proves that the
optimal time average cost of Equation (34) is within O(1/V) of the optimal value of the original problem
Equation (20), with a corresponding O(V) tradeoff in the average queue length. By choosing a larger Vi,
the time average cost of the i-th controllable load can get closer to the optimal value, with the penalty on
the congestion of demand queues.

5. Case Study

5.1. Basic Data and Simulation Setting

In order to evaluate the performance of the proposed algorithm, the HEMS is developed in the
MATLAB simulation environment. The time resolution of basic data is 10 min. The basic data of PV
generation and baseline load are all collected from the real-time measurements from real households,
which are shown in Figure 4.
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Figure 4. Power curves of PV generation and baseline load.

All data are gathered in winter, and HVAC is mainly for heating. The time-of-use price adopted in
HEMS is shown in Table 1.
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Table 1. Time-of-use price.

Time Price (RMB/kWh)

10:00–15:00, 18:00–21:00 1.37
7:00–10:00, 15:00–18:00, 21:00–23:00 0.8

23:00–7:00 0.37

Electricity consumption of EWH, HVAC and PEV at each time slot is the decision variable. Wi adopts
the fixed rated value in the simulation. The related parameters of controllable load in the simulation are
shown in Table 2. According to Equation (35), the setting of Vi is related to the power level and deferrable
degree of the i-th controllable load. On the one hand, as Qi(t) is composed of demand blocks Wi, the
length of Qi(t) increases with the rising of the corresponding power level. The appliance with a higher
power level requires larger Vi to achieve the same degree of delay, i.e., the same duration of Xi(t) = 0.
On the other hand, the appliance with the same power level needs larger Vi to achieve a higher degree of
delay, which means the longer duration of Xi(t) = 0. As the power level and delay-tolerant degree of PEV
are the highest among controllable appliances, the corresponding Vi is the largest.

Table 2. Simulation parameters of controllable load.

Appliance Operation Time Rated Power Wi Vi Q R C
kW kWh (kWh2/RMB) (W) (◦C/W) (J/◦C)

EWH temperature-based 0.7 0.1167 0.2 4000 0.00152 3,108,240,000
HVAC temperature-based 3 0.5 2.2 400 0.1208 3599.3
PEV 19:00–22:00 7 1.1667 18.7 - - -

The demand of EWH is given in real time based on the variation of water temperature. Additionally,
the water temperature is simulated through the operation model of EWH. The standard temperature of
EWH is set as 45 ◦C, and the acceptable variation range is 3 ◦C. When the water temperature is lower
than the standard temperature, EWH is supposed to start running to raise the water temperature, which
dynamically generates the demand of EWH. Similarly, the demand of HVAC is randomly given in real
time based on indoor temperature variation. The standard temperature of HVAC is set as 21 ◦C, and the
acceptable variation range is 2 ◦C. When the indoor temperature is lower than the standard temperature,
HVAC is supposed to start running to raise the indoor temperature, which dynamically generates the
demand of HVAC.

In order to verify the effectiveness of the proposed OEAL, an Online Algorithm with only Current
Information (OACI) and an Online Algorithm Without Event-triggering (OAWE) are taken as a comparison.
Both OEAL and OACI only require the information of the current time slot. With only the current
information, OACI does not consider the future variation of related variables. It only aims to obtain
the minimum cost of the current time slot and does not take advantage of the deferrable properties
of controllable load. Based on the same information demand and time complexity with the proposed
algorithm, OACI is taken for comparison to better analyze the performance of OEAL. As another contrast,
OAWE adopts a time-triggering mechanism to execute the Lyapunov optimization algorithm, where the
control actions of HEMS will be refreshed at every time slot. OAWE is taken for comparison to analyze the
effect of the event-triggering mechanism in OEAL. The comparison of the features for the three algorithms
is shown in Table 3.
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Table 3. Comparison of the three algorithms.

Algorithm Features

OACI The load demand is satisfied instantly without any delay.
OAWE Lyapunov optimization + time-triggering mechanism
OEAL Lyapunov optimization + event-triggering mechanism

5.2. Comparative Analysis of the Results

The proposed algorithm only requires the current information vector Y(t). Neither the historical nor
the future information is needed. Based on the same information requirement, OEAL is compared to OACI
in the simulation. The time complexities of the two algorithms are both O(1). The comparison result is
shown in Table 4.

Table 4. Comparison of the cost between OEAL and OACI.

Cost of OACI (RMB) Cost of OEAL (RMB) Reduction Ratio (%)

62.322 48.768 21.75

The comparison result of the operation time for PEV is shown in Figure 5. Compared to OACI, the
proposed algorithm OEAL transfers the load from the peak period of price to the off-peak period after
21:00, which contributes to reducing the electricity cost for consumers.
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Figure 5. Comparison of the operation time for PEV.

The comparison of the operation time for EWH is shown in Figure 6. Compared to OACI, the
operation of EWH in OEAL avoids the peak period of price, which helps to realize the economic operation
of households.

As shown in Figure 7, inlet water and the comparison of water temperature are illustrated through
the simulation of the ETP model. The decline of water temperature at 17:40 and 23:20 is due to the cold
water being added into the tank. It can be seen that the water temperature variation of OACI is smaller
than the proposed OEAL. However, the switching frequency of EWH in OACI is much higher than the
one in OEAL, which is harmful to the service life of EWH. Besides, the water temperature in OEAL varies
from 42–47.5 ◦C, which does not influence the comfort level of household members.
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Figure 6. Comparison of the operation time for EWH.
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Figure 7. Comparison of the water temperature for EWH.

The comparison of the operation time and indoor temperature for HVAC is respectively shown in
Figures 8 and 9. Compared to OACI, the operation of HVAC in OEAL avoids the peak period of price.
For instance, during 11:50–15:00, when the electricity price is at its peak, HVAC stops running, and the
indoor temperature decreases. At 15:00, as the demand queue of HVAC has accumulated to a certain
degree and the price drops into the flat period, the HVAC starts running to guarantee the comfort level
and economic efficiency of consumers. It can be seen from Figure 9 that the indoor temperature variation
of OACI is smaller than the proposed OEAL. Nevertheless, the switching frequency of HVAC in OACI
is much higher than the one in OEAL, which is harmful to the service life of HVAC. Besides, the lowest
indoor temperature in OEAL is 19 ◦C, which does not influence the comfort level of household members
in winter.
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Figure 8. Comparison of the operation time for HVAC.
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Figure 9. Comparison of the indoor temperature for HVAC.

5.3. Performance Analysis

According to the analysis of Theorem 3, the performance of OEAL is associated with the setting
of weight parameters Vi. In order to study the related performance of OEAL, the simulation analyzes
the impact of weight parameters on the energy management result from two aspects: delay condition of
controllable load and electricity cost.

It can be inferred from the theoretical analysis in Theorem 3 that when Vi gradually increases, the
average length of queues would increase, and the utility function would decrease. Based on the weight
parameters set in Table 2, when Vi of each controllable appliance varies individually, variation curves
of average length for the corresponding queue and the electricity bills of controllable load are shown
in Figures 10–12. Particularly, the load of EWH and HVAC is given in real time based on the variation
of temperature. When the water temperature or the indoor temperature is lower than the standard
temperature, EWH or HVAC is supposed to start running, i.e., Li(t) = Wi, which generates their dynamic
load demand. When the corresponding weight parameter Vi changes, the deferrable degree and operation
temperature all change, along with the variation of load demand. By contrast, the load demand of PEV is
fixed. It can be seen from Figure 12 that the simulation result of PEV coincides with the theoretical law.
In Figures 10 and 11, the simulation results of EWH and HVAC conform with the theoretical law on the
whole, but fluctuate to a certain extent due to the influence of temperature and random load fluctuation.
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Figure 10. Average delay queue backlog of EWH and the electricity bills of controllable load.
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Figure 11. Average delay queue backlog of HVAC and the electricity bills of controllable load.
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Figure 12. Average delay queue backlog of PEV and the electricity bills of controllable load.
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With the increase of Vi, the weight of ∆(Qi(t)) in the minimizing object decreases, and the average
queue backlog increases, which leads to the rise of delay time for the controllable load. Meanwhile, the
weight of the utility function is raised, which leads to the decrease of the electricity cost for the controllable
load. It can be seen from Figures 10–12 that the simulation results of the controllable load coincide with
the theoretical analysis. With large Vi, consumers can achieve a lower electricity bill, but will suffer from
the excessive delay of controllable load. With small Vi, the comfort level of consumers is guaranteed, and
the demand of the controllable load will be completed quickly and efficiently. However, the electricity cost
would be higher. In practical applications, consumers can set the weight parameters according to their
own preferences.

5.4. Effect of the Event-Triggering Mechanism

In order to verify the effect of the event-triggering mechanism, OEAL is compared to OAWE, which
adopts a time-triggering mechanism. In OAWE, the Lyapunov optimization algorithm is executed at
every time slot, which means 144 times in total. However, in OEAL, the execution times reduce to 95,
which largely decreases the computational cost of the power controller. The comparison result of the two
algorithms is shown in Table 5.

Table 5. Comparison of the cost between OEAL and OACI.

Cost of OAWE (RMB) Cost of OEAL (RMB)

48.756 48.768

It can be seen from Table 5 that the electricity costs in OEAL and OAWE are nearly the same.
Their difference is mainly caused by the random load fluctuation of EWH and HVAC. The comparisons of
operation time for EWH and HVAC are respectively shown in Figures 13 and 14. It can be observed that
the switching frequencies of EWH and HVAC in OAWE are much higher than the ones in OEAL, which
does not bring extra profit, but only harms their service life.
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Figure 13. Comparison of the operation time for EWH between OAWE and OEAL.
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Figure 14. Comparison of the operation time for HVAC between OAWE and OEAL.

5.5. Comparison with Related Work

In order to clarify the benefits and advantages of the proposed algorithm, the results are compared to
several related papers mentioned in the Introduction, in terms of computational complexity, performance
analysis, time cost, forecasting, data analysis, the need for user intervention and the implementation
method. The comparison result is shown in Table 6. With respect to the computational complexity, most
contrastive papers need to solve a multi-objective mixed integer nonlinear problem through traditional
heuristic algorithms or advanced software, such as Advanced Integrated Multidimensional Modeling
Software (AIMMS), while the proposed OEAL transforms the original problem into a linear problem,
effectively reducing the computational complexity. In terms of the performance analysis, the cost savings
of these papers are compared. As the basic data and scenarios in these papers are different, their simulation
results are not comparable. However, it can be roughly concluded from the table that the proposed OEAL
has a relatively superior solution among these papers. As for the time cost, some papers do not provide
the related data. It can be observed that the proposed OEAL has the best time performance among the
available results.

Table 6. Comparison with several related papers.

Properties [13] [14] [15] [17] [19] OEAL

Computational
Complexity

Solver:
Learning +
NSGA-II

Solver:
Learning +
Clustering

Problem:
Nonlinear;
Solver:
GAMS+
Cplex/Dicopt

Problem:
Nonlinear;
Solver:
Genetic Algorithm

Problem:
Nonlinear;
Solver:
AIMMS

Problem:
Linear

Performance
Analysis

7.25%
savings

10.92%
savings

55%
savings

15.51%
savings

61.96%
savings

21.75%
savings

Time Cost 3623.420 s
+ 398.99 s

- 3.365 s - - 0.002 s

Forecasting? Yes Yes Yes Yes Yes No

Data Requirement Yes Yes - - No No

User Intervention? No No Yes Yes Yes No

Offline/Online Offline Offline Offline Offline Offline Online
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In regards to the necessity of forecasting, most contrastive papers need to forecast related system
states, such as real-time price, PV production, outdoor temperatures and the demands of non-controllable
appliances, while the proposed OEAL does not rely on any future information. With respect to the data
requirement, [13,14] respectively need to learn data of 20 days and data of a month, while the proposed
OEAL only requires the data of the current time slot. As for the necessity for user intervention, in [15,17,19],
consumers need to set the parameters of appliances, such as the length of operation time, the preferred time
range, the priority, etc. In terms of the implementation method, most contrastive papers adopt the offline
algorithms, where day ahead scheduling is conducted or related information is assumed to be known in
advance. The proposed OEAL is implemented online, which only relies on the current information and is
more practical in real applications.

Based on the above comparison and simulation results, the online energy management algorithm
based on Lyapunov optimization proposed in this paper has strong practicality in smart homes. It is
also suitable to be integrated into the embedded system for its advantages of low time complexity, high
operation efficiency and small occupancy of computational resources.

6. Conclusions

In this paper, an online event-triggering algorithm for energy management of smart households
is proposed to reduce the electricity cost with a guarantee of comfort level for household members.
Household members do not need to manually preset the operation time interval of appliances. The energy
management is implemented without user intervention, which can deal with the random demand of
consumers. Without a forecasting mechanism, the data of PV generation and load demand are collected in
real time. Controllable load EWH, HVAC and PEV are set as regulation objects. The Lyapunov optimization
method is adopted to schedule controllable load in the household based only on the current information.
The event-triggering mechanism is adopted to trigger the execution of the online algorithm, so as to cut
down the execution frequency and unnecessary calculation. The simulation results show that the proposed
algorithm could effectively decrease the electricity bill and guarantee the comfort level of users. Moreover,
the time complexity is low and the required computational resource is small, which are suitable to be
integrated into the embedded system.
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The following abbreviations are used in this manuscript:

HEMS Home Energy Management System
PV Photovoltaic
PEV Plug-in Electric Vehicles
EWH Electric Water Heater
HVAC Heating, Ventilation and Air Conditioning
OEAL Online Event-triggered Algorithm with Lyapunov optimization
OACI Online Algorithm with only Current Information
OAWE Online Algorithm Without Event-triggering
AIMMS Advanced Integrated Multidimensional Modeling Software
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