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Abstract: As the result of climate change and deteriorating global environmental quality, nations are
under pressure to reduce their emissions of greenhouse gases per unit of GDP. China has announced
that it is aiming not only to reduce carbon emission per unit of GDP, but also to consume increased
amounts of non-fossil energy. The carbon emission allowance is a new type of financial asset in each
Chinese province and city that also affects individual firms. This paper attempts to examine the
allocative efficiency of carbon emission reduction and non-fossil energy consumption by employing
a zero sum gains data envelopment analysis (ZSG-DEA) model, given the premise of fixed CO2

emissions as well as non-fossil energy consumption. In making its forecasts, the paper optimizes
allocative efficiency in 2020 using 2010 economic and carbon emission data from 30 provinces and
cities across China as its baseline. An efficient allocation scheme is achieved for all the provinces and
cities using the ZSG-DEA model through five iterative calculations.

Keywords: carbon emission allowance; non-fossil fuels; efficiency; zero sum gains data envelopment
analysis (ZSG-DEA); iteration

1. Introduction

The carbon emission allowance is a new type of financial asset. This article addresses the new
type of financial asset allocative efficiency in each Chinese province and city, which we define as the
mix of carbon emission reductions and increases across provinces and cities that must be calculated
to achieve reach efficient frontiers. In other words, the most efficient region is that with the lowest
energy consumption and CO2 emission levels but with the same GDP and population values that it
had with no environmental constraints. As an accompaniment to China’s rapid economic growth,
greenhouse gas emissions have caused serious pollution that has negatively affected the nation’s
ecology and marginalized its natural environment. As a result, China is facing critical problems that
must be solved, and studies of carbon emission resulting from energy consumption focus on questions
involving how to achieve reasonable emission reductions while balancing the relationship between
economic development and environmental concerns. China’s government has committed to reducing
its carbon emission per unit of GDP by 40%–50% during the 2005–2020 period. During this same period,
non-fossil energy consumption is targeted to account for 15% of total primary energy consumption.
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Non-fossil energy includes wind-generated energy, water-generated energy, nuclear energy, and solar
power. The purpose of these reduction targets is to limit overall emissions and achieve positive
environmental effects. Although the national target for overall emissions has been set, the key problem
that remains is how to apportion the total target effectively, fairly, justly and reasonably among China’s
provinces and cities in the face of the huge disparities in economic development, energy structures
and CO2 emissions and emission schemes that characterizes the different regions. Thus, taking the
appropriate related factors into account to achieve allocative efficiency and to maximize effectiveness is
a formidable task for China. As of 14 December 2015, seven provinces and cities in China—Shenzhen,
Shanghai, Beijing, Guangdong, Tianjin, Chongqing and Hubei—initiated carbon emissions trading
schemes. Nonetheless, it is important to know how to allocate carbon allowances to make trading
them effective and efficient in China’s 30 provinces and cities.

2. Literature Review

2.1. Carbon Allowance Allocation

A carbon allowance trading scheme attempts to solve environmental problems by using market
forces to more effectively allocate resources and to eliminate negative externalities. However, the
calculations involved in allocating the initial rights for carbon emissions are pivotal in their impact on
transactional efficiency. Therefore, further studies of allocating carbon allowances are both necessary
and productive.

From the perspective of government policies, Ding and Feng [1] considered both domestic and
international factors in their evaluation of the different modes of carbon allowance allocation and the
policy implications associated with each. These authors proposed that China should set up a free
allocation mode based on historical data at an early stage but that a paid auction-based mode should
be established at a later stage. Sun and Ma [2] compared the advantages and disadvantages of existing
initial allocation methods and analysed the current main carbon emission trading schemes that have
been implemented all over the world. Based on the results of their research, these authors suggested
that a fixed proportion of the free carbon emission allowance should be assigned when a trading
scheme is initially established and that it should be further transformed stage-by-stage to gradually
reduce the proportion of free allowances until trading is conducted exclusively on an auction basis.

In terms of the allocation modes of carbon emissions, Yin and Cui [3] proposed an allocation
scheme based on GDP per capita and energy consumption per GDP. Moreover, Wang Yigang [4]
justified a flexible allocation scheme based on ensuring development rights.

With regard to research approaches to allocating carbon allowances, Jiang Jingjing [5] developed
a mechanism (and an experiment) for carbon allowance allocation in the Shenzhen manufacturing
sector by analyzing the grandfathering allocation mode of Europe’s carbon trading scheme—using
the condition of incomplete information as its theoretical basis—and by applying limited rational
assumptions and repeated game theories. Cong Ronggang [6] suggested a multi-agent carbon
allocation auction model (CAAM) based on the auction mechanism of the EU’s carbon market
and investigated whether the clearing auction price should take the form of uniform pricing or
discriminatory pricing. Wang and Li [7] proposed a new data envelopment analysis carbon emissions
allocation (DEA-CEA) model on the basis of data envelopment analysis (DEA) methodology. These
authors considered the issue of CO2 emissions distribution to be a resource allocation problem in
which the total amount is controlled and regarded efficiency as a priority and the per capita amount as
a restraint when allocating national total emissions to each province.

To conclude, although there are significant differences in carbon allowance schemes among
different countries, there are lessons that these countries can learn from one another. Additionally,
allocation benchmarks and research methods vary from country to country based on countries’ specific
conditions. In general, China is considered to be in the primary stages of establishing a carbon
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allowance system, although its conditions differ from those of other countries. Therefore, further
studies are required to establish a suitable and efficient carbon allowance system in China.

2.2. Carbon Allowance Allocation Based on Efficiency

The first and most prominent system for regulating carbon emissions is the European Union
Emissions Trading Scheme (EU ETS). We examine the effectiveness of the EU ETS in terms of a
cap-and-trade system. When it was first established, its efficiency was studied on the macro level.
Rogge and Hoffmann [8] believed that the impact of the EU ETS on corporate CO2 culture and
routines would pave the way for a transition to a low-carbon innovation system for power generation
technologies. Sandoff and Schaad [9] conducted a survey and found that although Swedish companies
have shown significant interest in reducing emissions, these companies have not paid close attention to
the pricing mechanism of market-based instruments. If this praxis is widespread within the European
trading sector, it might seriously and negatively impact system efficiency. Zhang and Wei [10] found
that previous research results do not indicate that the EU ETS has had significant economic effects on
energy technology investment. The enterprise competitiveness loss caused by the EU ETS has not
been strong, but it may become stronger in the future. In later studies, efficiency was studied at the
micro level. Moreover, different streams in the literature found that the macro-distribution of carbon
allowance assets and EU CO2 allowance price volatility exerted different effects on the stock market.
Oestreich and Tsiakas [11] found that on average, firms that received free carbon emission allowances
under the EU ETS significantly outperformed firms that did not, as measured by German stock returns.
There was no significant value impact from firms' allowance trading activity or from the pass-through
of carbon-related production costs (carbon leakage) [12]. While firms reduced their environmental
costs, stock prices also fell for firms in both carbon- and electricity-intensive industries within the EU
when the EU CO2 allowance price dropped 50 per cent in late April 2006 [13].

Most efficiency studies are conducted by employing a variety of input-output models, which
leads to the problem of assessing the efficiencies of multiple inputs and outputs of the same types
of decision-making units (DMUs), which is why the DEA model is widely used in this context [14].
In comparison with traditional DEA models that presume that output is the expected output (i.e., the
larger the output is, the more effective the decision unit is), carbon emissions are regarded as
non-expected output, i.e., the smaller the output, the more effective the decision unit is. The DEA
model with non-expected output is commonly used in the analysis of environmental efficiency. Zofio
and Prieto [15] evaluated environmental efficiency among Organization for Economic Co-operation
and Development (OECD) countries by taking carbon dioxide emissions as the non-expected output.
Lozano and Gutierrez [16] examined the correlations between GDP, carbon emissions and energy
consumption with the distance function method of the DEA model by taking both carbon emissions
and energy consumption as the non-expected output.

The non-expected output is independent of DMUs, and each decision unit is also independent
of the other decision units. However, with regard to the rights allocations of carbon emissions, the
amount of emissions between each decision unit is dependent because there is a fixed amount of
available emission rights, i.e., it is a zero sum game (ZSG). When a unit increases or reduces its carbon
emissions to achieve greater efficiency, the other DMUs must correspondingly decrease or increase the
same amount of carbon emissions to maintain the ZSG.

Lins and Gomes et al. [17] proposed a zero sum gains data envelopment analysis (ZSG-DEA)
model to adjust to non-expected output based on the DEA efficiency value of the DMU. Lin and
Ning [18] assessed the allocation outcomes of EU countries’ carbon emission rights in 2009 based on a
ZSG-DEA model. Sun Zuoren et al. [19] investigated the weak disposability of non-expected output
and the restraint conditions of the total amount of energy consumption by employing the ZSG-DEA
model. The results were used to formulate the allocation of energy efficiency index of the “12th Five
Year Plan” in China. Wu et al. [20] studied the allocative efficiency of PM2.5 emission rights based on a
zero sum gains DEA model. Pang et al. [21] studied the reallocation of carbon emission allowance with
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regard to all the countries participating in the Kyoto Protocol. Wang et al. [22] investigated the regional
allocation of CO2 emissions allowance among Chinese provinces, whereas Miao et al. [23] investigated
the efficient allocation of CO2 emissions in China.

This paper differs from those of Wang et al. [22] and Miao et al. [23] by focussing its investigation
on the allocation of the CO2 emissions allowance among China’s provinces based on China’s real
2010 carbon emission data, which is used as a benchmark. This paper is also distinguished from
references [24–36], which did not use the ZSG-DEA model and/or did not research the CO2 emissions
allowance among China’s provinces. Instead, this paper attempts to measure the expected efficiency
of carbon emissions allocation in 2020 in China by employing the ZSG-DEA model and further
investigates how to establish an efficient allocation under the conditions of fixed total carbon emission
rights based on the calculated parameter results.

The contribution of this paper to policy making is as follows: policy makers should adjust the
distribution of carbon allowance to achieve the multiple goals of carbon emission reduction and
non-fossil energy consumption in different areas in China. Simultaneously, fairness can be achieved
among all provinces and cities at the new ZSG-DEA frontier by consider GDP and population (POP)
as factors.

3. Empirical Results and Discussion

DEAP2.1 software and an Excel planning method were used to solve the original DEA and
ZSG-DEA efficiency. The last column of Table 1 presents the results of the original DEA efficiency
for 2020, which reveals that the average initial distribution efficiency is 0.731, i.e., a medium-level
average efficiency, and that the differences between provinces and cities are dramatic. Table 1 indicates
that the efficiency values of 15 provinces are under average levels, which accounts for 50 per cent of
these values. Furthermore, the initial efficiency values for five provinces and cities reach 1, which
demonstrates that the allocation for these five provinces and cities is DEA effective but that the other
25 provinces and cities are not DEA efficient. Some provinces, such as Shan Xi and Ning Xia, do not
perform well in terms of efficiency. For provinces with abundant energy resources, such as Shan Xi,
a low efficiency value means that there is greater potential to reduce carbon emissions.

Based on the original DEA model, we may adjust the emission rights of all provinces and cities
based on their efficiency values and slack variables so that the lowest carbon emission with respect to
the economy and the carbon dioxide emission with the greatest efficiency might be achieved. However,
this adjustment does not consider specific allocation situations, which is not feasible. For example, the
total amount of carbon dioxide emission is fixed, which means that when one DMU reduces the input
of a variable, the input of this variable into another DMU will increase accordingly. The efficiency
values of original DEA and slack variables are not consistent with restraining the fixed total amount
and are not able to achieve reasonable reallocation of input. Therefore, we must assess the efficiency
values of the ZSG-DEA model and make proper adjustments of carbon emission rights based on the
efficiency values and slack variables of the ZSG-DEA model.

Fair and effective allocation results in effective allocative efficiencies for all participating provinces,
whether in the original DEA model or in the ZSG-DEA model. As discussed above, the status quo of
most provinces and cities is currently ineffective, and for that reason we must adjust the ZSG-DEA
model. Based on Equation (2), the amount that carbon emission must be reduced in some areas and
the amount of increase needed in other provinces and cities can be calculated to reach the efficient
frontiers. The multiple iteration method is employed to allow all provinces and cities reach their
efficient frontiers.

According to the results of the ZSG-DEA model in the initial allocation, we obtain the voluntary
trade matrix for all provinces and cities, and the results of the adjusted allocation are shown in
Tables Tables A1–A5. Using the adjusted emission amount as the input variable and making another
estimation of the efficiency values of the original DEA model, we find that the original DEA efficiency
values increase significantly.
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Table 1. Predicted statistics and efficiency values in 2020 by taking 2010 as the benchmark. Data
envelopment analysis: DEA.

Region GDP * POP ** TEC *** CDE **** NFEC ***** Initial DEA Efficiency

Beijing 26,877.87 2068.83 22,419.36 9139.91 1367.02 1.000
Tianjin 18,004.03 1485.04 20,914.45 9121.63 2889.98 0.709
Hebei 36,199.64 7656.45 96,631.92 44,090.88 10,385.22 0.519
Shanxi 12,449.74 3716.95 65,261.87 39,113.35 10,956.98 0.250

Inner Mongolia 25,285.27 2614.88 80,577.81 26,620.04 12,531.91 0.467
Liaoning 35,699.68 4689.23 82,569.12 36,992.38 6424.49 0.554

Jilin 18,129.91 2944.26 29,774.55 13,487.87 3248.63 0.628
Heilongjiang 15,782.96 4091.55 40,554.55 18,324.52 3825.59 0.730

Shanghai 30,934.54 2170.85 33,221.39 16,012.34 4896.33 0.683
Jiangsu 80,671.03 8447.49 90,921.19 35754.88 17,178.75 0.800

Zhejiang 47,522.26 5760.86 64,437.20 23,966.21 11,986.14 0.732
Anhui 25,379.27 6557.59 47,523.72 15,409.76 7412.07 0.793
Fujian 30,288.19 3945.73 36,315.67 10,800.30 7006.64 1.000
Jiangxi 17,176.17 4828.64 19,895.95 8897.53 3316.20 1.000

Shandong 75,516.20 10,288.25 142,845.79 55,889.96 15,926.08 0.559
Henan 41,507.36 10,215.61 73,841.23 33,116.81 11,424.78 0.635
Hubei 33,409.65 6117.83 43,513.36 18,272.22 10,483.98 0.728
Hunan 32,288.39 6904.05 36,930.61 16,870.52 5738.38 0.872

Guangdong 82,065.21 10,649.49 82,889.85 31,925.15 14,533.07 0.933
Guangxi 17,782.83 5342.28 21,211.93 8176.29 5369.34 1.000
Hainan 3738.86 951.63 19,054.95 2322.30 717.30 1.000

Chongqing 15,993.10 3101.11 23,959.36 7601.55 2562.52 0.936
Sichuan 34,233.93 8723.45 54,657.75 17,616.22 8862.26 0.904
Guizhou 8790.90 4109.35 28,160.29 13,197.12 6845.51 0.544
Yunnan 13,257.43 4976.77 29,012.71 13,031.79 7063.82 0.646
Shanxi 19,403.74 4068.94 43,617.41 15,249.49 4979.50 0.618
Gansu 6970.92 2847.05 21,029.52 9459.62 4438.93 0.547

Qinghai 2169.99 606.41 6678.64 2178.34 2453.37 0.537
Ningxia 3284.43 691.15 15,651.77 5856.23 2941.96 0.336
Xinjiang 7614.99 2428.29 32,695.00 12,639.81 3248.63 0.533

Total 818,427.83 143,000.00 1,406,769.35 571,135.03 211,015.40 0.731 ******

* Unit: 100 million Chinese Yuan; ** Population (unit: 10 thousand Chinese Yuan); *** Total energy
consumption (unit: 10 thousand tce, where tce is tons of standard coal, the unified standard unit of heat value);
**** CO2 emissions (unit: 10 thousand t.c., where t.c. is tons of carbon, the standard unit of CO2 emissions);
***** Non-fossil energy consumption (unit: 10 thousand tce); ****** It is the average initial distribution efficiencyof
provinces and cities.

Given the initially allocated carbon dioxide emissions, consumption of NFFs (Non-fossil fuels)
and the results of the ZSG-DEA model, we can obtain the increase and decrease matrix for the carbon
allocations of all provinces and cities and can identify how to adjust the values to acquire a new set of
adjusted carbon emission and NFF consumption, as shown by the first iteration in Table A1.

In the next step, the adjusted carbon emission and the consumption of NFFs are used as input
variables to calculate the efficiency values of the original DEA model. The average efficiency value of
the original DEA model is shown to increase to 0.894, and the efficiency for all provinces and cities has
improved significantly from their original state. Compared with the original CO2 emissions, the CO2

emissions in Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shandong, Henan, Guizhou,
Gansu, Qinghai, Ningxia and Xinjiang have all been reduced, in a total amount of 631,691,800 tons
of carbon (t.c.). Meanwhile, another 11 provinces and cities, including Beijing, Tianjin, Shanghai,
Jiangsu, Zhejiang and Anhui, have accordingly increased their CO2 emissions by an overall volume of
631,691,800 t.c. The sum of the increased and reduced amounts is zero, guaranteeing the precondition
of the fixed total amount. As for another input factor—energy consumption of NFFs—10 provinces
and cities, including Tianjin, Hebei, Shanxi and Inner Mongolia, have also reduced their input amount
by 158,109,600 t.c.; meanwhile, another 12 provinces and cities, such as Beijing, Liaoning, Jilin and
Heilongjiang, have increased their input amount by 158,109,600 t.c., thereby assuring the precondition
of fixed total energy consumption. Although the efficiency values of all the provinces and cities
have increased following the first iteration, they remain under fair carbon emission allowances.



Energies 2016, 9, 329 6 of 18

Therefore, another iterative calculation is necessary. After the second iterative adjustment, the
average value of the initial DEA efficiency has reached 0.962, with most provinces and cities close to 1.
In comparison with the first adjustment, 10 provinces and cities, such as Hebei, Shanxi, Inner Mongolia
and Liaoning, continue to reduce their CO2 emissions, whereas another 12 provinces and cities,
including Beijing, Tianjin, Shanghai, and Jiangsu, continue to increase their emissions. In terms of NFF
consumption, 10 provinces and cities, such as Tianjin, Shanxi and Inner Mongolia, further reduce their
consumption, whereas 14 provinces and cities, such as Beijing, Hebei and Liaoning, must increase
their consumption accordingly.

Further adjustments are necessary as a fair and effective carbon emission allocation has not been
achieved. After the third iteration, the initial DEA efficiency value reaches 0.991, and almost all the
allocative efficiency values nearly reach 0.99. However, further adjustments are undertaken to achieve
the most effective efficiency value as expected. The fourth iteration shows that the vast majority of
provinces and cities have achieved fair and effective initial efficiency values (reached at 1), apart from
a few provinces such as Jiangsu, Fujian, Hubei, Hunan, Guangdong etc. Therefore, a fifth iteration was
carried out, as shown in Table 2, Table A5 and Figure 1.

After the fifth iteration, the DEA efficiency values of all 30 provinces and cities have become 1.
Comparing the initial allocation with the allocation after the fifth iteration, provinces such as Hebei,
Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shandong, Henan, Guizhou, Shaanxi, Gansu,
Qinghai, Ningxia and Xinjiang all must reduce their carbon emissions, whereas the remaining
provinces must increase their carbon emissions; Guangxi, Hainan, etc. demonstrate the most significant
increases. Guangxi’s carbon emission increases from 81,762,900 t.c. to 160,709,800 t.c., as shown
in Tables 1, 3 and A5.

Table 2. Predicted efficiency values in 2020 using 2010 as a benchmark and taking five iterations.

Region Initial DEA
Efficiency

DEA Efficiency
Value of the

First Iteration

DEA Efficiency
Value of the

Second Iteration

DEA Efficiency
Value of the

Third Iteration

DEA Efficiency
Value of the

Fourth Iteration

DEA Efficiency
Value of the

Fifth Iteration

Beijing 1 1 1 1 1 1
Tianjin 0.709 0.906 0.975 0.998 1 1
Hebei 0.519 0.906 1 1 1 1
Shanxi 0.25 0.567 0.95 0.993 1 1
Inner

Mongolia 0.467 0.791 0.952 0.997 1 1

Liaoning 0.554 0.788 0.976 0.999 1 1
Jilin 0.628 0.982 1 1 1 1

Heilongjiang 0.73 0.893 0.963 0.987 1 1
Shanghai 0.683 0.898 0.975 0.998 1 1
Jiangsu 0.8 0.952 0.93 0.991 0.996 1

Zhejiang 0.732 0.923 0.908 0.984 0.996 1
Anhui 0.793 0.951 0.97 0.992 1 1
Fujian 1 1 0.915 0.994 0.992 1
Jiangxi 1 1 1 1 1 1

Shandong 0.559 0.867 0.946 0.994 1 1
Henan 0.635 0.883 0.95 0.992 1 1
Hubei 0.728 0.927 0.904 0.951 0.991 1
Hunan 0.872 0.966 0.96 0.981 0.997 1

Guangdong 0.933 0.989 0.948 1 0.992 1
Guangxi 1 1 1 1 1 1
Hainan 1 1 1 1 1 1

Chongqing 0.936 0.987 0.931 0.962 0.991 1
Sichuan 0.904 0.989 0.966 0.993 1 1
Guizhou 0.544 0.831 0.986 0.993 1 1
Yunnan 0.646 0.882 0.992 0.996 1 1
Shanxi 0.618 0.814 0.89 0.975 0.998 1
Gansu 0.547 0.823 0.984 0.992 1 1

Qinghai 0.537 0.867 0.987 0.983 1 1
Ningxia 0.336 0.658 0.945 0.991 1 1
Xinjiang 0.533 0.773 0.97 0.984 1 1
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Figure 1. Predicted efficiency values in 2020 using 2010 as a benchmark and taking five iterations.

Table 3. Predicted CO2 emission allowance values in 2020 using 2010 as a benchmark.

Region CO2 *, 0 CO2 *, 1 CO2 *, 2 CO2 *, 3 CO2 *, 4 CO2 *, 5

Beijing 9139.91 12,532.24 13,979.17 14,494.35 14,804.3 14,921.51
Tianjin 9121.63 9854.37 10,049.35 10,327.37 10,546.46 10,629.96
Hebei 44,090.88 30,763.29 25,989.19 26,463.97 27,035.1 27,248.99
Shanxi 39,113.35 21,009.38 14045.3 13,957.53 14,168.89 14,281.07

Inner Mongolia 26,620.04 21,712.03 19,495.64 19,856.89 20,280.97 20,441.53
Liaoning 36,992.38 27,870.89 24,305.74 24,769.18 25,302.13 25,502.38

Jilin 13,487.87 10,915.47 9558.3 9844.67 9920.65 10,000.1
Heilongjiang 18,324.52 15,077.71 13,442.03 13,625.17 13,732.4 13,843.62

Shanghai 16,012.34 16,807.32 16,983.06 17,458.65 17,831.06 17,972.23
Jiangsu 35,754.88 42,785.85 45,971.28 46,879.16 45,195.59 45,101.71

Zhejiang 23,966.21 27,337.58 28,674.44 28,819.88 27,877.03 27,138.91
Anhui 15,409.76 18,907.47 20,322.63 20,603.08 20,885.81 21,055.4
Fujian 10,800.3 16,007.48 18,281.37 16,481.85 16,754.24 16,743.07
Jiangxi 8897.53 12,199.89 13,608.45 14,109.97 14,411.7 14,525.79

Shandong 55,889.96 50,029.84 48,896.29 49,261.04 50,107.18 48,333.68
Henan 33,116.81 32,678.81 32,513.92 32,460.95 32,525.46 32,782.57
Hubei 18,272.22 21,436.2 22,680.89 21,039.75 20,166.37 20,136.15
Hunan 16,870.52 21,128.66 22,880.2 24,120.19 21,824.64 21,919.79

Guangdong 31,925.15 43,772.33 48,825.56 44,301.63 45,404.14 45,344.96
Guangxi 8176.29 12,902.9 15001.14 15610.38 15,944.75 16,070.98
Hainan 2322.3 3184.24 3551.88 3682.78 3761.54 3791.32

Chongqing 7601.55 10,128.85 11192.65 10785.09 10,079.15 10,068.19
Sichuan 17,616.22 24,003.86 26723.52 27118.66 27,241.4 27,454.56
Guizhou 13,197.12 12,769.24 12394.14 12797.92 12,985.58 13,089.43
Yunnan 13,031.79 14,244.31 14625.61 15140.85 15,399.52 15,522.51
Shanxi 15,249.49 16,103.73 14914.46 14314.12 13,896.83 13,979.34
Gansu 9459.62 9041.52 8694.33 8973.79 9094.69 9167.05

Qinghai 2178.34 1974.81 1974.75 2065.16 2078.78 2094.95
Ningxia 5856.23 4101.65 3162.34 3126.23 3188.3 3213.47
Xinjiang 12,639.81 9853.11 8397.38 8644.7 8690.36 8759.82

* CO2 emission in units of 10 thousand t.c. (tons of carbon, the standard unit of carbon dioxide emissions); 0: The
predicted CO2 emission allowance in 2020 using 2010 as a benchmark and taking no iterations; 1: The predicted
CO2 emission allowance in 2020 using 2010 as a benchmarkand taking the 1st iteration; 2: The predicted CO2
emission allowance in 2020 using 2010 as a benchmarkand taking the 2nd iteration; 3: The predicted CO2
emission allowance in 2020 using 2010 as a benchmarkand taking the 3rd iteration; 4: The predicted CO2
emission allowance in 2020 using 2010 as a benchmarkand taking the 4th iteration; 5: The predicted CO2
emission allowance in 2020 using 2010 as a benchmarkand taking the 5th iteration.
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For non-fossil energy consumption, Tianjin, Hebei, Shanxi, Inner Mongolia, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Hubei, Guizhou, Gansu, Qinghai and Ningxia must reduce their
consumption, and the rest of the provinces must increase their consumption; Beijing must increase
most. The consumption assigned after five iterations is 1.18 times that of the initial allocation.

Next, we compare our results with past work. Miao et al. [23] researched CO2 emissions allowances
among provinces in 2010 in China but did not research CO2 emissions allowances among provinces in
2020 in China. References [24–36] did not use the ZSG-DEA model and/or did not research the CO2

emissions allowance among provinces in China.
Wang et al. [22] researched CO2 emission allowances among provinces in 2020 in China using the

ZSG-DEA model. Thus, our results are most comparable with Wang et al. [22], and the CO2 emissions
difference values after the 5th iteration in 2020 from both papers are illustrated in Figure 2. Although
not all the input and output variables used in Wang et al. [22] are the same as those used in this paper,
both papers reveal similar trends in CO2 emissions difference values for 2020 after the 5th iteration.
However, in this paper, the CO2 emissions difference value in most provinces and cities after the 5th
iteration in 2020 is smaller than that in Wang et al. [22]. We investigate the reasons for this difference.
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Figure 2. The trend of CO2 emission difference values after the 5th iteration in 2020 between this paper
and Wang et al. [22].

We believe that the main reason for this difference is that the input and output variables in
Wang et al. [22] and this paper are not all the same. The input variables used in Wang et al. [22]
are total energy consumption, CO2 emissions and non-fossil energy consumption. All three inputs
in Wang et al. [22] have constant total amounts that must be reallocated among China’s regions.
The output variables used in Wang et al. [22] are GDP (based on 2005 prices) and POP. Our article
uses CO2 emissions and non-fossil energy consumption as input variables; we do not use total energy
consumption because we posit that this variable is changeable. The output variables used in our article
are total energy consumption, gross domestic product (based on 2010 prices) and POP.

4. Methodology

4.1. BBC-DEA Model

It is presumed that each assessment system has a number (n) of the same types of DMUs and that
each unit has a number (r) input indexes and a number (m) of output indexes. The equation for the
BBC-DEA model of the relative efficiency assessment of DMU0 is set forth as Equation (1), in which θ0
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represents the relative efficiency of DMU0, while λi indicates the ratio of each DMUi in a restructured
and effectively combined decision unit relative to DMU0:

minθo

s.t.
n
ř

i“1
λiyij ě yoj, j “ 1, 2, 3, ..., m

n
ř

i“1
λixik ď θoxok, k “ 1, 2, 3, ...r

n
ř

i“1
λi “ 1, i “ 1, 2, 3, ...n

λi ě 0, i “ 1, 2, 3, ...n

(1)

The input and output variables of the classic DEA model (CCR, BBC, etc.) are relatively
independent. Given any of the DMUs, its input or output will not affect any other DMU’s input
or output variables. A classic DEA model only demonstrates the relative efficiency of the original state.
However, under the condition of competition, the amount of input or output for variables should be
restricted for the constant total, and the input and output of each DMU are related to one another to
ensure this constant. If one of the inefficient DMUs increases its input or output to achieve a greater
efficiency frontier, other DMUs must reduce their input or output, which strays from the assumptions
of the classic DEA model. This characteristic conforms exactly to the feature of a ZSG, which requires
that the loss or earnings of a stakeholder be the earnings or loss of other stakeholders to ensure that
the total earning amount is zero.

4.2. Zero Sum Earning DEA Model

The initial ZSG-DEA model was proposed by Gomes and Lins [37] on the basis of an
input-oriented CCR-DEA model. To realize an effective DEA model, DMU0 must reduce the amount
of input k as u0 = x0k(1 ´ ϕ0) and allocate this amount proportionally to other DMUs. Thus, the input
allocation value acquired by the ith DMU is xik/Σxik¨ x0k(1 ´ ϕ0). As all the DMUs experience a certain
increase or decrease of input proportion simultaneously, the reallocation of input k after adjustment is:

x1ik “
ÿ

o‰i

„

xik
ř

i‰o xik
¨ xok p1´ϕoq



´ xik p1´ϕiq , i “ 1, 2, 3, ...n (2)

In this study, it is assumed that more inputs have fixed total amounts. When a DMU aims
for increased efficiency, different proportions of increase or decrease of a fixed total amount follow.
Meanwhile, it is believed that fixed earnings are effective at setting a scope, such that when a DMU
operates within an optimum scope, the application of the variable’s earnings become more reasonable.
In addition, because each DMU in this study, whether big or small or in different developing phases,
can be distinguished from one other, our assumption is that not all the DMUs operate within the
optimum scope:

EZSG “ min
m
ř

i“1
wiθi

s.t.
n
ř

j“1
λjyrj ě yrk, r “ 1....s

n
ř

j“1
λjxijp1`

xikp1´θiq
n
ř

j“1,j‰k
xij

q ď θixik, i “ 1....m

m
ř

i“1
wi “ 1, wi ě 0, i “ 1....m

λj ě 0, j “ 1....n

(3)

where θi is the measurement of the efficiency of ZSG-DEA related to the number (i) of DMUs in
Equation (3), when all i inputs are limited under fixed conditions; wi is the weight of θi; EZSG is the
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efficiency of the average value of the uniform weight of each DMU; xij and yrj are the input and output
values, respectively; xik and yrk refer to the input and output values, respectively, of the DMU in their
assessment; and λi is the contribution rate of effective planning made by each DMU.

4.3. A Zero Sum Gains Data Envelopment Analysis Model for CO2 Allowance Allocation in China

To reflect the demographic and economic characteristics of each region in the process of allowance
allocation, the output variables used in the optimized ZSG-DEA model are GDP, POP and energy
consumption in 2010. The input variables are CO2 emission and consumption of non-fossil fuels (NFFs).
These two inputs have a fixed total amount and must be reallocated among provinces. The ZSG-DEA
model for China is as follows:

E1ZSG “ minwco2θco2 `wNFθNF

s.t.
n
ř

j“1
λjyGDP

j ě yGDP
k

n
ř

j“1
λjyPOP

j ě yPOP
k

n
ř

j“1
λiyTE

j ě yTE
j

n
ř

j“1
λjxco2

j p1` xco2
k p1´θco2q

n
ř

j“1,j‰k
xco2

j

ď θco2xco2
k

n
ř

j“1
λjxNF

j p1` xNF
k p1´θNFq

n
ř

j“1,j‰k
xNF

j

q ď θNFxNF
k

wco2 `wNF “ 1, wco2 ą 0; wNF ą 0
λi ě 0, j “ 1....n

(4)

where θCO2 and θNFF represent the efficiency of the CO2 emission allocation and that of NFF
consumption, respectively. Likewise, wCO2 and wNFF are the weights of the two aforementioned
efficiencies, respectively. We set the weight to 1/2, as both efficiencies are regarded as equally
important. Equation (4) is the specific application of Equation (3) to the allocative efficiency of carbon
emission reduction at the provincial level in 2020 in China.

Equation (4) indicates that when various regions have the same level of carbon emission and NFF
energy consumption, the region with the smaller POP and GDP has relatively low efficiency; when
different regions have the same level of carbon emission and NFF energy consumption, the region
with the larger POP and GDP has greater efficiency.

The transmission mechanism is described as follows. At first, all regions are not at the new
ZSG-DEA frontier in China due to erroneous CO2 emission allocations among different regions in
China. Then, all the regions draw close to the new ZSG-DEA frontier because of a change in the
amounts of CO2 emissions in different regions in China. Finally, all regions are at the new ZSG-DEA
frontier in China due to a change in the amounts of CO2 emissions allocated to the different regions
in China. The transmission mechanism is also depicted in Figure 3, where MN indicates the DEA
frontier and EF indicates the ZSG-DEA frontier that is required to achieve an efficiency value of 1 by
the fifth iteration.

Region A and region B are not on the EF. By changing the amounts of CO2 emissions allocated to
different regions, they move onto the EF. The input variables used are carbon dioxide emissions and
NFF consumption. The output variables used in the optimized ZSG-DEA model are GDP, POP and
energy consumption, as shown in Figure 3.
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Figure 3. The transmission mechanism from the DEA frontier to the zero sum gains data envelopment
analysis (ZSG-DEA) frontier.

5. Data Sources and Processing

This paper examines the carbon emission allowance allocation mode of all Chinese provinces in
terms of efficiency. Therefore, the allocation allowance of all provinces must be first affirmed, and
then the efficiency of the allocation mode may be examined. This study assumes that overall carbon
emission in 2015 is 17% less than that in 2010, which is consistent with the goal of carbon emission
reduction in the “12th Five Year Plan”. At the Copenhagen United Nations Climate Change Conference,
the Chinese government pledged that its carbon emission in 2020 would be reduced by 40%–45% from
that its 2005 levels.

These results show that China’s carbon emission reduction goal for 2020 will be approximately
31.3% if the 2010 value is taken as the benchmark. After affirming the total amount of the allocation,
the carbon emissions allowance for each province can be simulated in terms of the optimum allocation
of efficiency.

Using 2010 as the base year, the total amount of carbon emissions in 2020 and its allocation to each
province and city can be estimated and predicted with optimal efficiency. The table below presents the
carbon emissions, energy consumption, GDP, POP, etc., in all provinces and cities in 2010, which are
used as the initial data (see Table 4).

The calculation of actual carbon emission in each province and city is derived from the amount
of energy consumption in the energy balance sheets for all provinces and cities in the China Energy
Statistical Yearbook 2011 [38–44]. The detailed calculation methods for carbon emission are described
in the Guidelines for the Provincial Greenhouse Gas List [45], which is also called IPCC Method 1.
According to this method, actual carbon emission is derived from the consumption of various fossil
fuels, the heat per unit and carbon content per unit of various types of fuels plus the average oxidation
rate of the main equipment used to burn various fuels, after deducting fixed carbon content and other
parameters of fossil fuels used for non-energy purposes. However, it has been proven that it is difficult
to acquire certain data in the calculation process, such as the number of products with fixed carbon
content, etc. Therefore, an alternative method is employed in this study and is demonstrated below.

First, the energy consumption of different types of fossil fuels is converted into that of standard
coal, and then the carbon emission factor, fixed carbon rate, oxidation rate of carbon and other
parameters are used to calculate the emission amount of carbon and carbon dioxide in different types
of fuels. The specific equation for the calculation is as follows:

Xi = Σproduction + import ´ export ˘ increase or decrease of stock ˘ others (mainly adding
fuels overseas)

The emission amount of carbon (PC) is as follows:

PC “
n
ÿ

i“1

rki ˆ pλiϕi ´ θiq ˆ Xis (5)
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where k is the carbon oxidation rate; λ is the conversion coefficient of standard coal; ϕ is the potential
carbon emission factors; and θ is the solid carbon rate.

Table 4. Data from 2010.

Region GDP * POP ** TEC *** CDE **** NFEC ***** The Initial DEA
Efficiency Value

Beijing 13,723 1755 9038.53 1535.05 323.23 1.000
Tianjin 9720 1228 10,263.82 7592.48 683.32 0.537
Hebei 20,255 7034 49,853.14 12,222.90 2455.54 0.726
Shanxi 8529 3427 53,262.19 74321.14 2590.73 0.735

Inner Mongolia 11,981 2422 7908.22 83,730.53 2963.12 0.148
Liaoning 18,263 4319 39,905.99 13,182.51 1519.04 0.939

Jilin 8684 2740 13,802.69 6438.69 768.13 0.656
Heilongjiang 9950 3826 22,457.83 16,860.45 904.54 0.888

Shanghai 17,959 1921 16,687.51 2696.97 1157.72 0.849
Jiangsu 40,516 7725 39,186.97 6253.51 4061.85 0.730

Zhejiang 27,154 5180 24,316.20 3908.13 2834.07 0.701
Anhui 12,120 6131 18,184.14 13,618.62 1752.55 0.625
Fujian 14,369 3627 12,201.62 4670.97 1656.69 0.393
Shanxi 9433 4432 10,315.92 1166.16 784.10 1.000

Shandong 39,787 9470 63,189.12 24,583.15 3765.66 0.600
Henan 22,619 9487 41,340.85 23,572.29 2701.34 0.640
Hubei 15,638 5720 20,135.70 1246.26 2478.89 1.000
Hunan 15,245 6406 15,979.85 7907.36 1356.82 0.837

Guangdong 45,963 9638 33,264.81 9290.76 3436.28 0.559
Guangxi 8910 4856 10,620.27 2321.48 1269.56 0.677
Hanan 2105 859 2857.06 1364.91 169.60 0.909

Chongqing 8562 2859 8595.60 5065.61 605.90 0.843
Sichuan 16,745 8185 21,082.59 11,349.42 2095.45 0.694
Guzhou 4421 3798 13,270.06 15,446.41 1618.59 0.422
Yunan 7336 4571 13,435.03 9687.58 1670.21 0.488

Shaanxi 10,285 3772 16,946.43 42,016.28 1177.38 0.585
Gansu 3810 2635 9488.83 5217.85 1049.57 0.452

Qinghai 1250 557 2751.52 2850.40 580.09 0.176
Ningxia 1610 625 8673.02 7039.19 695.61 0.446
Xinjiang 4983 2159 15,049.29 17,993.44 768.13 0.701

Total 431,925 131,364 624,064.79 435,150.50 49,893.71

* Unit: 100 million Chinese Yuan; ** Population (unit: 10 thousand Chinese Yuan); *** Total energy
consumption (unit: 10 thousand tce, where tce is tons of standard coal, the unified standard unit of heat value);
**** CO2 emissions (Unit: 10 thousand t.c., where t.c. is tons of carbon, the standard unit of CO2 emissions);
***** Non-fossil energy consumption (Unit: 10 thousand tce).

Xi represents the total energy consumption in the ith province or city. The parameters of other
models also can be found in Table 5 [46]. Because the molecular weight of CO2 is 44 and the molecular
weight of carbon is 12, the total carbon emission of each province calculated above can be converted
into CO2 emission, based on this ratio. For the energy conversion, the conversion coefficient used in
this study is 29,307.6 MJ of heat of standard coal per ton (see Table 5).

The data regarding NFFs are calculated on the basis of the Annual Development Report of China’s
Power Sector 2011 [47], issued by the China Electricity Council. NFFs refer to energy resources that are
not coal, petroleum, natural gas or others; thus, NFFs consist of those resources that are not formed
through long-term geological transformation that can only be consumed once and instead include
current new energies and renewable energies such as nuclear energy, wind energy, solar energy, water
energy, etc. According to the actual praxis and the available data, the hydroelectric and thermal energy
data of NFFs are calculated for the consumption of non-fossil energy and converted into standard
coal, derived from the conversion standard of 0.1229 standard coal/KW that is based on the national
standard found in GB-2008 [48].

The data for GDP and the populations of provinces in 2010 are obtained from the China Statistical
Yearbook 2011. According to the Energy Information Administration (EIA), the United States energy
information administration website and the International Energy Outlook [49], the predicted average
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annual growth rate of GDP for China is 6.6% from 2010 to 2030, which is used in this study for
projecting GDP in 2020. Moreover, China’s population will reach 1.43 billion by 2020 in accordance
with World Population Prospects [50], published by the United Nations Department of Economic
and Social Affairs (UNDESA). The prediction of total energy consumption in 2020 is calculated using
the energy/GDP elasticity coefficient. As for the energy consumption goal of NFFs, based on the
medium- and long-term plans of national renewable energy development, non-fossil energies should
account for 15% of primary energy consumption by 2020. The consumption ratio of NFFs over primary
energy equals the energy consumption of NFFs/the total consumption of primary energy (fossil fuels
+ consumption of NFFs). This calculation is used to predict the energy consumption of NFFs in 2020.

The total amount of national carbon dioxide emission in 2020 is predicted to be 5,711,350,300 t.c.
Taking the carbon emission of all provinces and cities from 2010–2014 and the overall allowance into
consideration, the predicted values of initial allowance allocation results and other variables are shown
in Table 1.

Table 5. Model parameters.

Fuels CCSC (λ) * PCEF (ϕ) ** SCR (θ) *** COR (k) ****

Raw coal 0.7143 27.3 0.3 0.98
Washed coal 0.9 25.8 0.3 0.98

Other washed coal 0.5253 25.8 0.3 0.98
Coking coal 0.9714 29.5 0.3 0.98

Crude oil 1.4286 29.5 0.8 0.99
Gasoline 1.4714 18.9 0.8 0.99
Kerosene 1.4714 19.6 0.75 0.99

Diesel 1.4571 20.2 0.8 0.99
Heavy oil 1.4286 21.1 0.5 0.99

Natural gas 1.33 15.3 0.33 0.995
Coke oven gas 6.1417 29.5 0.3 0.995

Other gas 2.8758 29.5 0.3 0.995
Refinery dry gas 1.5714 20 0.5 0.995

Liquefied petroleum gas (LPG) 1.7143 17.2 0.8 0.99
Type coal 0.6068 25.8 0.3 0.98

Other petroleum products 1.3107 20 0.8 0.99
Other coking products 1.154 25.8 0.3 0.98

* The conversion coefficient of standard coal (λ); ** Potential carbon emission factors (ϕ); *** Solid carbon rate
(θ); **** Carbon oxidation rate (k).

6. Conclusions

From the perspective of allocative efficiency, carbon emission allowances for China’s 30 provinces
and cities are allocated in this study by employing a ZSG-DEA model. The carbon dioxide emissions
index and non-fossil energy consumption index for 2020 are calculated by taking the emission
reduction target in the “12th Five Year Plan” as the baseline. Then, the optimal allocation scheme
for all provinces and cities in 2020 is achieved under fixed total volumes of carbon emissions and
non-fossil energy consumption. As the largest country in the world in terms of overall carbon emission,
China must reduce its carbon emissions to improve environmental quality. Therefore, it is important
for China to set up carbon emission targets among provinces and cities during the next five years
(the “13th Five Year Plan”, which covers from 2016 to 2020), which would be more efficient and
fair. We therefore suggest that provinces such as Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin,
Heilongjiang, Shandong, Henan, Guizhou, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang must
reduce their carbon emissions. The rest of the provinces remain unchanged or reduce their carbon
emissions although the rest of the provinces will increase their carbon emissions when applying zero
sum gains analysis, with Guangxi and Hainan having the most significant increases, as reflected in
Table 3. For non-fossil energy consumption, Tianjin, Hebei, Shanxi, Inner Mongolia, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Hubei, Guizhou, Gansu, Qinghai and Ningxia must reduce consumption,
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and the remaining provinces must increase consumption, with Beijing needing to increase consumption
the most.
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Appendix A

Table A1. Multiple iterations of data and DEA efficiency values of the first iteration.

Province CO2 * (10 Thousand t.c. **) NFF *** (10 Thousand tce ****) DEA Efficiency Value

Beijing 12,532.24 2119.32 1.000
Tianjin 9854.37 2676.44 0.906
Hebei 30,763.29 9312.45 0.906
Shanxi 21,009.38 8344.09 0.567

Inner Mongolia 21,712.03 9564.39 0.791
Liaoning 27,870.89 7007.52 0.788

Jilin 10,915.47 3866.11 0.982
Heilongjiang 15,077.71 4994.13 0.893

Shanghai 16,807.32 4440.14 0.898
Jiangsu 42,785.85 14,348.55 0.952

Zhejiang 27,337.58 10,088.93 0.923
Anhui 18,907.47 8556.65 0.951
Fujian 16,007.48 6409.96 1.000
Jiangxi 12,199.89 5141.15 1.000

Shandong 50,029.84 15,332.91 0.867
Henan 32,678.81 13,164.68 0.883
Hubei 21,436.20 9654.66 0.927
Hunan 21,128.66 7863.01 0.966

Guangdong 43,772.33 14,682.08 0.989
Guangxi 12,902.90 6579.39 1.000
Hainan 3184.24 1112.04 1.000

Chongqing 10,128.85 3554.47 0.987
Sichuan 24,003.86 10,807.61 0.989
Guizhou 12,769.24 6503.37 0.831
Yunnan 14,244.31 7216.05 0.882
Shaanxi 16,103.73 5712.56 0.814
Gansu 9041.52 4384.72 0.823

Qinghai 1974.81 1870.26 0.867
Ningxia 4101.65 2179.96 0.658
Xinjiang 9853.11 3527.80 0.773

* CO2 emission; ** t.c., tons of carbon (the standard unit of CO2 emission); *** non-fossil fuel; **** tce, tons of
standard coal (the unified standard unit of heat value).
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Table A2. Multiple iterations of data and DEA efficiency values of the second iteration.

Province CO2* (10 Thousand t.c. **) NFF *** (10 Thousand tce ****) DEA Efficiency Value

Beijing 13,979.17 2694.60 1.000
Tianjin 10,049.35 2436.27 0.975
Hebei 25,989.19 9345.60 1.000
Shanxi 14,045.30 6381.48 0.950

Inner Mongolia 19,495.64 7425.92 0.952
Liaoning 24,305.74 7373.26 0.976

Jilin 9558.30 4287.97 1.000
Heilongjiang 13,442.03 5848.76 0.963

Shanghai 16,983.06 3990.04 0.975
Jiangsu 45,971.28 12,411.58 0.930

Zhejiang 28,674.44 8704.35 0.908
Anhui 20,322.63 9362.81 0.970
Fujian 18,281.37 5859.27 0.915
Jiangxi 13,608.45 6536.71 1.000

Shandong 48,896.29 15,122.64 0.946
Henan 32,513.92 14,476.35 0.950
Hubei 22,680.89 9002.52 0.904
Hunan 22,880.20 9452.04 0.960

Guangdong 48,825.56 14,925.97 0.948
Guangxi 15,001.14 7445.32 1.000
Hainan 3551.88 1413.90 1.000

Chongqing 11,192.65 4293.23 0.931
Sichuan 26,723.52 12,242.07 0.966
Guizhou 12,394.14 6148.63 0.986
Yunnan 14,625.61 7247.29 0.992
Shaanxi 14,914.46 5984.64 0.890
Gansu 8694.33 4254.82 0.984

Qinghai 1974.75 1169.92 0.987
Ningxia 3162.34 1499.73 0.945
Xinjiang 8397.38 3677.73 0.970

* CO2 emission; ** t.c., tons of carbon (the standard unit of CO2 emission); *** non-fossil fuel; **** tce, tons of
standard coal (the unified standard unit of heat value).

Table A3. Multiple iterations of data and DEA efficiency values of the third iteration.

Province CO2 * (10 Thousand t.c. **) NFF *** (10 Thousand tce ****) DEA Efficiency Value

Beijing 14,494.35 2945.66 1.000
Tianjin 10,327.37 2413.56 0.998
Hebei 26,463.97 10,042.87 1.000
Shanxi 13,957.53 5751.81 0.993

Inner Mongolia 19,856.89 7068.50 0.997
Liaoning 24,769.18 7695.29 0.999

Jilin 9844.67 4096.97 1.000
Heilongjiang 13,625.17 5693.33 0.987

Shanghai 17,458.65 3948.93 0.998
Jiangsu 46,879.16 11,764.98 0.991

Zhejiang 28,819.88 7980.42 0.984
Anhui 20,603.08 9391.06 0.992
Fujian 16,481.85 6150.41 0.994
Jiangxi 14,109.97 7145.75 1.000

Shandong 49,261.04 14,820.63 0.994
Henan 32,460.95 14,499.41 0.992
Hubei 21,039.75 9010.38 0.951
Hunan 24,120.19 9301.94 0.981

Guangdong 44,301.63 16,545.26 1.000
Guangxi 15,610.38 7917.95 1.000
Hainan 3682.78 1545.63 1.000

Chongqing 10,785.09 4398.78 0.962
Sichuan 27,118.66 12,536.59 0.993
Guizhou 12,797.92 5937.17 0.993
Yunnan 15,140.85 7256.39 0.996
Shaanxi 14,314.12 5522.64 0.975
Gansu 8973.79 4093.72 0.992

Qinghai 2065.16 862.15 0.983
Ningxia 3126.23 1308.54 0.991
Xinjiang 8644.70 3368.66 0.984

* CO2 emission; ** t.c., tons of carbon (the standard unit of CO2 emission); *** non-fossil fuel; **** tce, tons of
standard coal (the unified standard unit of heat value).
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Table A4. Multiple iterations of data and DEA efficiency values of the fourth iteration.

Province CO2* (10 Thousand t.c. **) NFF *** (10 Thousand tce ****) DEA Efficiency Value

Beijing 14,804.30 2989.40 1.000
Tianjin 10,546.46 2429.06 1.000
Hebei 27,035.10 10,194.00 1.000
Shanxi 14,168.89 5732.73 1.000

Inner Mongolia 20,280.97 7114.08 1.000
Liaoning 25,302.13 7788.75 1.000

Jilin 9920.65 4067.13 1.000
Heilongjiang 13,732.40 5667.71 1.000

Shanghai 17,831.06 3977.07 1.000
Jiangsu 45,195.59 12,000.87 0.996

Zhejiang 27,877.03 8055.46 0.996
Anhui 20,885.81 9433.86 1.000
Fujian 16,754.24 5591.25 0.992
Jiangxi 14,411.70 7251.86 1.000

Shandong 50,107.18 14,911.47 1.000
Henan 32,525.46 14,718.75 1.000
Hubei 20,166.37 8775.93 0.991
Hunan 21,824.64 10,122.70 0.997

Guangdong 45,404.14 15,002.36 0.992
Guangxi 15,944.75 8022.99 1.000
Hainan 3761.54 1568.58 1.000

Chongqing 10,079.15 4486.44 0.991
Sichuan 27,241.40 12,736.98 1.000
Guizhou 12,985.58 5945.07 1.000
Yunnan 15,399.52 7302.29 1.000
Shaanxi 13,896.83 5592.89 0.998
Gansu 9094.69 4088.80 1.000

Qinghai 2078.78 827.31 1.000
Ningxia 3188.30 1299.54 1.000
Xinjiang 8690.36 3320.05 1.000

* CO2 emission; ** t.c., tons of carbon (the standard unit of CO2 emission); *** non-fossil fuel; **** tce, tons of
standard coal (the unified standard unit of heat value).

Table A5. Multiple iterations of data and DEA efficiency values of the fifth iteration.

Province CO2* (10 Thousand t.c. **) NFF *** (10 Thousand tce ****) DEA Efficiency Value

Beijing 14,921.51 2988.12 1.000
Tianjin 10,629.96 2427.85 1.000
Hebei 27,248.99 10,189.57 1.000
Shanxi 14,281.07 5730.28 1.000

Inner Mongolia 20,441.53 7111.03 1.000
Liaoning 25,502.38 7785.88 1.000

Jilin 10,000.10 4066.37 1.000
Heilongjiang 13,843.62 5667.44 1.000

Shanghai 17,972.23 3975.49 1.000
Jiangsu 45,101.71 12,000.64 1.000

Zhejiang 27,138.91 8211.68 1.000
Anhui 21,055.40 9433.53 1.000
Fujian 16,743.07 5501.59 1.000
Jiangxi 14,525.79 7248.75 1.000

Shandong 48,333.68 15,418.65 1.000
Henan 32,782.57 14,693.31 1.000
Hubei 20,136.15 8639.18 1.000
Hunan 21,919.79 10,000.77 1.000

Guangdong 45,344.96 14,847.41 1.000
Guangxi 16,070.98 8019.55 1.000
Hainan 3791.32 1567.91 1.000

Chongqing 10,068.19 4424.33 1.000
Sichuan 27,454.56 12,719.79 1.000
Guizhou 13,089.43 5943.99 1.000
Yunnan 15,522.51 7300.71 1.000
Shaanxi 13,979.34 5569.38 1.000
Gansu 9167.05 4087.65 1.000

Qinghai 2094.95 826.50 1.000
Ningxia 3213.47 1298.73 1.000
Xinjiang 8759.82 3319.33 1.000

* CO2 emission; ** t.c., tons of carbon (the standard unit of CO2 emission); *** non-fossil fuel; **** tce, tons of
standard coal (the unified standard unit of heat value).
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