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Abstract: The permeability of coal is a critical parameter in estimating the performance of coal
reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with
the flow velocity. However, the stress induced deformation and damage can significantly influence
the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest
China were collected for the study. The gas flow velocities under different injection gas pressures and
effective stresses in the intact coal and damaged coal were tested using helium, incorporating the
role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and
square of gas pressure gradient were discussed, which can help us to investigate the transformation
conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas
flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity
non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the
effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square
of pressure gradient increased under low effective stress. The instability of gas flow caused by high
ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase
of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to
be linear. The mechanisms of the phenomena were explored according to the experimental results.
The permeability of coal was corrected based on the relationships between the flow velocity and
square of gas pressure gradient, which showed advantages in accurately estimating the performance
of coal reservoirs.
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1. Introduction

The permeability and gas flow pattern of coal play significant roles in controlling methane
production of coal reservoirs [1,2]. The permeability of coal is greatly affected by the degree of damage,
which is related to the deformation of coal [3,4]. The gas flow patterns of coal determine the calculation
methods of the permeability. The gas flow in original multi-pore media reservoirs is usually regarded
as a steady and linear process and can be described by Darcy’s law. However, the gas flow pattern is
also effected by stress induced deformation and damage. The low-velocity non-Darcy gas flow occurs
in tight multi-pore media reservoirs. Meanwhile, the gas flow in damaged multi-pore media reservoirs
may be unstable.
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The permeability evolution of coal and rock has been investigated in recent years. The effects of
pore pressure, effective stress, fluid saturation and adsorption/sorption properties on the permeability
of coal have been recognized and documented [5–8]. The relative permeability of gas and water in
different rank coals selected from south Qinshui Basin has been investigated under various gas/water
saturations [9]. Moreover, the relations among matrix shrinkage, gas slippage, and permeability
were explored [10–13]. Zhang et al. conducted the experiments to investigate relations among the
flow rate, permeability and fracture aperture in fractured media [14]. Empirical relations based on
laboratory results have been proposed to describe the relations among stress, permeability and porosity
of sedimentary rock [15]. Cai et al. explored the contribution of stress and damage on the evolution
of permeability through X-ray CT images and acoustic emission profiling together with concurrent
measurements of the P-wave velocity [16]. For simultaneous exploitation of coal and coal ming
methane (CMM), mining-enhanced permeability of coal has been tested in recent studies [17,18]. The
deformation, strength and permeability evolution were studied through the conventional triaxial
compression of initially intact coal [19]. Xie et al. proposed a unique model to describe the spatial and
temporal distribution of coal permeability within the effective influence zone [20].

Klinkenberg proposed that the permeability constant as determined with gases is dependent upon
the property of the gas, and is a linear function of the reciprocal mean pressure [21]. This effect can be
explained by taking into account the phenomena of slip, which are related closely to the mean free
paths of the gas molecules. The start-up pressure gradient exists under low permeability conditions
was later reported and investigated [22,23]. Forchheimer proposed Darcy’s law is inaccurate to describe
high-velocity gas flow in porous media and added a second order of the velocity term to represent the
microscopic inertial effect [24], which is proportional to the square of the flow velocity, to the pressure
drop predicted by Darcy’s law in order to account for the deviation,

´ dP{dx “ µv{K` βρv2 (1)

where P is pore pressure, µ is gas kinematic viscosity, v is gas flow velocity, β is non-Darcy coefficient
and ρ is fluid density.

Non-Darcy flow in porous media was similar to turbulent flow in a conduit, the Reynolds number
for identifying turbulent flow in conduits was adapted to describe non-Darcy flow in porous media [25].
Nashawi presented a semi-analytical equation that incorporates the effects of non-Darcy flow in the
fracture and investigated the various parameters that influence the flow behavior of real gas in the
fracture nearby the wellbore [26]. Zeng and Zhao proposed a rigorous semi-analytical model to study
the production rate behavior of wells in gas reservoirs with Forchheimer’s non-Darcy flow under
constant or varying bottom-hole pressure conditions [27]. Mahdiyar et al. developed a number of
simulators to study and compare the productivity of a hydraulically fractured well at both steady and
pseudo steady states conditions [28]. The increase of flow rate in the samples tested by Jasinge et al.
was non-linear at low confining pressures [29]. The investigation of fluid flow in post-peak porous
media showed that the flow was deviated from Darcy’s flow and the inertial coefficient β could be
negative [30].

As shown in Figure 1, the stability of surrounding coal and rock near wellbores or boreholes
depends on the relations between redistributed stress and strength of surrounding coal and rock. As
redistributed stress reaches the strength, surrounding coal and rock will be damaged. The coal and
rock is released and the permeability increases in this zone. The stress near wellbores or boreholes
transfer to deep-seated rock and concentrated stress zone is generated in a certain range. The coal
and rock are compressed and the permeability decreases in this zone. The degrees of coal damage
in different zones are distinct as shown in Figure 2. The permeability and gas flow pattern of coal in
different zones may be distinct as well. This study investigated the stress and damage-induced gas
flow pattern and permeability variation of coal.
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Figure 2. Coals with different degrees of damage.

2. Experimental Results and Analysis

2.1. Characteristics of Gas Flow Rate and Pattern Change in the Intact Coal and Damaged Coal

Figure 3 presents the relations between gas flow rate and effective stress of the intact coal and
damaged coal (injection pressure = 1, 2, 3 and 4 MPa,). It is noted that the gas flow rates increased
with increasing injection pressure. This is consistent with the earlier studies [31]. Figure 3 reveals that
the gas flow rates in both the intact coal and damaged coal decreased with increasing effective stress.
This was because the coal was compressed as the effective stress increased, which narrowed the gas
flow channels in the coal. The gas flow rates in the damaged coal under different effective stresses
and injection pressures was range from 0.086 to 13.542 L/min and that in the intact coal was range
from immeasurable to 0.0671 L/min. The gas flow rate in the damaged coal was higher than that in
the intact coal by two to three orders of magnitude.
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Figure 3. The relations between gas flow rate and effective stress.

Empirical relations between the gas flow rates and effective stresses of both the intact coal and
damaged coal have been proposed. The logarithmic relation was found to be available for providing
the highest coefficients of determination R2 of fitting curves. The fitting equation is shown as below,

q “ alnpσeq ` b (2)

where q is the gas permeation rate (m3/s), σe is the effective stress (MPa), a and b are the fitting
parameters related to material properties. The “a” decreased and the “b” increased with increasing
injection pressure according to the experimental results. The fitting parameters and coefficients of
determination under different injection pressures are shown in Table 1.

Table 1. Fitting parameters and coefficients of determination.

Injection Pressure
(Intact Coal) a b R2 Injection Pressure

(Damaged Coal) a b R2

1 MPa ´0.006 0.009 0.993 1 MPa ´0.664 1.264 0.966
2 MPa ´0.017 0.030 0.997 2 MPa ´4.806 8.5659 0.904
3 MPa ´0.032 0.061 0.993 3 MPa ´9.871 18.453 0.900
4 MPa ´0.054 0.105 0.994 4 MPa ´12.580 24.977 0.944
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Figure 4 presents the relations between gas flow rate and square of pressure gradient in the intact
coal (Results of the other specimens are shown in Figures S1 and S2). The gas flow rate in the intact
coal increased linearly as the square of pressure gradient increased under low effective stress (effective
stress = 1 and 2 MPa). However, the curves of gas flow rate vs. square of pressure gradient under low
effective stress did not pass through the origin point. Pseudo-initial flow rates were observed in the
experiments. Gas slippage effect, also known as Klinkenberg effect may account for this phenomenon.
Pseudo-initial flow rate represents the level of slippage force. Based on the pseudo-initial flow rate, the
relations between gas flow rate and square of pressure gradient in the intact coal under low effective
stress should be described as follow,

ApP2
1 ´ P2

2 q{2LP2 “ µpq´ qpiq{K (3)

where K is the permeability (m2), L is the length of the coal specimens (m), A is the cross-sectional area
of the coal specimens (m2), P1 is the gas pressure at the upper stream or inlet of specimens (Pa), and
P2 is the gas pressure at the downstream or outlet of the specimens (Pa), and qpi is the pseudo-initial
flow rate.
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Figure 4. The relations between gas flow rate and square of pressure gradient in the intact coal.

As the effective stress increased, the start-up pressure gradients were observed. The critical
point exists to divide the curve of gas flow rate vs. square of pressure gradient into two parts. The
front part of the curve before the critical point is concave up and the other part of the curve after the
critical point is approximately linear, which is regarded as low-velocity non-Darcy flow. The start-up
pressure gradient increased as the effective stress increased, which indicated that the mobility of gas
in the coal was weakened. The start-up pressure gradient represents the level of frictional resistance.
The surface molecular force on the interface between solid phase and gas phase may account for
this phenomenon. The force increased as the distance from fluid particle to the interface decreased
with increasing effective stress. Gas can overcome the resistance to flow continuously as the pressure
gradient increased. Based on the start-up pressure gradient, the relations between gas flow rate and
square of pressure gradient in the intact coal should be described as follow,

ApP2
1 ´ P2

2 ´ Jq{2LP2 “ µq{K (4)

where J is the start-up pressure gradient.
Figure 5 presents the relations between gas flow rate and square of pressure gradient in the

damaged coal. Figure 5 reveals that the gas flow rate in the damaged coal increased nonlinearly as
the square of pressure gradient increased under low effective stress (effective stress = 1, 2 and 3 MPa).
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The curves of gas flow rate vs. square of pressure gradient under low effective stress were concave
up. Meanwhile, pseudo-initial flow rates were observed in the experiments. As the effective stress
increased, the increase of gas flow rate in the coal turned to be linear and the curves turned to be
straight. Based on the quadratic function relation and pseudo-initial flow rate, the relations between
gas flow rate and square of pressure gradient in the damaged coal under low effective stress should be
described as follow,

ApP2
1 ´ P2

2 q{2LP2 “ µpq´ qpiq{K` αpq´ qpiq
2 (5)

where α is the coefficient of additional acceleration or resistance, and the second term to Darcy’s
equation, proportional to the velocity squared, is introduced to describe additional acceleration
or resistance.
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Figure 5. The relations between gas flow rate and square of pressure gradient in the damaged coal.

Equation (5) has a similar form with Forchheimer’s equation. Forchheimer’s equation is normally
used to describe the high-velocity non-Darcy flow, where the inertial coefficient β was defined. A
second term to Darcy’s equation, proportional to the velocity squared, was introduced to describe
inertial resistance. The inertial coefficient β is usually positive in high-velocity non-Darcy flow,
which means that the flow rate is decreased by inertial resistance. However, the gas flow rate in
the experiment of the damaged coal under low effective stress was increased. And the coefficient of
additional acceleration or resistance α was negative in the damaged coal under low effective stress.
Forchheimer’s equation is derived based on the assumption of rigid skeleton in coal, which is able
to describe the pressure drop induced by inertial effect but limited to considerate the instability of
gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal. In
the damaged coal, the original skeleton was damaged and recombined. The increasing injection gas
pressure under low effective stress promoted the damage and recombination of the coal, which led to
the erosion of coal particles. Therefore, the gas flow in the damaged coal under low effective stress
was an unsteady process. The above phenomena would enhance the permeability of the damaged coal.
Thus, the flow rate of the damaged coal under low effective stress increased with increasing injection
pressure and the coefficient of additional acceleration or resistance α was negative.

2.2. Characteristics of Permeability Change in the Intact Coal and Damaged Coal

Figure 6 presents the apparent permeability and corrected absolute permeability in the intact
coal under different injection pressures and effective stresses. Figure 6 reveals that the apparent
permeability in the intact coal calculated by Darcy’s law decreased (effective stress = 1 and 2 MPa) or
increased (effective stress = 3, 4, 5, 6 and 7 MPa) with increasing injection pressure under the same
effective stresses, whereas the absolute permeability corrected by Equations (3) and (4) stayed constant
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with increasing injection pressure. The permeability in the intact coal should be constant under a same
effective stress as the skeleton of coal and flow channels for gas remain unchanged. The deviation of
the apparent permeability calculated by Darcy’s law is the result of ignoring the Klinkenberg effect and
frictional resistance. Figure 6a presents the difference between the apparent permeability and corrected
absolute permeability caused by Klinkenberg effect. Figure 6a reveals that the apparent permeability
in the intact coal calculated by Darcy’s law decreased with increasing injection pressure. The apparent
permeability was higher than the corrected absolute permeability. The apparent permeability was
enhanced from the absolute permeability by Klinkenberg effect. Figure 6b presents the difference
between the apparent permeability and corrected absolute permeability caused by frictional resistance.
Figure 6b reveals that the apparent permeability in the intact coal calculated by Darcy’s law increased
with increasing injection pressure. The apparent permeability was lower than the corrected absolute
permeability. The apparent permeability was reduced from the absolute permeability by frictional
resistance. The corrected absolute permeability of the intact coal was more accurate, and showed
advantages in estimating the performance of coal reservoirs.
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Figure 6. The apparent permeability and corrected absolute permeability in the intact coal under
different injection pressures and effective stresses: (a) the difference between the apparent permeability
and corrected permeability caused by Klinkenberg effect; and (b) the difference between the apparent
permeability and corrected permeability caused by frictional resistance.
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To obtain the characteristics of permeability in the damaged coal, Equation (5) can be
transformed into:

ApP2
1 ´ P2

2 q{2LP2 “ rµ{K` αpq´ qpiqspq´ qpiq (6)

where α(q ´ qpi)/µ represents the instability of gas flow induced permeability increase. Equation (6)
can be transformed into:

ApP2
1 ´ P2

2 q{2LP2 “ µpq´ qpiq{
 

Kµ{rµ` Kαpq´ qpiqs
(

(7)

where Kreal = Kµ/[µ + Kα(q ´ qpi)] is defined to be the permeability in the damaged coal under low
effective stress, which increases with increasing q as the result of instability of gas flow induced by high
ratio of injection gas pressure over effective stress. Therefore, Equation (7) can be transformed into:

ApP2
1 ´ P2

2 q{2LP2 “ µpq´ qpiq{Kreal (8)

Figure 7 presents the permeability in the damaged coal under different injection pressures and
effective stresses. Figure 7 reveals that the permeability in the damaged coal under low effective
stress increased with increasing injection pressure. This is due to the original skeleton in the coal
was damaged and recombined, and the increasing injection gas pressure under low effective stress
promoted the damage and recombination of coal, which led to the erosion of coal particles. As the
effective stress increased, the permeability in the damaged coal turned to be constant with increasing
injection pressure.
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Figure 7. The permeability in the damaged coal under different injection pressures and
effective stresses.

Figure 8 presents the permeability against confining stress at the same injection pressure. Figure 8
reveals that the permeability in both the intact coal and damaged coal decreased with increasing
confining stress. This was because the coal was compressed as the confining stress increased, which
narrowed the gas flow channels in the coal. The permeability in the damaged coal was higher than
that in the intact coal by two to three orders of magnitude. This is caused by the differences between
the microscopic structures of the intact coal and damaged coal. Figure 9 presents the microscopic
structures of the intact coal and damaged coal. No obvious fractures were observed in the intact coal.
However, connecting and obvious fractures were observed in the damaged coal. Fractures are the
main channels for gas flow, thus enhance the permeability in coal.
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Figure 8. The permeability against confining stress at the same injection pressure: (a) permeability
against confining stress in intact coal; and (b) permeability against confining stress in damaged coal.
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3. Experiment Setup for Tests

3.1. Experiment Apparatus

The experiments were conducted by using the newly self-made “Thermo-hydro-mechanical
(THM) coupled with triaxial servo-controlled seepage apparatus for coal and rock” (THM-2 style).
The newly-developed apparatus is applicable to investigate the combined effect of stress, strain,
temperature and gas flow on the mechanical behavior and permeability evolution of coal and rock.
This apparatus has following technical specifications: the maximum axial force of 1000 kN, the
maximum confining pressure of 60 MPa, the maximum gas pressure of 20 MPa, the maximum axial
displacement of 60 mm, and the maximum radial deformation of 12 mm. An oil tank is used to adjust
the experiment temperature from room temperature to 110 ˝C. The accuracy of this measurement
system is ˘1% for stress, ˘1% for deformation, and ˘0.1 ˝C for temperature control. Figure 10 shows
the apparatus.
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Figure 10. Thermo-Hydro-Mechanical (THM) coupling with triaxial servo-controlled seepage
apparatus for coal and rock: 1—Lifter; 2—Pressure vessel; 3—Sensor of axial stress; 4—Oil tank;
5—Movable work platform; 6—Heater tubes; 7—Oil inlet valve; 8—Sensor of axial displacement;
9—Hydraulic cylinder of axial stress; 10—Force plate; 11—Gas inlet valve; 12—Gas outlet valve;
13—Air drain valve; 14—Hydraulic oil inlet and drain valve; 15—Circumferential extensometers;
16—Specimens.

The following are designed to improve the accuracy of loading and measurement. The servo
hydraulic pressure controller performs continuous loading/unloading paths. A high-permeable pad
with multi-holes is designed to let gas pass through the specimen uniformly. The constant temperature
oil heating system is designed to keep the temperature constant. The stress, strain, temperature, and
gas flow rate are automatically measured by high accuracy sensors. The loading system is continuously
controlled by a computer. This apparatus has system rigidity greater than 10 GN/m and is thus suitable
for displacement control.

3.2. General Geology of the Sampling Area

The specimens were gathered from coal seam K2b of Songzao coalfield in Chongqing, southwest
China. The geological map of Songzao coalfield highlighting the sampling area in the field is shown in
Figure 11. Table 2 lists the geological profiles of the coal seam. The elevation in the area ranges from
360 to 1300 masl. The oldest outcropping strata in the area is the Middle Silurian Hanjiadian formation,
and the newest outcropping strata in the area is the Upper Triassic Xujiahe formation. The coal-bearing
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strata is the Permian Longtan formation. The coal-bearing strata shows marine-continental transitional
facies. The overburden depth ranges between 500 and 540 m with a 460–500 m thick alluvium layer at
the top. It has a dip angle ranging from 35˝ to 37˝ and an average thickness of 0.75 m, ranging from
0.22 m to 1.20 m. The coal seam K2b is a gas infiltrated layer, with a gas content of 10.14 m3/t. The
temperature in the coal seam K2b is in the range of 28.5 ˝C to 29.3 ˝C. The average vitrinite content
of the coal is 68.4%, inertinite content is 18.7%, clay mineral content is 8.4%, oxide content is 2.0%,
carbonate content is 0.4%, and sulfide content is 2.1%.

Energies 2016, 9, 351 11 of 17 

 

460–500 m thick alluvium layer at the top. It has a dip angle ranging from 35° to 37° and an average 

thickness of 0.75 m, ranging from 0.22 m to 1.20 m. The coal seam K2b is a gas infiltrated layer, with a 

gas content of 10.14 m3/t. The temperature in the coal seam K2b is in the range of 28.5 °C to 29.3 °C. 

The average vitrinite content of the coal is 68.4%, inertinite content is 18.7%, clay mineral content is 

8.4%, oxide content is 2.0%, carbonate content is 0.4%, and sulfide content is 2.1%. 

 

Figure 11. Geological map of Songzao coalfield highlighting the sampling area in the field. 

  

Figure 11. Geological map of Songzao coalfield highlighting the sampling area in the field.



Energies 2016, 9, 351 12 of 16

Table 2. Simplified geological profiles of coal seam K2b.

Layer Number Lithology Thickness (m)

1 Alluvium 460
2 Sandstone 5.45
3 Sandy mudstone 2.65
4 Coal seam 1.83
5 Sandy mudstone 7.43
6 Limestone 1.25
7 Sandstone 3.96
8 Limestone 1.01
9 Sandy mudstone 3.18
10 Argillaceous limestone 4.90
11 Coal seam 0.75
12 Sandy mudstone 3.72
13 Coal seam 0.24
14 Sandy mudstone 3.41
15 Siliceous limestone 1.56
16 Calcareous mudstone 1.19

3.3. Characterisation of Coal

Proximate, structure and geotechnical analyses were carried out for the characterization of coal
specimen used for the experiment, and the summary of results is shown in Table 3.

Table 3. Main characteristic parameters of the coal.

BET Surface
Area (m2/g)

Langmuir Surface
Area (m2/g)

Total Pore
Volume (cm3/g)

Average Pore
Width (Å)

Mad (%) Aad (%) Vad (%) Fcad (%)

0.2997 0.4744 0.0014 189.5302 1.17 13.16 21.03 64.64

UCS (MPa) Density (kg/m3) Young’s Modulus (GPa) Poisson’s ratio
14.72 1460 4.77 0.21

Mad—moisture content on air dried basis; Aad—ash content on air dried basis; Vad—volatile content on air
dried basis; FCad—fixed carbon content on air dried basis. UCS—uniaxial compressive strength.

3.4. Specimen Preparation

Large intact coal blocks were collected and treated from the coal seam according to the “general
requirements for sampling (China National Code of GB/T 23561.1-2009)”. The coal blocks were shaped
into cylindrical specimens of Φ 50 mm ˆ 100 mm. The specimen determined to be without visible
fractures and cracks, by means of photo observation and statistical classification, was chosen as the
experimental specimen. Figure 12 shows the specimen.
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3.5. Experiment Procedure and Data Treatment

According to Harpalani and Chen [32], and as also mentioned by Ranjith and Perera [33], the
effective stress is a function of gas pressure as shown in the following equation,

σe “ σc ´
Pi ` P0

2
(9)

where σc is the confining pressure (MPa), Pi is the gas injection pressure (MPa) and P0 is the gas outlet
pressure (atmospheric pressure for the experiment).

Based on the effective stress, the conditions used in the experiment were illustrated in Figure 13
and described as below.
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Condition 1: The isotropic in-situ stress states of σe = 1, 2, 3, 4, 5, 6 and 7 MPa were applied to the
specimen, respectively. Then, the high-pressure helium tank was connected to the specimen to inject
the inert gas helium into the specimen up to the specified injection pressure (from 0.3 to 4.5 MPa). The
gas flow rate at each pressure point was measured.

Condition 2: The isotropic in-situ stress state of σe = 7 MPa (injection pressure = 4.5 MPa) was
applied to the specimen that was used in the experiment of Condition 1. The deviatoric stress was
then applied to the specimen with a speed of 0.1 mm/min till its post-peak stage. Then, the stress was
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released. The isotropic in-situ stress states of σe = 1, 2, 3, 4, 5, 6 and 7 MPa were applied again to the
specimen, respectively. The corresponding injection pressure was injected and the flow rate of gas at
each pressure point was measured.

The experiments strictly followed the following test procedure. Silicon rubber was evenly coated
on the coal specimen to prevent gas leakage from the coal. The specimen was installed between the top
and bottom pressure shafts in the triaxial chamber after the silicone rubber was fully dry. A thermal
shrunken pipe was then put on. This pipe was heated by a heater so that it closely contacted the
specimen wall and both ends of the pressure shafts. The thermal shrunken pipe was then tightened by
metal hoops at both ends of the pressure shafts. A circumferential extensometer and the remaining
parts of the triaxial flow apparatus were then installed.

The gas permeation through the specimen was assumed to be isothermal, and helium was ideal
gas. According to Darcy’s law, the permeability of coal was calculated by [34],

K “
2qµLP2

ApP2
1 ´ P2

2 q
(10)

4. Conclusions

Coals from Songzao coalfield in Chongqing, southwest China were tested using inert gas helium
to obtain the gas flow velocities under different injection gas pressures and effective stresses in intact
coal and damaged coal, incorporating the role of gas flow pattern on the permeability of coal. The
relations between flow velocity and square of gas pressure gradient were discussed, which can help us
investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The
mechanisms of the phenomena are explored according to the experimental results. The permeability
of coal was corrected based on the relations between flow velocity and square of gas pressure gradient,
which showed advantages in accurately estimating the performance of coal reservoirs. Based on these
results, the following understandings and conclusions can be drawn:

(1) Both the gas flow rates in the intact coal and damaged coal increased with increasing injection
pressure. The gas flow rate in the damaged coal was higher than that in the intact coal by two to
three orders of magnitude. The logarithmic relation was found to be available for providing the
highest coefficients of determination R2 of fitting curves to describe the relations between the gas
flow rates and effective stresses of both the intact coal and damaged coal.

(2) Pseudo-initial flow rates were observed in the intact coal under low effective stress. Klinkenberg
effect may account for this phenomenon. Pseudo-initial flow rate represents the level of slippage
force. Based on the pseudo-initial flow rate, the equation to describe relations between gas
flow rate and square of pressure gradient in the intact coal under low effective stress has been
proposed. As the effective stress increased, the start-up pressure gradients were observed. The
start-up pressure gradient increased as the effective stress increased, which indicated that the
mobility of gas in the coal was weakened. The start-up pressure gradient represents the level of
frictional resistance. Based on the start-up pressure gradient, the equation to describe the relations
between gas flow rate and square of pressure gradient in the intact coal has been proposed.

(3) The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient
increased under low effective stress. As the effective stress increased, the increase of gas flow
rate in the coal turned to be linear. Based on the quadratic function relation and pseudo-initial
flow rate, the equation to describe the relations between gas flow rate and square of pressure
gradient in the damaged coal under low effective stress has been proposed. In the damaged coal,
the original skeleton was damaged and recombined. The increasing injection gas pressure under
low effective stress promoted the damage and recombination of coal, which led to the erosion of
coal particles. The phenomena would enhance the permeability of coal. Therefore, the coefficient
of additional acceleration or resistance α was negative.
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(4) The apparent permeability in the intact coal calculated by Darcy’s law decreased or increased with
increasing injection pressure under the same effective stresses. Whereas, the absolute permeability
corrected by the analysis above stayed constant with increasing injection pressure. The deviation
of the apparent permeability calculated by Darcy’s law is the result of ignoring the Klinkenberg
effect and frictional resistance. The corrected absolute permeability of the intact coal showed
advantages in accurately estimating the performance of coal reservoirs.

(5) The permeability in the damaged coal under low effective stress increased with increasing
injection pressure. As the effective stress increased, the permeability in coal turned to be constant
with increasing injection pressure. Compared with the intact coal, more connecting and obvious
fractures are observed in the damaged coal. Thus, the permeability in the damaged coal was
higher than that in the intact coal by two to three orders of magnitude.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/9/5/351/s1.
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