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Abstract: The suitability of turbine configurations to different wind resources has been traditionally
restricted to considering turbines operating as standalone entities. In this paper, a framework is thus
developed to investigate turbine suitability in terms of the minimum cost of energy offered when
operating as a group of optimally-micro-sited turbines. The four major steps include: (i) characterizing
the geographical variation of wind regimes in the onshore U.S. market; (ii) determining the best
performing turbines for different wind regimes through wind farm layout optimization; (iii) developing
a metric to quantify the expected market suitability of available turbine configurations; and
(iv) exploring the best tradeoffs between the cost and capacity factor yielded by these turbines.
One hundred thirty one types of commercial turbines offered by major global manufacturers in 2012
are considered for selection. It is found that, in general, higher rated power turbines with medium
tower heights are the most favored. Interestingly, further analysis showed that “rotor diameter/hub
height” ratios greater than 1.1 are the least attractive for any of the wind classes. It is also observed
that although the “cost-capacity factor” tradeoff curve expectedly shifted towards higher capacity
factors with increasing wind class, the trend of the tradeoff curve remained practically similar.

Keywords: capacity factor; cost of energy; turbine selection; wind farm layout optimization; wind map

1. Introduction

1.1. A Temporally- and Spatially-Varying Energy Resource

The intermittency of a wind resource at a location and the variation of the wind pattern from one location
to another present significant challenges to advancing the penetration of wind energy. Appreciable
work has been done (and is ongoing) (i) to account for the variation of wind conditions at a particular
site (e.g., wind distribution modeling [1,2]) and (ii) to address the intermittency of wind resources in
the context of grid integration (e.g., energy storage technologies [3,4]). In contrast, there has been a
limited amount of work that investigates the complex demands on wind turbine performance (when
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considered as a group) presented by the variety of wind patterns (e.g., different wind classes) existing
in the entire market.

The major turbine manufacturers offer a family/series of wind turbines to suit the market
needs of different wind regimes. In this context, to promote better decision making both at the
level of the turbine manufacturers and the farm developers in different geographical regions, the
following explorations are needed: (i) explorative studies that provide a global understanding of
the suitability of different turbine feature combinations (e.g., dimensions and power characteristics)
for different wind regimes; and (ii) an analysis of the economic and production potential offered by
the most suitable turbine configurations (among those commercially available). In this context, it is
also important to realize that such explorations need to consider wind turbine performance and the
associated cost of energy in the context of their operation as a group of optimally-micro-sited turbines.
Under a group operation, as is the case with utility-scale wind farms, individual wind turbines may
be subject to a wind class (or wind regime) that is different from the (free flow) wind class of that
site owing to wake effects; additionally, true performance and economic potential are only reflected
by the operation of a system under an optimized scenario. Stand-alone turbine suitability ratings,
such as the IEC rating [5], elude all of the above insights and, thus, provide limited fundamental
understanding of turbine suitability under utility-scale deployment.

Therefore, this paper aims: (1) to develop a framework to determine the most suitable turbine
configurations for different wind regimes (derived from a wind map), under optimized group
operation; (ii) to analyze the cost of energy (COE) offered by the best performing turbines and
the market suitability of different turbine feature combinations for the onshore U.S. market; and
(iii) to explore the best cost/capacity factor tradeoffs offered by the most suitable turbine feature
combinations for different wind classes. In accomplishing these objectives, this paper presents a
synergy and extension of the research presented earlier by Chowdhury et al. [6,7]. In this paper,
the suitability of turbine-features is studied by considering 131 different configurations available
commercially in 2012 from the major global manufacturers. Thus, the explorations of turbine
potentials (across various wind regimes) presented in this paper are performed based on existing
turbine technologies available in or before 2012. The analysis of emerging turbine technology or
turbine design is however not within the scope of this paper. The following three Subsections, 1.2–1.4,
respectively discuss the role of turbine selection in wind farm planning, the observed variation
of wind patterns in a national market, and the major components of the exploration framework
developed in this paper.

1.2. Role of Turbine Selection in Wind Farm Design

Post wind resource assessment of a site, two of the primary objectives of optimal wind farm
planning are to (i) minimize the cost of energy (COE), expressed in $/kWh, and/or (ii) maximize
the capacity factor (CF). Successful accomplishment of these objectives demands a robust and
flexible wind farm optimization platform that allows appropriate consideration of the following
critical factors:

1. The installed capacity of the wind farm,
2. The land configuration and the placement of turbines in the wind farm (i.e., macro- and

micro-siting), and
3. The types of wind turbines to be installed.

In this paper, we are particularly concerned with the role of the third factor in wind farm
performance. A turbine (or a set of turbines) that offers the most attractive tradeoff between
(i) the life cycle costs and (ii) the predicted long-term energy production capacity at a given site can
be considered suitable for developing a wind farm at that site.

The long-term energy production capacity of a wind turbine at a particular site depends on
the expected distribution of wind conditions (mainly wind speed) at that site. Taking a more gross
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wind strength perspective of a given site, this allows classifying turbines based on their suitability to
sites in terms of an annual (long-term) average wind speed rating. The average wind speed rating
for a turbine is generally provided by the manufacturer as a component of the specified IEC Wind
Turbine Class rating [5]. However, considering that each turbine operates as a part of an entire array
in a commercial wind farm, the relation of its power generation performance to its average wind
speed rating is seldom straightforward. In quantifying the energy production capacity of a farm,
it is important to recognize and account for the wake-induced interactions among the turbines in
the farm. To this end, an optimal wind farm design process should simultaneously consider the
farm layout and the turbine type selection [8]. Another important criterion for turbine selection is
its load-bearing capacity. In this context, the IEC wind turbine rating provides the compatibility
of the turbine with respect to standard turbulence intensity measures. The determination of the local
average wind gusts at a site and the subsequent turbulence intensity measures is a crucial part of wind
resource assessment. However, such information is site specific, and long-term turbulence intensity
maps for an entire region are generally not available. Hence, the load-bearing capacity of turbines is
not considered as a compatibility criterion in this paper.

In this paper, we focus on the following two important aspects of a turbine to determine its
geographical compatibility.

1. Actual energy production capacity of a turbine (when operating as a group) based on the local
wind resource, and

2. Leveled cost of the wind farm attributable to the turbines.

In this context, commercially-available wind turbines are defined in terms of five major features:
(i) rated power, (ii) power characteristics, (iii) rotor-diameter, (iv) hub-height and (v) drive-train type.

The decision making regarding the placement of turbines and the type(s) of turbines to be
installed are interdependent, and should ideally be performed simultaneously when designing
optimal wind farm configurations. To this end, the unrestricted wind farm layout optimization
(UWFLO), an advanced wind farm design method developed in [8,9], is adopted in this paper,
particularly due to its capability to simultaneously optimize the selection and siting of turbines. There
are very few other methods that also account for aspects of turbine selection in tandem with turbine
placement; one other example includes the method presented by Chen et al. [10], which considers
differing hub-heights as an optimization parameter in maximizing wind farm power output. Other
powerful wind farm layout optimization methods include those developed in [11–19]. The majority
of these methods, while providing important and diverse capabilities in the context of turbine
micro-siting for a single wind farm, do not simultaneously focus turbine type selection during the
layout optimization process, as is required in the explorations presented in this paper.

1.3. Geographical Variation of Wind Patterns

The performance of a wind farm is regulated by the nature of the resource at the site. Turbines
of varying types are suitable for different wind patterns, and this necessitates the appropriate
classification and representation of wind patterns. The National Renewable Energy Laboratory
(NREL) distinguishes seven classes of wind patterns, based on their estimated average wind speed
(AWS) and wind power density (WPD) [20]. Each wind class in the NREL seven-class system spans
two values of mean wind speed and two associated values of wind power density. The mean wind
speed, derived from the Rayleigh distribution, corresponds to an equivalent mean wind power
density [20]. These two metrics, the mean wind speed and the WPD values, can be regarded as
measures of the resource strength of a wind site. The values of the different mean/average wind speeds
that are experienced across a region are often available in the form of wind maps (e.g., the U.S. wind
map [21]). However, the ranges of AWS need not be restricted to just seven wind classes; in fact, a
finer variation of wind patterns/regimes is desirable when exploring turbines suitable for different
wind patterns.
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Appropriate representation of the wind pattern variations over an entire wind energy market
area is therefore the first step toward understanding “turbine to operating-conditions” compatibility.
In this paper, the compatibility of a turbine is defined by its likelihood to be selected during
wind farm layout optimization, where the objective is to minimize the wind farm’s energy
costs. In order to quantify the annual energy production (AEP) for a candidate wind farm
design, information regarding the local long-term variation of wind conditions is required. In
this paper, the long-term AWS is used to represent a wind resource, which has the following
two advantages: (i) a one-parameter distribution of wind speed can be readily derived from
the AWS to represent the approximate variation of wind conditions at the concerned site; and
(ii) the resource strength of the site can be readily related to a wind map that represents the wind
resources over a region in terms of their estimated AWS. In the context of the first advantage (stated
above), it is important to note that both the Weibull and Rayleigh distribution are known to provide
an acceptable description of wind speed probability [22–25] (although the former is more popular
and, in general, more accurate). The Rayleigh distribution is a one-parameter model, and we exploit
this characteristic to derive an approximate wind speed distribution from the “average wind speed”
information; where a unique value of the distribution parameter can be determined from a given
value of the mean of the distribution.

1.4. Exploring “Turbine-Wind Regime” Compatibilities

The determination of suitable commercial-scale turbines and their optimal placement for a given
resource is itself a complex process. The determination of suitable commercial turbine types and
their likely demand in an entire target market with different wind regimes is therefore a challenging task;
to the best of the authors’ knowledge, such an exploration is rare in the literature. To accomplish
this challenging task, this paper develops a comprehensive framework that comprises the following
four steps:

Step 1 The geographical variation/distribution of wind regimes (in terms of AWS) in the target
market is characterized; the U.S. onshore market is used as the case study.
Step 2 The types of commercial turbines that provide the minimum COE values are determined
for different wind regimes, where the minimum COE value is given by optimized arrangement
of a group of such turbines.
Step 3 The likely demand/market-suitability of the currently available (commercial) turbine
feature combinations (namely, rated power, rotor diameter and hub height) is determined for
the entire target market, based on the expected installation rate, geographical distribution of
wind regimes (Step 1) and estimated economic potential of the best-suited turbines for different
wind regimes (Step 2).
Step 4 The tradeoffs between the cost and capacity factor offered by the best performing
turbines (for different wind regimes) are also determined to explore how these tradeoffs are
related to the turbine-feature combinations.

The framework developed in this paper is illustrated in Figure 1. We also develop regression
models to quantify the variation of minimized COE with AWS for turbines in different rated power
classes, which provides unique comparative insights into the capabilities of the commercial wind
turbine systems (available in/before 2012).

The following section describes the characterization of the geographical distribution of wind
regimes and the development of the comprehensive framework to determine suitable commercial
turbines for different wind regimes. The optimal set of wind turbines (for different wind regimes)
determined by this framework and the investigation of their economic potential with respect to AWS
are presented in Section 3. Section 4 provides an exploration of the expected market suitability
of commercially available turbine feature combinations to the U.S. onshore wind energy market,
based on the optimization results obtained in Section 3. Section 5 explores the cost/production
capacity tradeoffs offered by current commercial turbines (for different wind regimes), and also
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investigates the sensitivity of these tradeoffs to the features of the turbines. Section 6 presents the
concluding remarks.

trade− offs from the best turbines
of different rated power classes

different turbine feature combinations

Figure 1. Overall framework for exploring “turbine-wind regime” compatibilities.

2. Determining Optimal Wind Turbines (under Group Operation) for Different Wind Regimes

2.1. Characterizing Wind Regimes

2.1.1. Extracting Wind Map Information

An extensive wind map for the U.S. is provided by the National Renewable Energy Laboratory’s
(NREL) Geographic Information System (GIS) [21], as shown in Figure 2. This wind map shows the
annual average wind speed at 80 m above ground level. The annual average wind speed (at 80 m) at any
location is abbreviated as AWS in the remainder of this paper. Image processing and data extraction
techniques are applied to the U.S. wind map to estimate the net areas under different wind speeds in
the range 3–10 m/s, corresponding to a height of 80 m above ground level. The wind map data used
in this research do not include the states of Alaska and Hawaii. The annual AWS data corresponds to
a resolution of 1/3 degrees of latitude by 1/4 degrees of longitude. It can be seen from Figure 2 that
the onshore wind resource in the U.S. varies approximately between average wind speeds of 4.0 m/s
and 9.0 m/s at a height of 80 m above ground level. This variation spans a range of wind resource
strengths from Class 1–Class 5 [20].

Figure 2. Wind Map of the U.S.: annual average wind speed at 80 m, published by National
Renewable Energy Laboratory (NREL) [21].
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MATLAB image processing tools (The MathWorks Inc.: Natick, MA, United States) are used
to extract average wind speed (AWS) information from the wind map (Figure 2) at a resolution of
1700× 2200 pixels (noise attributed to text labels in the map are filtered out). Each AWS regime thus
spans over 0.5 m/s, where the range under consideration goes from 3.5 m/s–10.0 m/s; thus, the area
under different AWS values is assigned to 13× 0.5 m/s bins. Wind speeds below 3.5 m/s represent
marginal wind resources and are not feasible for wind energy development. Hence, locations with
AWS below 3.5 m/s are excluded from the target market for wind turbine installation. All onshore
land area that experiences AWS above 3.5 m/s is treated as prospective wind farm sites and is
therefore a part of the turbine market. In reality, a substantial portion of this land area is neither
suitable nor available for wind farm development, owing to factors, such as: (i) forests/protected
vegetation; (ii) human establishments; (iii) industry; (iv) environmental restrictions; (v) complex
topography; (vi) agricultural land; and (vii) distance from major gridlines. The consideration of
these factors is not within the scope of this paper. It is thus important to note that the explorations
performed in this paper are subject to the approximations and assumptions generally made in the
creation of wind maps; and when dedicated wind data become available at the region-wide scale,
they should serve as the preferred source of wind resource information in such explorations (instead
of wind maps).

2.1.2. Distribution of Wind Regimes in the Target Market

A normal distribution is used to represent the occurrence frequency of AWS over the contiguous
mainland U.S. (as illustrated in Figure 3). Wind farm optimization is performed for different AWS
values to identify the best performing turbines for those wind regimes. The probability of the AWS value
in the concerned target market in this case provides a measure of the likely market demand of the corresponding
optimally-selected turbine. It is observed that the distribution of the average onshore wind speed
(in the U.S.) has a mean of 5.6 m/s and a standard deviation of 1.3 m/s.
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Figure 3. Capturing the long-term variability AWS over the contiguous United State of America;
µ = 5.6 m/s and σ = 1.3 m/s).

2.2. Approach to Determine Optimal Turbine Choices

The choice of operating conditions-compatible turbines (in this paper) is based on which turbine
type(s) leads to the lowest cost of energy (COE) for the wind farm. It is important to note that, in
this paper, we focus on the suitability of turbines across various wind regimes primarily in terms
of their ”energy production capacity (when operating in a group)” and cost. The former factor is
unique to exploring different wind regimes with a varying footprint in a region. Other criteria, such
as structural compatibility (which would require atmospheric boundary layer turbulence code), noise
impact and local/regional market share of different manufactures, are not taken into consideration
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in this paper. The COE of a farm depends both on the cost of the turbines (installed) and on the
performance of the turbines as members of a group of optimal micro-sited turbines. The COE
is minimized for a given nameplate capacity by simultaneously optimizing the selection and the
placement of the turbines in the farm. To this end, we use the unrestricted wind farm layout
optimization (UWFLO) framework developed by Chowdhury et al. [8,9].

In the UWFLO power generation model [8], the incoming wind is assumed to follow a log
profile [26]. The growth of the wake downwind of a turbine, also accounting for wake merging
scenarios, is determined using the wake growth model proposed by [27]. The corresponding energy
deficit downwind of a turbine is determined using the velocity deficit model developed by [28],
which is widely used in wind farm power generation estimation [14,15,29–31]. The UWFLO power
generation model also accounts for the possibility of a turbine being ‘partially’ in the wake of another
turbine located upwind. The net power generated by the wind farm, for a given incoming wind
condition, is evaluated by the sum of the powers generated by the individual turbines. The wind farm
power generation model developed in UWFLO has been successfully validated by [9] against published
experimental data [32].

The energy production over a defined time period is determined by integrating (numerically)
the power generation function over the distribution of wind speed and direction (estimated for that
time period). The wind turbine design cost and scaling (WTDCS) model, reported by [33], is adopted
to estimate the cost of the farm attributable to the turbines installed. The farm dimensions and the
allowed minimum distance between any two turbines are treated as constraints during optimization.
An advanced mixed-discrete particle swarm optimization algorithm [34] is applied to perform the
optimization.

In order to determine optimal turbine choices for different wind regimes, a set of 25 sample
AWS values is generated using Sobol’s quasirandom sequence generator [35] in the range of interest
determined in the previous Section (i.e., 3.5–10 m/s). Sobol sequences are often exploited as a
sampling strategy due to their reasonably beneficial space-filling (or uniform experimental design)
properties [36]. Sobol sequences use a base of two to form successively finer uniform partitions
of the unit interval and then reorder the coordinates in each dimension. Here, each sample AWS
value represents a wind regime, for which we intend to determine the best performing turbines (in
terms of COE) through wind farm layout optimization. However, an important factor to consider
in this context is: The power generated by a turbine is proportional to the third degree of the approaching
wind speed. Since wind speeds vary significantly over time, using a uniform incoming wind speed equivalent
to the sample AWS can significantly bias this exploration. To mitigate such bias, we instead use the
one-parameter Rayleigh distribution to account for the wind speed variations; this distribution is
estimated by using the sample AWS as its mean. The Rayleigh distribution is a special case of the
more descriptive Weibull distribution (with the Weibull shape parameter equal to two) and can be
expressed as: f (x) = x

σ2 exp
(
−x2

2σ2

)
. The mean of the Rayleigh distribution is given by µ = σ

√
π/2.

Therefore, for a location with an AWS of s m/s (which can be practically assumed to be the mean of
the wind distribution), the parameter σ of the Rayleigh distribution can be determined by:

σ = s

√
2
π

(1)

For illustration purposes, a set of 10 sample AWS are generated, which is representative of
10 different wind regimes. The Rayleigh distributions corresponding to the 10 sample AWS are
shown in Figure 4. If dedicated data is available, more flexible wind uncertainty models, e.g.,
Weibull and kernel density estimation-based distributions, can be leveraged to model the wind
speed variations and make more accurate estimates of wind energy production, with the rest of
the framework (presented in this paper) remaining the same. It is important to note that for
sites where the most descriptive Weibull distribution of wind speed has a shape parameter that
is significantly larger than two, the use of the Rayleigh distribution could introduce noticeable
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inaccuracies. However, when solely depending on average wind speed values from a wind map
(which is the practical scenario when considering an entire region), the Rayleigh distribution provides
a unique solution towards accounting for wind uncertainties in the process of estimating the average
energy production. Moreover, if dedicated wind data is available at a region-wide scale, it would also
be possible to determine the coupled distribution of wind speed and direction and the turbulence
intensities, which will allow more comprehensive estimation of energy production capacity and the
likely consideration of structural compatibility factors. It is important to note in this context that the
UWFLO method leveraged in this paper (to identify optimal turbine choices under group operation)
can readily consider various aspects of wind characteristics (including turbulence intensity) through
the flexibility of using different wake models [37].
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Figure 4. Rayleigh distributions capturing the wind speed variations over time for given average
wind speeds (AWS).

The nameplate capacity and the land dimensions of the farm are fixed with a small tolerance for
nameplate capacity, as multiples of all available rated power values may not exactly match the
equality constraint associated with the specified nameplate capacity. A circular wind farm shape
is assumed to avoid any directional bias that could be introduced if a rectangular farm shape (with
fixed aspect ratio) is assumed [38]. The area of the circular farm, A f arm, is expressed as a function of
the allowed land-area per MW installed, as given by:

A f arm = t×max
(

D2/Pr

)
× PNC (2)

where PNC represents the specified (fixed) nameplate capacity of the farm, and t is an integer.
The parameters D and Pr respectively represent the generic rotor diameter and the rated power of
commercial turbines. Based on land use data from 172 individual wind energy projects in the U.S.,
NREL reported average area usage as 34.5± 22.4 hectares/MW [39]. With a specified t = 21 in this
paper, the above formula thus allows a meager 11.7 hectares/MW of land area for the wind farms to
be optimized; such a stringent land footprint specification promotes turbines and layout plans that
can have minimum impact on the farm surroundings (an important factor to consider in wind farm
development). The following two subsections describe how we quantify the performance of each
turbine and the cost attributable to each turbine.

2.3. Turbine Characterization Model

Every turbine is defined in terms of the five primary features that influence its power generation
performance: (i) rated power; (ii) rated speed; (iii) rotor-diameter; (iv) hub-height; and (v) power
characteristics. The rotor-diameter and the hub-height of a turbine determines which part of
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(and what extent of) the wind shear profile experienced by the turbine. They also regulate
the characteristics of the wake produced by the turbine. Hence, for an array of turbines, the
rotor-diameter and the hub-height play important roles in regulating the overall mutual shading
effects and the subsequent energy availability within the farm. The specification of these two features
is readily available (in online brochures) for most commercial wind turbines.

The rated power, the rated speed and the power characteristics can be used to determine the
power generated by the turbine for any given incoming wind. These three properties are implicit
to the power curve, if available. However, information regarding the “power vs. wind speed”
variation is not readily available for many of the 131 commercial turbines allowed for selection in
this study; generally, the rated power and the rated speed are specified by the manufacturer. Hence,
a generalized power curve (Pn) is developed using the manufacturer reported data for a 1.5 MW
wind turbine [40]. To this end, a fifth degree polynomial is fitted to the graph data. The power
generated (P) and the incoming wind speed (U) are normalized with respect to the rated power (Pr)
and rated speed (Urated), respectively. Here, the incoming wind speed is given by the rotor-averaged
wind speed estimated from the wind information at a given height (which is 80 m for the NREL wind
map), assuming a log profile of wind shear [41].

Using this generalized power curve (Pn), the rated power, the cut-in, cut-out and rated
speed reported by different manufactures, the power curve of other commercial turbines can be
approximated as:

P
Pr

=


Pn

U −Uin
Ur −Uin

, if Uin ≤ U < Ur

1, if Ur ≤ U < Uout

0, if Uout ≤ U or U < Uin

(3)

where Pn represent the polynomial fit for the normalized power curve. This generalized power
characteristics estimation strategy has been used for ready implementation purposes; if the power
response data are available for a particular wind turbine, a unique power curve specific to that turbine
should be ideally determined and used.

2.4. Wind Turbine Cost Model

Since the mid-1990s, wind turbine configurations have become more standardized. As a result,
the development of a generic model to estimate the cost of wind turbine components became possible.
Around this time as well, the Department of Energy (DOE) launched the Wind Partnership for
Advanced Component Technology (WindPACT) projects. The aim of these projects was to investigate
ways to achieve cost reductions in wind turbine production. The extension of the WindPACT projects
came about when [33,42] prepared a wind turbine design cost and scaling (WTDCS) model for the
then-modern wind turbine configurations, based on 2002 U.S. dollars. According to the WTDCS
model, the cost of a farm attributed to one turbine, CFT, can be expressed as:

CFT = CMF + CBS + CLR + COM (4)

where CMF, CBS, CLR and COM represent the total manufacturing cost, the balance-of-station cost, the
levelized replacement cost (LRC) and the operation and maintenance (O&M) cost (all costs are in U.S.
Dollars), respectively.

In the WTDCS model, the annual operation and maintenance cost is represented as a linear
function of the annual energy production (AEP), i.e., COM = 0.007× AEP, which does not adequately
account for the dependency of the O&M cost on the turbine features and the site location (geography
and wind pattern). Instead, this function places turbines with a higher energy production capacity
(for a given resource) at a disadvantage, which is not entirely realistic. At the same time, for onshore
turbines, the O&M cost is a small fraction of the total cost of the farm. Therefore, we do not include
the O&M cost in the wind farm cost model used in this paper.
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The manufacturing cost, CMF, is an aggregate of the turbine component costs. The component
costs are represented in the WTDCS model as functions of the following important features of the
turbine: rotor diameter, hub height and machine rating (rated power). In this paper, we provide the
mathematical expressions for the cost of the major components of a turbine, which include the blades,
gearbox, generator, variable-speed electronics and tower. Detailed formulations of the component
costs can be found in [33]. The blade cost is given by the sum of the blade material cost and the labor
cost, both of which are defined in terms of the rotor diameter. The blade cost, CBL, is expressed as:

CBL =
(
(0.05× D3 − 21, 051.00) + (0.4843× D2.5025)

)
/(1− 0.28) (5)

where D denotes the rotor diameter of the turbine (in meters).
The estimation of the costs of gearboxes and generators is generally challenging owing to the

various configurations available. The WTDCS model considered four different configurations that
include (i) the three-stage planetary/helical gearbox with high-speed generator; (ii) the single-stage
drive with medium-speed generator; (iii) the multi-path drive with multiple generators; and (iv) the
direct drive with no gearbox. Till recently, a majority of the available wind turbines were equipped
with the three-stage gearbox-based drive-train with the high-speed generator. However, in the past
decade, direct-drive turbines have started to become popular as well. The gearbox cost and the
generator cost (CGB and CGN) for the three-stage drive and the generator cost of the direct-drive
(CDGN) are given below:

Three− stage gear : CGB = 16.45× P1.249
r ; CGN = 65.00× Pr

Direct− drive : CDGN = 219.33× Pr
(6)

where Pr denotes the rated power (in kilowatts). Assuming that the turbine has a power convertor,
the total cost of the variable-speed electronics (CVE) is expressed as:

CVE = 79.00× Pr (7)

The cost of the tower can be represented as a function of its weight (in kilograms), which in turn
is expressed as a function of the hub height and the swept area. The weight (MTW) and the cost (CTW)
of a tower made of advanced materials are given by:

MTW = 0.2694× AS × H + 1779.00
CTW = 1.50×MTW

(8)

In Equation (8), H is the hub height of the turbine (in meters), and AS is swept area (in square
meters) given by AS = πD2/4.

The balance-of-station cost (CBS) primarily includes the costs of roads and civil work (CRC) and
that of electrical connections (CEC); these costs [42,43] are given by:

CRC = Pr × (0.00000217× P2
r − 0.0145× Pr + 69.54)

CEC = Pr ×
(
0.00000349× P2

r − 0.0221× Pr + 109.70
) (9)

The levelized replacement cost in terms of U.S. dollars (CLR), which includes the costs of
long-term replacements and the overhaul of the major turbine components, is given by:

CLR = 10.70× Pr (10)

Further details of the assumptions and the cost formulation of other wind turbine components
can be found in [33]. The WTDCS cost model used in this study particularly considers and is
applicable for those turbine configurations that have been (over the years) popular in the commercial
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industry, which includes the three-bladed, upwind, pitch-controlled, variable-speed wind turbine
and its variants. The general configuration of three-bladed wind turbines has changed marginally
since 2006. Hence, the cost model developed by Fingersh et al. [33] is practically applicable to compare
costs of commercial turbines available in 2012 in the market.

2.5. Optimization of Farm Layout and Turbine Type Selection

For each sample average wind speed (AWS) value in the range 3.5–10.0 m/s, wind farm
optimization is performed to minimize the cost of energy (COE). The COE in terms of U.S. dollars
for a candidate farm is given by:

COE =
N × CFT

E f arm
(11)

where N is the number of turbines in the farm, CFT is the cost of the farm attributed to one turbine
and E f arm is the annual energy production of the wind farm. The annual energy production (AEP),
E f arm, is estimated by numerically integrating the UWFLO power generation model over the Rayleigh
distribution of wind speed associated with the concerned AWS value. The Monte Carlo integration
technique is employed [8] using a set of 20 random wind speed values in the range 3.0–25.0 m/s.
Other assumptions for the generic wind farm are summarized in Table 1.

Table 1. Specified properties of the generic wind farm site.

Property Value

Nameplate capacity 25.0 MW
Radius of the circular farm 964.0 m
Average terrain roughness 0.1 m (grassland)
Density of air 1.2 kg/m3

The objective function in the minimization problem is the COE of the wind farm, and the design
variables are the locations of each turbine (Xj,Yj) and the type of turbine (T) to be used, i.e., a total of
2N + 1 design variables for an N-turbine wind farm. The optimization problem is therefore defined as:

Min f (V) = COE
subject to

g1 (V) ≤ 0
g2 (V) ≤ 0
V = {X1, X2, ......, XN , Y1, Y2, ......, YN , T}
0 ≤ Xj ≤ R f arm ∀ j = {1, 2, . . . , N}
0 ≤ Yj ≤ R f arm ∀ j = {1, 2, . . . , N}
T ∈ {1, 2, . . . , Tmax}

(12)

where the parameter Tmax represents the number of turbine-types allowed for selection. The
parameter R f arm represents the radius of the farm, given by R f arm =

√
A f arm/π, where A f arm is

given by Equation (2). The constraint g1 ensures a minimum required clearance between adjacent
turbines, and the constraint g2 ensures that the turbines are located within the fixed circular farm
boundaries [44].

3. Pool of Optimal Turbine Choices for Differing Wind Regimes

For a given installed capacity of the wind farm, the number of turbines in the farm is
automatically determined by the choice of the turbine rated power. In the UWFLO method,
simultaneous optimization of turbine selection and placement involves 2N + 1 design variables, i.e.,
2N turbine coordinates and one turbine type indicator. Hence, differing choices of rated powers
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yield candidate farm designs with differing numbers of design variables. Such candidate designs with
different variable space dimensions cannot be typically optimized together. Therefore, for each
sample AWS, optimization is performed separately to identify the optimal turbine (for that AWS)
from each rated power class. In this paper, we test 131 commercial turbines, belonging to 13 different
rated power classes available from seven major global turbine manufacturers (in 2012). Table 2 lists
the rated power classes and the numbers of turbine variants in each class. It is important to note that
the effective installed capacity of the farm is fixed at 25± 1 MW, to allow a realistic number of turbines
(to be installed) for each rated-power class.

Table 2. Major commercial turbine choices in the U.S. onshore market.

Rated-Power Class (MW) Number of Available Choices Number Installed in the Farm

0.60 3 42
0.80 7 31
0.85 13 29
0.90 3 28
1.25 6 20
1.50 16 17
1.60 5 16
1.80 10 14
2.00 36 13
2.30 14 11
2.60 3 10
2.75 4 9
3.00 11 8

For a set of n random AWS values and the allowed 13 different turbine rated power classes
(Table 2), wind farm optimization is required to be performed 13n times, which can become
computationally expensive. Through numerical experiments, we found that a sample size of n = 25
provides an acceptable representation of the geographical distribution of AWS at a reasonable
computational expense for the 13n optimization runs. For each sample AWS, the results of the
13 optimizations corresponding to the 13 different turbine rated-power classes are compared to
determine the best turbine choice across all classes. Figure 5 shows what rated-power turbines
perform the best (under an optimized layout operation), i.e., provide the lowest COE, for different
AWS values.
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Figure 5. Rated powers of turbines that provide the lowest values of the minimized cost of energy
(COE) for different AWS.

It can be observed from Figure 5 that the 3 MW turbines performed the best for lower
values of AWS (<6.5 m/s), while the 2.3 MW turbines performed the best for higher wind speeds
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(>6.5 m/s). Only for the AWS value of 7.15 m/s, a 1.5 MW turbine performed the best. Higher
rated-power turbines (generally with larger swept areas) can extract more energy from the wind,
thereby delivering higher capacity factors; hence, they are suitable for sites with low average
wind speeds. For higher average wind speeds, the likely greater cost of these higher rated-power
turbines (compared to low rated-power turbines) generally offsets the benefits of their greater energy
extraction capability. In that case, lower rated-power turbines, which are generally less expensive
and provide reasonable capacity factors, become more suitable for sites with higher average wind
speeds. Interestingly, it is also found that all of the 25 best performing turbines are of the direct-drive
type. This observation shows that direct-drive turbines are capable of delivering competitive
COE compared to turbines with the conventional three-stage gear drive-train; which conforms
with the ongoing industry shift from the conventional gear-based drive-train to the direct-drive
system [45–48]. However, further investigation is necessary, through turbine scale analysis, to fully
compare and contrast these two turbine drivetrains, which is not within the scope of this paper.

In this paper, with the consideration of COE as the performance objective, cost and energy
production capacity are treated as the underlying measures of performance. In practice, there
exist other measures of the quality/behavior of a wind turbine, which also play important roles in
deciding suitable turbine choices for a given site. Examples of such measures include: (i) structural
performance of the turbine components with respect to the dynamic loading experienced under a
given set of wind conditions; (ii) the relative ease of transportation and installation w.r.t. the given site;
(iii) the maintainability of turbine components; and (iv) the availability of turbine models and their
operational and performance histories. Hence, more flexible illustrations of turbine performance
with regard to AWS are provided here. Figure 6 shows how the minimum COE accomplished by the
best performing turbines from each rated-power class (obtained through wind farm optimization) varies
with the AWS. Figure 7 shows how the capacity factor accomplished by these best performing turbines
from each rated-power class varies with the AWS. Figure 8 shows the costs of the optimized wind farm
configurations, based on the costs of the corresponding best performing turbines. The cost measures
are expressed in terms of the hourly cost per kW installed ($/kWh). The hourly cost per kW installed
is obtained by dividing the total farm cost by “365 × 24 × tyears”, where the lifetime of the wind
farm, tyears, is assumed to be 20 years; the “hourly cost per kW installed” is illustrated in Figure 8 to
serve as a readily-perceivable unit-measure of turbine costs (independent of turbine ratings), which is
referenced later in this section to aid the discussion of the findings regarding optimal turbine choices
across different wind regimes.
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Figure 6. The minimized COE given by the best performing turbines (of each rated-power class) for
each sample AWS.
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Figure 7. The capacity factor given by the best performing turbines (of each rated-power class) for
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Figure 8. The cost/hr per kW installed given by the best performing turbines (of each rated-power
class) for each sample AWS.

Expectedly, the minimized COE decreases with increasing AWS (Figure 6). It is also observed
that beyond 7.0 m/s, the decrease in COE is marginal. Overall, lower COE values are accomplished
by the (best performing) higher-rated power turbines. However, there are exceptions to this trend.
Figure 6 shows that contrary to the general trend, the commercially available 0.8 MW turbines
performed better (particularly for low AWS) than turbines in the following higher rated-power
classes: 0.85 MW, 0.90 MW, 1.25 MW, 1.60 MW, 1.80 MW, 2.60 MW and 2.75 MW. Similarly, the
commercially available 1.50 MW turbines performed better (particularly for low AWS) than turbines
in higher rated-power classes of 1.60 MW, 1.80 MW, 2.60 MW and 2.75 MW. With the exception
of the 0.90 MW turbine class, all of these other “higher-rated yet dominated” turbine classes did
not have direct-drive variants available (among the ones used in this paper), unlike the 0.80 MW
and 1.50 MW rated-power classes. However, due to the lack of availability of dedicated power
curve data for each of the 131 turbines, the above observation does not necessarily provide clear
evidence as to the comparative performance of turbines with direct drive and conventional gear box
transmission systems.

Interestingly, for higher average wind speeds (i.e., AWS > 8.0 m/s), the deviation in “minimum
COE obtained” across turbines of different rate-power classes is less than 25%. Smaller (lower
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rated-power) turbines are thus relatively more competitive at this end of the wind regime spectrum,
especially when we also consider the following factor: larger turbines are generally associated with
greater cost and logistic challenges with regard to their transportation, installation and component
replacement (and attractive wind farm sites are often found in remote locations that are poorly
connected). Some of these challenges may not be adequately captured in most existing wind farm
cost models, including the WTDCS cost model adopted here. It is also important to note that the cost
of the best performing turbines itself does not follow any particular trend with respect to rated power
(owing to the impact of component-size variation across similarly rated turbines), as readily evident
from Figure 8. Based on the WTDCS cost model [33], it is found that among the comprehensive set
of wind turbines considered here (from the 2012 or earlier market), the 0.9 MW turbines are the least
expensive and the 1.8 MW turbines are the most expensive.

Although the power generated by a stand-alone turbine is proportional to the cubic degree of
the approaching wind speed (assuming uniform flow), the capacity factor of the optimized farm is
observed to follow more of a linear variation with AWS (Figure 7). This observation can be primarily
attributed to the use of a distribution of wind speeds (instead of a constant AWS) and the effect
of wake losses within the farm. Based on this capacity factor variation trend, the minimized COE
is expected to vary as an inverse polynomial function of the AWS; this hypothesis conforms with
the observed trends in Figure 6. We therefore performed inverse polynomial regression (response
surface) to formulate a uniquely helpful analytical expression representing the minimum COE as a
function of AWS, corresponding to each rated-power class as illustrated in Figure 9. The generic
expression can be represented as:

COE = c1sc2 (13)

where c1 and c2 are unknown coefficients, such that c1 > 0 and c2 < 0; s represents the AWS. The
regression curves, corresponding to the 13 turbine rated-power classes, are shown in Figure 10.
The coefficient values and the accuracy measures of the regression curves are provided in Table 3.
It is readily evident from the R2 values (>0.96) and the root-mean-squared (RMS) error values
(<0.003) given in Table 3 that the regression fits are accurate. We observe that the minimized COE,
accomplished by the best performing turbines of each rated-power class, is generally proportional
to −1.4 down to −2.8 power of the AWS (i.e., an inverse linear-quadratic function of AWS). It is
important to note that this observation is conditional on the land area allowed for turbine installation
(specified in this paper), and such COE estimates are generally sensitive to nameplate capacity and
land area/MW installed.
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Figure 9. Implementation of a multiplicative regression model to represent the minimum COE (for
each class) as a function of AWS.
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Figure 10. Variation of the minimized COE (given by the best performing turbines) with AWS:
polynomial regression fits.

Table 3. Details of the polynomial regression curves: representing the variation of minimized COE
with AWS (for each turbine class).

Rated-Power Class (MW) c1 c2 R2 value RMS Error

0.60 1.190 −2.222 0.9720 0.0027
0.80 0.363 −1.746 0.9691 0.0015
0.85 0.447 −1.845 0.9741 0.0015
0.90 0.725 −2.028 0.9895 0.0012
1.25 0.526 −1.897 0.9797 0.0015
1.50 0.299 −1.684 0.9791 0.0011
1.60 0.414 −1.789 0.9722 0.0016
1.80 0.474 −1.796 0.9837 0.0013
2.00 0.239 −1.563 0.9792 0.0010
2.30 0.293 −1.676 0.9850 0.0009
2.60 0.369 −1.716 0.9753 0.0014
2.75 0.430 −1.769 0.9783 0.0015
3.00 0.184 −1.433 0.9784 0.0009

In Figures 11a,b, the rotor diameter and the hub height (tower height) are respectively shown
for the best performing turbines in each rated-power class for different AWS. It can be seen that
different turbine variants were often chosen from each rated-power class for different AWS values;
this observation is evident from the cost illustration as well (Figure 8). Some of the higher rated-power
turbines, those with greater rotor diameters and higher hub heights (and which are also generally
more expensive), were in most cases preferred for low average wind speeds. For the majority of the
other turbine classes, no such trend was readily evident. It was observed in Figure 6 that even though
direct-drive variants were available in the 0.90 MW rated-power class and were the least expensive
(Figure 8), in terms of COE, these turbines were noticeably outperformed by the best performing 0.80
MW turbines. This seemingly counterintuitive phenomenon can be attributed to the substantially
smaller rotor diameters and the lower tower heights of the 0.90 MW turbines (Figure 11a, b), which
limits the amount of power these turbines can extract from the wind. This behavior is also evident
when we observe that among all rated-power classes, the lowest capacity factors are yielded by the
best performing 0.90 MW turbines (Figure 7). Further investigation of the market-wide suitability of
various turbine feature combinations is provided in the following section.
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Figure 11. Features of the best performing turbines (of each rated-power class) for different AWS.
(a) Turbine rotor diameter; (b) turbine hub height.

4. Market Suitability of Turbines

4.1. Development of a Market Suitability Metric for Wind Turbines

In this section, we explore the suitability (likely demand) of currently available turbines for the
U.S. market. The overall market suitability of available turbine features is represented in terms of the
selection likelihood of the available turbine feature combinations (of rated power, rotor diameter and
hub height). The selection likelihood of turbine feature combinations is defined as a function of:

1. How often different feature combinations were selected during the 13n wind farm optimizations,
across the different wind regimes (from Section 3);

2. What level of performance (in terms of COE) was offered by the best performing turbines (from
each rated-power class); and

3. The probability of occurrence of each of the n sample average wind speeds (for which wind
farm optimization was performed) over the U.S. onshore market; determined in Section 2.1.
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The performance-based expected suitability (PES), S, of a turbine is defined over the entire range of
wind resources (i.e., all wind regimes) as:

Si =
n
∑

j=1
δ

j
i
COEj

min

COEj
i

where

δ
j
i =

{
1, if the i−th turbine was selected for the j−th sample AWS
0, if the i−th turbine was not selected for the j−th sample AWS

(14)

where the subscript i refers to the i−th commercial turbine among the 131 allowed types (i.e.,
i = 1, 2, . . . , 131). The parameter COEj

min represents the lowest value of the minimized COE

accomplished (among all rated-power classes) for the j−th sample AWS; the parameter COEj
i

represents the minimized COE accomplished for the j−th sample AWS, by the rated-power
class to which the i−th commercial turbine belongs. It is important to note that the
suitability of turbines in each rated-power class is scaled using the relative COE values, which
lends helpful flexibility to the measure of suitability.

In order to provide measures of the likely market success (market suitability/demand), the suitability
indices (Si) are scaled by the corresponding probability of the sample AWS in the concerned
region: the U.S. onshore market. Therefore, the performance-based expected market suitability (PEMS)
is estimated as:

S̄i = PM

n

∑
j=1

δ
j
i
COEj

min

COEj
i

pj
s (15)

where pj
s represents the probability of occurrence of the j−th sample AWS in the target market

region. The parameter PM represents the total wind power potential in GW of the target market
region. According to Equation (15), the PEMS of a commercial turbine (S̄i) is conveyed in terms of the
total gigawatts of likely installation of that turbine in the target market. As estimated by NREL [49], a
total wind power potential value of 10,459 GW at an 80 m height for the contiguous United States
(which excludes Hawaii and Alaska) is used in this paper. Only windy land area with a gross
capacity factor of >30% at an 80 m height is considered, based on the NREL wind map [21] used
in this paper (Figure 2). NREL’s estimate of the overall wind power potential excludes protected
lands (e.g., national parks and wilderness) and incompatible lands (e.g., urban, airports, wetland and
water features). For this investigation, we have assumed that the overall distribution of AWS (wind
regimes) of the U.S. onshore land area in this study is similar to that of the entire contiguous United
States (captured by the wind map).

4.2. Suitability of Wind Turbine Features for the U.S. Onshore Market

The performance-based expected market suitability (PEMS) of different turbine feature combinations
for the U.S. market can be readily determined from the PEMS estimates of the best performing
turbines (given by Equation (15)). The PEMS of turbine feature combinations are illustrated in the
form of 3D bar diagrams in Figures 12a–c, where each diagram shows two turbine features for the
ease of illustration.
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(a)

(b)

(c)

Figure 12. Performance-based expected market suitability (PEMS) of commercially available turbine
feature combinations for the U.S. onshore wind market. (a) Rated power and rotor diameter
combinations; (b) rated power and hub height combinations; (c) rotor diameter and hub height
combinations.

Figure 12a illustrates that turbines with “higher rated powers and larger rotor diameters” are
the most favored among available commercial variants. Interestingly though, “higher rated-power
turbines with higher hub heights” are noticeably less favored by the U.S. onshore conditions than
some (not all) of the “small-medium rated power turbines (e.g., 0.8 MW and 1.5 MW) with higher
hub heights” (Figure 12b). This observation might be attributed to the appreciable increase in tower
costs with increasing height of the (likely large) higher rated-power turbines, resulting from material
costs associated with dealing with increased structural loading. At the same time, Figure 12c shows
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that “turbines with larger rotor diameter and similarly sized hub heights (approximately 100 m)”
are the most popular, which again indicates that relatively higher tower heights are not favored for
the larger turbines. Some of the smaller turbines with rotor diameters ≤ 70 m and hub heights of
approximately 75 m also display reasonable market suitability (Figure 12a–c).

It is important to note that the expected market suitability in terms of results and observations is not
based on the full range of theoretically possible combinations of turbine features; it is instead based on the
performance of turbines that were available from major manufacturers in or before 2012. Additionally, if
the actual land area in the United States that is available for wind energy development is considered
(excluding protected and incompatible land), the overall market suitability of turbine variants could
be affected, as the relative frequencies of different wind regimes might change. The geographical
distribution of AWS over the entire contiguous United States has a mean of 5.6 m/s at an 80 m height
(Figure 2); most of the wind resource is therefore in the AWS range of 4.5–7.0 m/s at an 80 m height,
i.e., wind Classes 1–4 (low to medium wind resource strengths). Hence, it is not surprising that
overall, the higher rated-power turbines are preferred in the U.S. onshore market. However, for sites
that are remote or that have complex terrain and that have wind classes higher than Class 4, the
relatively smaller wind turbines will provide competitive and cost-effective performance. A growing
market for smaller wind turbines, therefore, could continue to co-exist with the increasing demand
for larger wind turbine systems. The “cost-capacity factor” tradeoffs that are provided by the best
performing turbines for different wind regimes are discussed next.

5. Performance Tradeoffs Offered by Current Commercial Turbines

5.1. Turbine Best Tradeoffs for Different Wind Classes

The turbine suitability exploration has been performed in Section 3 in terms of COE. Although
COE provides a unified understanding of the production performance and economics of wind
turbines under group operation, it does not provide insights into potential tradeoffs between these
two measures of turbine quality/suitability. In this section, we therefore perform an investigation
of the best tradeoffs between the capacity factor and average annual cost (in $/kW installed) offered
by turbines that comprise the pool of the best performing turbines (across different wind regimes)
obtained in Section 3. This investigation is expected to provide further understanding of what
turbine-feature combinations are expected to provide greater market value. The principle of weak
dominance is used to determine the best tradeoffs in the bi-objective function space of the capacity factor
and average annual cost in $/kW-installed. Considering any two generic turbines, A and B, selected from
the pool of the best performing turbine obtained in Section 3, the weak dominance principle can be
stated as: Turbine A is said to dominate Turbine B if and only if:

1. CFA > CFB and CostA ≤ CostB, or
2. CFA ≥ CFB and CostA < CostB.

Here, CFA and CFB respectively represent the capacity factors of Turbines A and B under
layout-optimized group operation, and CostA and CostB respectively represent the average annual cost
in $/kW-installed of Turbines A and B. All CF and cost values have already been estimated in Section 3:
illustrated in Figures 7 and 8). The best tradeoffs are thus obtained by applying a Pareto filter to
the results (i.e., estimated capacity factor and cost values) of the 13n single objective optimizations
performed in Section 3.

Among the 25 different AWS-based wind regimes studied here, for the purpose of tradeoff
analysis, we choose six AWS values that closely represent the (Rayleigh distribution-based) mean
wind speed values defined under the popular seven-class system [20]. For this system, NREL
provides the mean wind speed and wind power density (WPD) spanning each class, considered at
the heights of 10 m and 50 m. The class-defining mean wind speeds at 50 m are extrapolated using the
1/7 power law [20] to 80 m (which is the defining height of the wind map-derived AWS values used
in this paper). Six AWS values (from the set of 25) are then chosen such that they closely represent the
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extrapolated values that separate consecutive wind classes (i.e., Classes 1–2, Classes 2–3, ... Classes 6–7)
of the seven-class system. The best “cost/capacity-factor” tradeoff solutions for the six chosen AWS
values are identified using a Pareto filter, as described earlier. These best tradeoffs between cost and
capacity factor identified for each wind class pairs are illustrated in Figure 13.
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Figure 13. Best tradeoffs between wind farm capacity factor and average annual cost ($/kW installed)
for different wind classes.

As we move towards higher wind classes, more energy becomes available for extraction, and
hence, the best tradeoff curves shift towards higher capacity factors (Figure 13). Interestingly, the
best tradeoff curves corresponding to different wind classes exhibit a similar trend of variation, as
seen from Figure 13. It can be observed from this figure that for an increase of $13/kW-installed in
the average annual cost, the wind farm capacity factor approximately increases by 20%. Thus, from
a relative perspective, this increase is more attractive at the lower end of the wind classes (where
more expensive turbines thus offer greater value). Further investigation of Figure 13 shows that
the initial $7/kW-installed increase in annual cost (starting from $38/kW) yields a noticeably higher
increase (of 14%–15%) in the capacity factor; thereafter, the rate of capacity factor appreciation with cost
reduces, where only a 5% increase is noted over the subsequent cost increment of $6/kW-installed.
This observation emphasizes the potentially higher value offered by medium-priced turbines (subject
to the assumptions and considerations made in this study). However, there are other factors (not
explicitly considered in this study), especially those with indirect economic implications, which
can also influence the relative value offered by differently-sized turbines, e.g., perceived impact
of turbines of different sizes by local residents/authorities, actual impact on the surrounding
environment and downtime due to natural events and planned maintenance.

The following six pairs of figures (Figures 14–19) show the best “capacity factor-cost” tradeoffs
and the features of the corresponding turbines for the six different cases, including:

• Case I: Classes 1–2 winds (Figure 14),
• Case II: Classes 2–3 winds (Figure 15),
• Case III: Classes 3–4 winds (Figure 16),
• Case IV: Classes 4–5 winds (Figure 17),
• Case V: Classes 5–6 winds (Figure 18) and
• Case VI: Classes 6–7 winds (Figure 19).
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In Figures 14 to 19, the “capacity factor-cost” tradeoffs in the left-side sub-figures are readily
related to the corresponding “rotor diameter-hub height” combinations in the right side sub-figures
by using identifying number labels. The colors of the circles represent the rated power of the
corresponding turbines, as indicated in the legend included in each figure.
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Figure 14. Tradeoffs offered by the best performing turbines of different rated powers for Case I:
Class 1–2 winds. (a) Best tradeoffs between the capacity factor and average annual cost ($/kW installed);
(b) rotor diameters and hub heights of the best tradeoff turbines.
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Figure 15. Tradeoffs offered by the best performing turbines of different rated powers for Case II:
Class 2–3 winds. (a) Best tradeoffs between the capacity factor and average annual cost ($/kW installed);
(b) rotor diameters and hub heights of the best tradeoff turbines.
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Figure 16. Tradeoffs offered by the best performing turbines of different rated powers for Case III:
Class 3–4 winds. (a) Best tradeoffs between the capacity factor and average annual cost ($/kW installed);
(b) rotor diameters and hub heights of the best tradeoff turbines.
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Figure 17. Tradeoffs offered by the best performing turbines of different rated powers for Case IV:
Class 4–5 winds. (a) Best tradeoffs between the capacity factor and average annual cost ($/kW installed);
(b) rotor diameters and hub heights of the best tradeoff turbines.
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Figure 18. Tradeoffs offered by the best performing turbines of different rated powers for Case V:
Class 5–6 winds. (a) Best tradeoffs between the capacity factor and average annual cost ($/kW installed);
(b) rotor diameters and hub heights of the best tradeoff turbines.
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Figure 19. Tradeoffs offered by the best performing turbines of different rated powers for Case VI:
Class 6–7 winds. (a) Best tradeoffs between the capacity factor and average annual cost ($/kW installed);
(b) rotor diameters and hub heights of the best tradeoff turbines.

It is indicated by Figures 14–19 that there exists a set of common best tradeoff turbines (i.e.,
similar rotor diameter-hub height combinations) across the different wind classes, particularly the
0.90 MW (44 m/65 m) and the 3.00 MW (101 m/99 m) turbines. It is also observed that the higher wind
classes promote turbines with shorter towers. Interestingly, among the turbines with mid-size rotors
(of approximately 70 m in diameter), some of the taller ones are observed to yield lower capacity
factors while being less expensive compared to their shorter counterparts. Examples include:
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1. Turbines numbered 3 and 4 in Figure 14a–b,
2. Turbine numbered 2 and 5 in Figure 16a–b,
3. Turbine numbered 2 and 5 in Figure 17a–b,
4. Turbine numbered 3 and 4 in Figure 18a–b, and
5. Turbine numbered 3 and 4 in Figure 19a–b.

The above observation is counterintuitive since turbines with relatively taller tower are expected
to be more expensive (due to greater tower costs) while enabling greater energy capture (thus
providing greater capacity factors). This seemingly counterintuitive observation can be explained
by careful investigation of the turbine power curves and of the coupled impact of rated power and
hub-height of turbines (with 70 m rotors) on their cost per kw-installed.

In the five listed cases stated above, the taller turbines belong to the 2.5 MW rated power class
and the shorter turbines belong to the 1.5 MW rated power class. It is found that given their rated
power/speed specifications, the lower capacity factor of the taller 2.5 MW turbines can attributed
to the estimated inferior power curves of these turbines (compared to the shorter 1.5 MW turbines),
which compensated for the greater energy availability at greater heights from the ground.

To understand the cost comparison in these cases, using the WTDCS model, we provide a
contour plot (Figure 20) of the average annual cost (in $/kw-installed) as a function of the rated
power and hub height of turbines with 70 m rotors diameters. From Figure 20, it is readily evident
that the cost per kw-installed is relatively more sensitive to the rated power that to the hub height, in
the given ranges. Hence, for the five listed cases stated above, the higher rated 2.5 MW turbines turn
out to be less expensive per kw-installed than their 1.5 MW counterparts.

Figure 20. Variation of the average annual cost (in $/kW installed) of wind farms with respect to the
hub height and rated power of turbines, assuming a 70 m rotor diameter.

5.2. Comparing the Features of the Best Tradeoff Turbines to those of all Turbines Considered

The feature combinations of the best tradeoff turbines (identified in Section 5.1) are now
compared to those of other dominated turbines in the candidate pool of 131 turbines considered
in this paper. This comparison is performed to investigate why certain ranges of turbine features
provide better tradeoffs in terms on cost per kW-installed and energy production capacity (under
layout-optimized group operation).

Figure 21 shows the rated power and rotor diameter combinations of both the best tradeoff
turbines (considering all wind classes) and the other dominated turbines; the former is represented
by circles and the latter by triangles in Figure 21, both symbols being colored in terms of the cost per
kW-installed.
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Figure 21. Rated powers and rotor diameters of the best tradeoff turbines (circles) and other available
commercial turbines (triangles).

It is observed from Figure 21 that the best tradeoff turbines span almost the entire range of rated
powers and rotor diameters (excluding the 113 m rotor). For turbines in the 1.5–2.5 MW range, larger
rotors are observed to be less preferable (Figure 21), which can be likely attributed to the higher
costs (per kW installed) associated with larger rotors. We also observe (from Figure 21) that while
the best tradeoff turbines (circles) cost less that $50/kW-installed per year, the 1.5–2.5 MW turbines
(with relatively larger rotors) cost approximately $50–65/kW-installed. The greater wind shadowing
effects of larger rotors in the group operation of turbines often offsets the gain in energy extraction at
the individual turbine scale (associated with a larger swept area).

Figure 22 shows the rotor diameter and hub height combinations of both the best tradeoff
turbines (considering all wind classes) and the other dominated turbines; the former is again
represented by circles and latter by triangles in Figure 22, both symbols being colored in terms of
the cost per kW-installed. In this figure, the grey dashed lines represent the upper and lower bounds
of the “rotor diameter/hub height” (D/H) ratios among the best tradeoff turbines; the black dashed
lines represent the upper and lower bounds of the D/H ratios among all of the commercial turbines
considered in this paper.

It is readily evident from Figure 22 that turbines with towers shorter than 65 m are not preferred
(from a “cost/capacity factor” tradeoff perspective) for any of the wind classes, which can be
attributed to their lower energy capture. It is also observed from Figure 22 that for turbines with
small to mid-sized towers, hub height does not significantly impact the cost per kW installed. On the
other hand, “rotor diameter/hub height” (D/H) ratios are found to play an important role in guiding the
suitability of turbines in terms of the “cost/capacity factor” offered by them under layout-optimized
group operation. For example, although turbines with D/H ratios of up to 1.5 are available in
the market, only those with D/H ≤ 1.1 were found to be desirable from a “cost/capacity factor”
tradeoff standpoint.
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Figure 22. Rotor diameters and hub heights of the best tradeoff turbines (circles) and other available
commercial turbines (triangles); grey lines enclose the D/H ratios of the best tradeoff turbines, and
black dashed line encloses D/H ratios of all available turbines.

The pursuit of larger turbines is generally considered to be a promising direction of technology
evolution needed for greater wind energy efficiency at the utility scale [50]. While being congruent
with this popular recommendation, the observations resulting from this section also importantly
indicate that such turbine size considerations should be made in conjunction with considerations
of optimal D/H ratios.

6. Conclusion

The performance of large-scale engineering systems (such as wind turbines) is often guided by
their compatibility with the local environmental conditions in which they operate. In the case of
wind energy, the resource strength of wind varies significantly from one region to another and is
often represented by the estimated average wind speed (shown as a wind map for a target region).
In this paper, we explore the performance potential of commercial turbines, when operating as an
optimally-micro-sited group of entities under different wind resource strengths. The minimized cost
of energy (COE) is used to measure the performance potential. A set of 25 sample average wind
speed (AWS) values (at an 80 m height) is generated; optimum turbine selection (and placement) is
performed for the Rayleigh distribution of wind speed corresponding to each AWS value. To this end,
the unrestricted wind farm layout optimization method is used. A set of 131 turbines commercially
available in 2012 from major manufacturers, and belonging to 13 different rated power classes, is used
to create the selection pool.

The minimized COE accomplished by the best performing turbines of each rated-power class is
observed to follow an inverse polynomial trend with respect to the AWS; multiplicative regression
functions are developed to represent this trend. Based on the optimization results, we explore the
expected market suitability of available turbine feature combinations. Wind map digitization and
a subsequent normal distribution are used to quantify the geographical distribution of AWS over
the contiguous USA. The probability of the each sample AWS (for which optimization is performed)
over the contiguous USA is used to develop a measure of the performance-based expected market
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suitability (PEMS) of the best performing turbines. The PEMS is represented in terms of the gigawatts
of likely installation in the U.S. onshore market. Interestingly, it was observed that “turbines
with large rotor diameters and medium height towers” are the most preferred type of turbine
configuration. We also performed extensive explorations of the “cost-capacity factor” tradeoffs
offered by the best performing turbines and how they are related to the turbine features. It was found
that in general, the medium-priced turbines provided the most attractive tradeoffs: they offered a
15% higher capacity factor compared to the least expensive best tradeoff turbines and only a 5% lower
capacity factor compared to the most expensive best tradeoff turbines. Additionally, it was observed
that for mid-range turbines with rated powers between 1.5 and 2.5 MW, larger rotor diameters are
not preferred. We also found that “rotor diameter/hub height": (D/H) ratios greater than 1.1 were
not preferred by any of the wind regimes. These observations indicate that larger rotors might
not guarantee better performance of future turbines (when operating as a group), unless they are
designed for appropriate power rating and are combined with reasonable tower heights. It should be
noted that the above findings were arrived primarily through the consideration of installation costs,
since in general, installation costs are the dominant factor in wind farm economics, and existing cost
models do not provide an appropriate representation of operations and maintenance (O&M) costs
in terms of turbine configuration and wind characteristics. As more adequately representative O&M
cost models become available and more dedicated wind data become available for entire regions to
estimate such O&M costs, the simultaneous consideration of installation and O&M costs could be
readily included in the current framework. This is expected to provide in the future more extensive
insights into the suitability of wind turbines, e.g., the likely greater O&M expenses associated with
inexpensive (less reliable) turbine components (that often accompany smaller turbines).

It is also important to note that, in this paper, the suitability of different wind turbines to
different wind resources is guided mainly by the power generation capacity and cost; however, these
two objectives (although very important) are not necessarily the only objectives that drive turbine
selection and wind energy project planning. Other important aspects of turbine selection include the
load-bearing capacity of the turbine (and its suitability to the atmospheric boundary layer turbulence
at different sites), the site-based cost of transport and installation and the performance history of the
turbine in the concerned market. Consideration of these objectives in the future would provide a
more comprehensive understanding of the performance potential of different turbine configurations
and their market value. In addition, the analyses and the conclusions in this paper are based on
the turbine design technology and component materials available in the 2012 market. As turbine
technology advances and new materials become available, the cost and performance variation with
turbine features might shift significantly, opening up new directions of the evolution of wind power
generation technology.

Acknowledgments: Support from the National Science Foundation Awards CMMI-1100948 and CMMI-1437746
is gratefully acknowledged. Any opinions, findings, conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views of the NSF.

Author Contributions: Souma Chowdhury and Achille Messac conceived of the methodologies developed in
this research effort, which is a part of a more comprehensive project led by Achille Messac and Souma Chowdhury.
The overall modeling and optimization framework was coded and implemented by Souma Chowdhury, with
support from Jie Zhang, particularly in the context of wind distribution modeling and data analysis. The cost
models used in this paper were coded and implemented by Ali Mehmani, who also contributed towards the
results visualization presented here. All four authors contributed towards the preparation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, J.; Chowdhury, S.; Messac, A.; Castillo, L. A multivariate and multimodal wind distribution model.
Renew. Energy 2013, 51, 436–447.

2. Erdem, E.; Shi, J. Comparison of bivariate distribution construction approaches for analysing wind speed
and direction data. Wind Energy 2011, 14, 27–41.



Energies 2016, 9, 352 29 of 31

3. Probst, O.; Cardenas, D. State of the art and trends in wind resource assessment. Energies 2010, 3, 1087–1141.
4. Diaz-Gonzalez, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafafila-Robles, R. A review of energy storage

technologies for wind power applications. Renew. Sustain. Energy Rev. 2012, 16, 2154–2171.
5. International Electrotechnical Commission. IEC 61400-1, Wind Turbines Part 1: Design Requirements, 3rd ed.;

International Electrotechnical Commission: Geneva, Switzerland, 2005.
6. Chowdhury, S.; Zhang, J.; Catalano, M.; Mehmani, A.; Notaro, S.; Messac, A; Castillo, L. Exploring

the Best Performing Commercial Wind Turbines for Different Wind Regimes in a Target Market.
In Proccedings of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials
Conference, Honolulu, Hawaii, 23–26 April 2012.

7. Chowdhury, S.; Zhang, J.; Mehmani, A.; Messac, A.; Castillo, L. Tradeoffs Offered by the Best Performing
Commercial Turbines. In Proccedings of 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Indianapolis, Indiana, 17–19 September 2012.

8. Chowdhury, S.; Zhang, J.; Messac, A.; Castillo, L. Optimizing the arrangement and the selection of turbines
for a wind farm subject to varying wind conditions. Renew. Energy 2013, 52, 273–282.

9. Chowdhury, S.; Zhang, J.; Messac, A.; Castillo, L. Unrestricted Wind Farm Layout Optimization (UWFLO):
Investigating key factors influencing the maximum power generation. Renew. Energy 2012, 38, 16–30.

10. Chen, Y.; Li, H.; Jin, K.; Song, Q. Wind farm layout optimization using genetic algorithm with different hub
height wind turbines. Energy Conv. Manag. 2013, 70, 56–65.

11. Sorensen, P.; Nielsen, T. Recalibrating Wind Turbine Wake Model Parameters—Validating the Wake Model
Performance for Large Offshore Wind Farms. In Proceedings of the European Wind Energy Conference
and Exhibition, Athens, Greece, 27 February 2006.

12. Mikkelsen, R.; Sorensen, J.N.; Oye, S.; Troldborg, N. Analysis of power enhancement for a row of wind
turbines using the actuator line technique. J. Phys. Conf. Series 2007, 75, 012044.

13. Grady, S.A.; Hussaini, M.Y.; Abdullah, M.M. Placement of wind turbines using genetic algorithms.
Renew. Energy 2005, 30, 259–270.

14. Sisbot, S.; Turgut, O.; Tunc, M.; Camdali, U. Optimal positioning of wind turbines on gokceada using
multi-objective genetic algorithm. Lecture Notes Comput. Sci. Adv. Swarm Intell. 2009, 13, 297–306.

15. Gonzalez, J.S.; Rodriguezb, A.G.G.; Morac, J.C.; Santos, J.R.; Payan, M.B. Optimization of wind farm
turbines layout using an evolutive algorithm. Renew. Energy 2010, 35, 1671–1681.

16. Kusiak, A.; Song, Z. Design of wind farm layout for maximum wind energy capture. Renew. Energy 2010,
35, 685–694.

17. Kwong, W.Y.; Zhang, P.Y.; Romero, D.; Moran, J.; Morgenroth, M.; Amon, C. Multi-objective wind farm
layout optimization considering energy generation and noise propagation with NSGA-II. J. Mech. Des.
2014, 136, 091010.

18. Chen, L.; MacDonald, E. A system-level cost-of-energy wind farm layout optimization with landowner
modeling. Energy Conv. Manag. 2014, 77, 484–494.

19. Fleming, P.A.; Ning, A.; Gebraad, P.M.; Dykes, K. Wind plant system engineering through optimization of
layout and yaw control. Wind Energy 2015, 19, 329–344.

20. NREL-RReDC. Classes of Wind Power Density at 10 m and 50 m. Available online: http://rredc.nrel.gov/
wind/pubs/atlas/tables/1-1T.html (accessed on 1 March 2012).

21. Truepower, A. NREL: Dynamic Maps, Geographic Information System (GIS) Data and Analysis Tools:
Wind Maps. Available online: http://www.nrel.gov/gis/wind.html (accessed on 1 June 2011).

22. Pishgar-Komleh, S.; Keyhani, A.; Sefeedpari, P. Wind speed and power density analysis based on Weibull
and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renew. Sustain. Energy Rev. 2015,
42, 313–322.

23. Rosen, K.; Van Buskirk, R.; Garbesi, K. Wind energy potential of coastal Eritrea: An analysis of sparse
wind data. Solar Energy 1999, 66, 201–213.

24. Rehman, S.; Halawani, T.; Husain, T. Weibull parameters for wind speed distribution in Saudi Arabia.
Solar Energy 1994, 53, 473–479.

25. Celik, A.N. Energy output estimation for small-scale wind power generators using Weibull-representative
wind data. J. Wind Eng. Ind. Aerodyn. 2003, 91, 693 – 707.

26. Crasto, G. Numerical Simulations of the Atmospheric Boundary Layer; Universita degli Studi di Cagliari:
Cagliari, Italy, 2007.



Energies 2016, 9, 352 30 of 31

27. Frandsen, S.; Barthelmie, R.; Pryor, S.; Rathmann, O.; Larsen, S.; Hojstrup, J.; Thogersen, M. Analytical
Modeling of Wind Speed Deficit in Large Offshore Wind Farms. Wind Energy 2006, 9, 39–53.

28. Katic, I.; Hojstrup, J.; Jensen, N.O. A Simple Model for Cluster Efficiency. In Proceedings of the European
Wind Energy Conference and Exhibition, Rome, Italy, 7–9 October 1986.

29. Elkinton, C.; Manwell, J.; McGowan, J. Offshore Wind Farm Layout Optimization (OWFLO) Project:
Priliminary Results. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno,
NV, USA, 9–12 January 2006.

30. Crespo, A.J.; Hernandez, S.; Frandsen, S. Survey of modeling methods for wind turbine wakes and wind
farms. Wind Energy 1999, 2, 1–24.

31. Herbert-Acero, J.F.; Probst, O.; Rethore, P.; Larsen, G.C.; Castillo-Villar, K.K. A review of methodological
approaches for the design and optimization of wind farms. Energies 2014, 7, 6930–7016.

32. Cal, R.B.; Lebron, J.; Kang, H.S.; Meneveau, C.; Castillo, L. Experimental Study of the Horizontally
Averaged Flow Structure in a Model Wind-Turbine Array Boundary Layer. J. Renew. Sustain. Energy
2010, 2, 013106.

33. Fingersh, L.; Hand, M.; Laxson, A. Wind Turbine Design Cost and Scaling Mode; National Renewable Energy
Laboratory: Golden, CO, USA, 2006.

34. Chowdhury, S.; Tong, W.; Messac, A.; Zhang, J. A mixed-discrete Particle Swarm Optimization algorithm
with explicit diversity-preservation. Struct. Multidiscip. Optim. 2013, 47, 367–388.

35. Sobol, M. Uniformly Distributed Sequences with an Additional Uniform Property. USSR Comput. Math.
Math. Phys. 1976, 16, 236–242.

36. Sobol, I.M. A Primer for the Monte Carlo Method; CRC Press: Boca Raton, FL, USA, 1994.
37. Tong, W.; Chowdhury, S.; Mehmani, A.; Messac, A.; Zhang, J. Sensitivity of wind farm output to wind

conditions, land configuration, and installed capacity, under different wake models. J. Mech. Des. 2015,
137, 061403.

38. Chowdhury, S.; Zhang, J.; Messac, A.; Castillo, L. Characterizing the Influence of Land Area and Nameplate
Capacity on the Optimal Wind Farm Performance. In Proceedings of the ASME 2012 6th International
Conference on Energy Sustainability, San Diego, CA, USA, 23–16 July 2012.

39. Denholm, P.; Hand, M.; Jackson, M.; Ong, S. Land-Use Requirements of Modern Wind Power Plants in the
United States; National Renewable Energy Laboratory: Golden, CO, USA, 2009.

40. GE-Energy. 1.5 MW Wind Turbine. Available online: http://www.ge-energy.com/products and services/
products/wind turbines/index.jsp (accessed on 1 December 2009).

41. Crespo, A.; Hernández, J.; Frandsen, S. Survey of modelling methods for wind turbine wakes and wind
farms. Wind Energy 1999, 2, 1–24.

42. Malcolm, D.J.; Hansen, A.C. WindPACT Turbine Rotor Design Study: June 2000–June 2002 (Revised);
National Renewable Energy Laboratory: Golden, CO, USA, 2006.

43. Shafer, D.A.; Strawmyer, K.R.; Conley, R.M.; Guidinger, J.H.; Wilkie, D.C.; Zellman, T.F.; Bernadett, D.W.
WindPACT Turbine Design Scaling Studies: Technical Area 4 — Balance-of-Station Cost; National Renewable
Energy Laboratory: Golden, CO, USA, 2001.

44. Chowdhury, S.; Zhang, J.; Messac, A.; Castillo, L. Developing a Flexible Platform for Optimal Engineering
Design of Commercial Wind Farms. In Proceedings of the ASME 2011 5th International Conference on
Energy Sustainability, Washington, DC, USA, 7–10 August 2011.

45. Fairley, P. Wind Turbines Shed Their Gears: Both Siemens and GE Bet on Direct-Drive Generators.
Available online: http://www.technologyreview.com/energy/25188 (accessed on 1 February 2012).

46. Trabish, H.K. Wind Turbines, the Next Generation: Forget Gears. The Future Could Lie with Direct Drive.
Available online: http://www.greentechmedia.com/articles/read/wind-tubines-the-next-generation
(accessed on 1 February 2012).

47. Tan, A. A Direct Drive to Sustainable Wind Energy. Available online: http://www.technologyreview.com/
energy/25188 (accessed on 1 February 2012).

48. Bartos, F.J. Direct-drive Wind Turbines Flex Muscles. Available online: http://www.controleng.com/
single-article/direct-drive-wind-turbines-flex-muscles/4be132ffb0.html (accessed on 1 February 2012).



Energies 2016, 9, 352 31 of 31

49. NREL. Estimate of Windy Land Area and Wind Energy Potential, by States, for Areas≥ 30 percent Capacity
Factor at 80 m. Available online: www.windpoweringamerica.gov/docs/ (accessed on 1 December 2011).

50. Caduff, M.; Huijbregts, M.A.J.; Althaus, H.; Koehler, A.; Hellweg, S. Wind power electricity: The bigger the
turbine, the greener the electricity? Environ. Sci. Technol. 2012, 46, 4725–4733.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

