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Abstract: In this paper, the optimal operation of a stationary sub-critical 11 kWel organic Rankine
cycle (ORC) unit for waste heat recovery (WHR) applications is investigated, both in terms of energy
production and safety conditions. Simulation results of a validated dynamic model of the ORC
power unit are used to derive a correlation for the evaporating temperature, which maximizes
the power generation for a range of operating conditions. This idea is further extended using a
perturbation-based extremum seeking (ES) algorithm to identify online the optimal evaporating
temperature. Regarding safety conditions, we propose the use of the extended prediction self-adaptive
control (EPSAC) approach to constrained model predictive control (MPC). Since it uses input/output
models for prediction, it avoids the need for state estimators, making it a suitable tool for industrial
applications. The performance of the proposed control strategy is compared to PID-like schemes.
Results show that EPSAC-MPC is a more effective control strategy, as it allows a safer and more
efficient operation of the ORC unit, as it can handle constraints in a natural way, operating close to
the boundary conditions where power generation is maximized.

Keywords: extremum-seeking (ES) control; organic Rankine cycle; model predictive control

1. Introduction

In recent years, several studies have underlined the potential of low-grade heat recovery to
reduce the amount of worldwide industrial energy consumption [1]. Organic Rankine cycle (ORC)
systems are considered a viable and mature technology for waste heat recovery applications in the
standard power range (from hundreds of kWel to a few MWel) [2,3]. On the other hand, for micro-WHR
applications, the highly fluctuating nature of the heat source makes the development of a reliable
ORC unit a challenging task [4,5]. The objectives to optimally operate an ORC power unit for WHR
applications can be synthesized in the two following points: (1) keep the cycle in safe working
conditions, to preserve the components’ life expectancy; (2) maximize the ORC unit net output power,
to boost energy production and decrease the payback-time of the installation [6]. In order to achieve
these goals, the development of a reliable and effective control strategy able to meet the industrial
requirements of simplicity is deemed necessary.

As far as safe working conditions are concerned, a minimum level of superheating must be
ensured at the inlet of the expander in order to avoid the formation of liquid droplets that could
damage the expansion machine [7,8]. Several contributions focusing on the development of control
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strategies to ensure safe working conditions are available in the literature. Traditional control strategies
could not offer satisfactory results, as illustrated in [9], where a supervisory predictive control scheme
is necessary to achieve the desired performance. Similarly, in [10], the authors implement a predictive
functional control and compare its performance to PI controllers, showing that the main challenge for
the controller is superheating regulation. Further efforts on better tuning PI-like strategies are reported
in [11], where gain-scheduling and feed-forward are implemented to improve PI performance. In [12],
an explicit multi-model predictive controller is used to regulate the superheating of an ORC mounted
on a heavy duty truck. Multivariable predictive control strategies are also studied as reported in [13,14].

Most of these studies are restricted to guaranteeing safety conditions by regulating the
superheating, but little attention has been paid to the performance of the power unit in terms of
energy production. In order to maximize the output power, the evaporating temperature is usually
considered as the most relevant controlled variable [15,16]. In [17], the modeling and control of a
waste heat recovery system for a Euro-VI heavy-duty truck engine was achieved through the use of a
switching model predictive control strategy to guarantee the safe operation of the WHR system and to
maximize output power. Furthermore, in the automotive field, the problem of maximizing the power
produced by an ORC waste heat recovery system on board a diesel-electric rail car is tackled using
dynamic real-time optimization [18]. In [16], an experimental study is conducted using an 11 kWel
pilot plant, showing that the constrained model predictive control (MPC) outperforms PID-based
strategies, as it allows one to accurately regulate the evaporating temperature with a lower control
effort while keeping the superheating in a safer operating range.

The latest contributions available in the literature indicate a clear trend towards the preferential
use of advanced model-based controllers, especially predictive controllers, over the more traditional
PID-based strategy. This is due to their ability to ensure safe and optimal working conditions, especially
for WHR applications characterized by highly transient heat source profiles.

In this contribution, we propose a two-layer control structure consisting of a perturbation-based
extremum seeking (ES) algorithm coupled to a constrained MPC to guarantee safe and optimal working
operation for a stationary sub-critical 11 kWel ORC unit for a WHR application.

Extremum seeking is a well-developed research area that addresses the problem of objective value
optimization when the objective function, its gradient and optimum value are unknown [19]. To the
best of our knowledge, work has been proposed to optimize vapor compression cycles [20–22] using
ES schemes, but this has never been applied to ORC systems. A possible drawback for ES algorithms
appears when the extremum causes other variables to violate safety limits. One option to tackle this
situation is to design a complex ES algorithm that accounts for constraints, as proposed in [23]. In the
present work, we propose to use a simple ES algorithm and let a lower level controller deal with the
constraints, e.g., taking actions where the superheating is below a threshold value.

The extended prediction self-adaptive control (EPSAC) approach to constrained model predictive
control is proposed as the lower level control strategy. Since it uses input/output models for prediction
and not state-space models, as in other MPC algorithms [24], it avoids the need for state estimators,
making it a suitable tool for industrial applications. More traditional PI-like strategies are developed for
the sake of comparison with the proposed EPSAC-MPC strategy, including a PI controller to regulate
superheating at a constant operating point, as is very often done in industrial practice. The control
strategies are implemented in MATLAB and tested at the simulation level on a validated nonlinear
dynamic model developed in the Modelica language [25]. The coupling between the two software is
achieved through the Functional Mockup Interface (FMI) standard. Furthermore, in order to assess the
capabilities of the ES algorithm to identify the optimal evaporating condition, the ES algorithm results
are compared to the optimal evaporating temperature profile obtained off-line through the nonlinear
dynamic model of the ORC unit.

The paper is structured as follows: a description of the 11 kWel sub-critical ORC power system
and of the unit Modelica model is presented in Section 2, followed by a description of the adaptive
extremum seeking algorithm in Section 3. In Section 4, the EPSAC-MPC algorithm is formulated.
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Section 5 is dedicated to the main simulation results and Section 6 to providing some guidelines to
tune the extremum seeking algorithm. Finally, a conclusion section summaries the main outcome of
this contribution.

2. Process Description

This section describes the architecture and main characteristics of the ORC system used for
evaluating the performance of the developed control strategies.

2.1. The Organic Rankine Cycle System

The ORC power unit investigated in this work is a sub-critical 11 kWel experimental unit for
stationary low temperature waste heat recovery. The rig is installed at Ghent University campus
Kortrijk. The system is based on a regenerative cycle and employs Solkatherm (SES36) as the working
fluid. The expander is originally a single-screw compressor adapted to run in expander mode. It drives
an asynchronous generator connected to the electric grid through a four-quadrant inverter, which
allows varying the generator rotational speed (Nexp). The circulating pump is a vertical variable-speed
14-stage centrifugal pump with a maximum pressure of 14 bar and 2.2 kWel nominal power.

Three identical brazed plate heat exchangers are used for the evaporator, internal heat exchanger
and condenser. The evaporator is insulated with a glass wool layer of a 180-mm thickness. The
Coriolis flow meter enables a direct measurement of the working fluid mass flow rate. Absolute pressure
sensors with a range of 0–16 bar are used in conjunction with built-in 4–20-mA transmitters to measure
the pressures.

The low-capacity waste heat thermal energy source is ensured by means of an electrical boiler
where thermal oil, Therminol66, is pumped through to temperatures of up to 125 ◦C. The boiler
has a maximum power of 250 kWth. A PI (proportional integral) controller is implemented to maintain
a constant oil temperature at the inlet of the evaporator during transients (e.g., change of ORC pump
rotational speed).

A variable flow rate of glycol water (32% ethylene glycol of total volume ) is used to cool down
the working fluid in the condenser. The thermal energy is rejected by the cooling fluid to the ambient
environment by means of an air cooler. A by-pass of the air cooler allows controlling the condenser
cooling fluid inlet temperature by means of an adjustable solenoid valve.

Figure 1. Schematic layout of the pilot plant available at Ghent University, campus Kortrijk (Belgium).

Starting from the bottom of the scheme (Figure 1), it is possible to recognize the liquid receiver (b)
installed at the outlet of the condenser (a) where the fluid is collected in saturated liquid condition.
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From the receiver outlet, the fluid is pumped (c) through the re-generator (d) cold side and the
evaporator (e), where it is heated up to superheated vapor, reaching its maximum temperature at the
evaporator outlet. The fluid, after being expanded in the volumetric machine (f), enters the re-generator
hot side, and then, it flows into the condenser (a) to close the cycle. The interested reader can refer
to [26] for a more detailed description of the ORC test-rig.

2.2. The ORC Unit Modelica Model

In order to assess the performance of the different developed control strategies, a dynamic model
of the ORC system presented in Figure 1 has been developed in the Modelica language using existent
components from the ThermoCycle library [27]. Dymola is selected as the simulation environment
software. The finite volume (FV) modeling approach is used to simulate the three heat exchanger
components of the unit. The FV method consists of discretizing the heat exchanger (HE) volume in
a number of equal and constant control volumes. It is considered a reliable and robust approach for
the modeling of HE involving two-phase fluid flows [25,28].

As the time constants characterizing the compression and expansion processes are negligible
compared to the ones characterizing the mass and heat transfer phenomena in the heat exchangers, the
pump and the expander are described with semi-empirical quasi-steady-state models. A description
of these models is reported in [29]. The liquid receiver at the condenser outlet is modeled assuming
thermodynamic equilibrium at all times. Pressure drops in the heat exchangers are lumped at the
lowest vapor density section of the ORC system and are modeled according to a quadratic law
accounting for linear and turbulent effects [15].

The thermo-physical properties of the working fluid (SES36), the cooling fluid (glycol-water) and
the thermal oil (therminol66) are computed coupling Modelica with the open-source fluid properties’
library CoolProp [30] through the use of the ExternalMedia package [27]. For a more detailed
description of the modeling approach, the interested reader can refer to [25].

The developed Modelica model is then exported into the Simulink/MATLAB environment by
means of the Functional Mockup Interface (FMI) open standard, using a model exchange format.
This simulation approach takes advantage of the strengths of each platform: Modelica for modeling
and Simulink/MATLAB for control design. The presented simulation results are performed with an
expander rotational speed set constant at 3000 rpm, so as to emulate an installation directly connected
to the grid.

2.3. ORC Unit Optimal Working Conditions

In order to optimally operate a sub-critical ORC unit for waste heat recovery applications,
two main conditions need to be satisfied: (1) ensure safe working operation; and (2) maximize
the net output power.

As far as safety operations are concerned, a super-heated vapor state must be ensured at the
expander inlet. In applied thermodynamic terms, an accurate regulation of the superheating (∆Tsh) is
deemed fundamental to avoid a wet expansion: the formation of liquid droplets during the expansion
process that could damage the machine.

The superheating is defined as:

∆Tsh = Texp,su − Tsat,ev (1)

where Texp,su is the temperature measured at the inlet of the expander and Tsat,ev the evaporating
temperature at the evaporating pressure psat,ev.

For waste heat recovery applications in order to optimize the ORC unit performance, the net
output power needs to be maximized during operation. In this regard, the evaporating temperature
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is considered the most relevant control variable [16]. The net output power is selected as the most
relevant performance index and is defined by:

Ẇel,net = Ẇexp − Ẇpump (2)

The cycle first law efficiency is also provided for indicative purposes and is defined by:

ηcycle =
Ẇel,net

Q̇in,ORC
(3)

where Ẇexp is the expander electrical power, Ẇpump is the pump electrical power and Q̇in,ORC is the
thermal power supplied to the ORC working fluid in the evaporator.

2.4. ORC Unit Model-Based Investigation

The developed Modelica dynamic model is used to gain insight into the system’s dynamics,
in particular the relationship between superheating (∆Tsh), evaporating temperature (Tsat,ev),
pump speed (Npp) and expander electrical power (Ẇexp).

The system is perturbed by applying 100 rpm step changes on the pump rotational speed in the
range between 1300 and 2100 rpm for different heat source conditions. The heat source temperature,
Th f , is varied between 90 and 125 ◦C while the heat source mass flow, ṁh f , is comprised of a range
between 0.5 and 1.5 kg/s. The heat sink temperature, Tc f , and heat sink mass flow, ṁc f , were kept
constant at 15 ◦C and 4 kg/s, respectively. The steady-state values obtained at each pump speed are
depicted in Figure 2, where the expander electrical power Ẇexp is represented as a function of Tsat,ev

and ∆Tsh.
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Figure 2. Expander output power versus (a) evaporating temperature and (b) superheating for different
heat source conditions Th f = {90, 100, 110, 125} ◦C with ṁh f = {0.5, 1.0, 1.5} kg/s.

Figure 2a illustrates that for each heat source condition, there exists an optimal evaporating
temperature that maximizes the expander output power: as an example, for a heat source of 1.5 kg/s
and 125 ◦C, an optimum is reached for Tsat,ev = 112 ◦C, corresponding to an output power of 5 kW.

As the pump speed is increased, the working fluid mass flow and the superheating decreases,
extracting more thermal energy from the heat source and consequently leading to an electrical power
increment. In Figure 2b, the influence of the pump speed and the superheating level on the expander
output power is reported. Once the superheating reaches zero (i.e., the fluid is in the two-phase
condition), the expander power drops.

The model-based investigation allows one to conclude that the ORC unit output power is inversely
proportional to the degree of superheating in the evaporator, and it exhibits an optimum as a function
of the evaporating temperature. For limited values of the superheating (e.g., lower than 10 ◦C), the
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gain in output power remains limited (about 1.12%), which indicates an acceptable target range for
the control.

Based on the acquired simulation data, it is possible to derive a correlation describing the optimal
evaporating temperature as a function of the heat source conditions:

Tsat,opt = −290.915 + 183.33 · log10(Th f ) + 10.636 · ṁh f (4)

Equation (4) is valid in the range of 0.5 ≤ ṁh f ≤ 1.5 kg/s and 90 ≤ Th f ≤ 125 ◦C given a constant
saturation temperature in the condenser of psat,cd = 1.4 bar. It is computed considering a minimum
superheating value of 10 ◦C, as represented by the black circles in Figure 2 and provides an accuracy of
R2 = 98.7%.

Based on the obtained simulation results, it is concluded that the design of a control strategy
focusing on the regulation of the evaporating temperature while ensuring a minimum amount of
superheating is deemed necessary for optimal operation. Controlling the expander speed or turbine
guide vanes is not considered in the present work, since it constitutes an additional system complexity
and cost and is not implemented in most commercial ORC systems [4].

3. Adaptive Optimization

The identification of the optimal evaporating temperature is a fundamental step towards the
implementation of a control strategy aimed at maximizing the output power of the sub-critical ORC
unit. If a dynamic model of the system is available and calibrated for the target system, an optimal
correlation can be developed, which further satisfies the system safety constraints (cf. Equation (4)).
However, there are two drawbacks in this approach: (1) a validated dynamic model is not always
available; (2) model errors can bias the computed optimal operating conditions.

In order to overcome these issues, we propose a different approach based on the implementation
of an extremum seeking (ES) algorithm. Such an approach allows identifying the optimal evaporating
temperature, without the need for a model of the investigated system. Extremum seeking is a
well-developed field that addresses the problem of objective value optimization when the objective
function, its gradient and optimum value are unknown [19]. From the different algorithm variations,
the perturbation-based ES framework is the most popular method in the literature [19], as it has proven
to be more robust to noise and dynamic effects in the system, thus producing smoother references,
which decrease the risk of instability [31].

The schematic representation of the proposed control structure is depicted in Figure 3. The
perturbation-based ES algorithmis in charge of finding the extremum Tsat,opt that arises from the
reference-to-output nonlinear map (i.e., Tsat,ev to Ẇexp), while a low-level feedback controller keeps the
system stable at that equilibrium optimal point.

Figure 3. Perturbation-based extremum seeking algorithm applied to the ORC system.
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The working principle of the ES algorithm is depicted in Figure 4. The ES algorithm estimates the
gradient of the nonlinear mapping, f , by perturbing its input with a periodic dither signal with radial
frequency ω and by processing its output Ẇexp. Although the relationship between Ẇexp and Tsat,ev is
nonlinear and a priori unknown, it is assumed that an extremum Ẇexp,opt = f (Tsat, ev) exists.

In this study, the dither signal is assumed to be a sine wave, although other types of dither can be
used, as well [32]. Figure 4 shows the response of a nonlinear function with a global maximum to such

a sinusoidal perturbation signal around three different T̂sat,opt. At T̂sat,opt 1,
∂ f (T̂sat,opt 1)

∂Tsat,opt
< 0, resulting

in an inversion of the dither signal phase in the output of the nonlinear function. Instead, at T̂sat,opt 3,
∂ f (T̂sat,opt 3)

∂Tsat,opt
> 0, the phase of the dither signal component remains unchanged.

Figure 4. Sinusoidal perturbation around various T̂sat,opt.

The perturbation around T̂sat,opt 3 results in a larger amplification of the dither signal, compared
to perturbation around T̂sat,opt 1. Around T̂sat,opt 2, which is close to the extremum Tsat,opt, the

dither signal is hardly visible in the output, because | ∂ f (T̂sat,opt 1)

∂Tsat,opt
| ≈ 0. Furthermore, in this figure,

| ∂ f (T̂sat,opt 2)
∂Tsat,opt

| < | ∂ f (T̂sat,opt 1)

∂Tsat,opt
| < | ∂ f (T̂sat,opt 3)

∂Tsat,opt
|. Intuitively, the dither signal component in the output can be

regarded as an estimate of the local gradient around a certain T̂sat,opt

The reference to the low-level controller consists of the sine wave dither signal and an adaptation input:

Tsat,opt = γ sin(ωt) + T̂sat,opt (5)

where γ is the amplitude and ω is the modulation frequency. The adaptation signal, T̂sat,opt, shifts the
sine wave towards the gradient direction. The response of the system to this signal is measured in the
objective value (Ẇexp). This output is filtered by a high-pass filter to eliminate the DC component and
demodulated by the same sine signal to extract the gradient direction. Note that filters and integrator
are represented using the Laplace variable s.

ξ = Ẇexp

(
ωl

s + ωl

)(
s

s + ωh

)
(γ sin(ωt)) (6)

This information is used to calculate the shift in the sine signal towards the gradient.
The adaptation law is then computed by:

T̂sat,opt = ξ
k
s

(7)

where k is a positive constant that specifies the adaptation speed. Since only the DC component of the
demodulated signal is needed for gradient calculation, a low pass filter is often used. The amplitude
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and frequency of the sine wave signal and the cutoff frequencies of the filters are important design
parameters. A detailed study of how the design of the perturbation signal affects the performance of
the ES algorithm is presented in [32].

4. Model Predictive Control

A brief introduction to the EPSAC algorithm is presented in this section. For a detailed description,
the reader is referred to [16,33].

4.1. Computing the Predictions

Using the EPSAC algorithm, the measured process output y(t) can be represented using
Equation (8), as illustrated in Figure 5.

y(t) = x(t) + n(t) (8)

where x(t) is the model output that represents the effect of the control input u(t) and n(t) represents
the effect of the disturbances and modeling errors, all at discrete-time index t.

Figure 5. Process model in the EPSAC algorithm.

Model output x(t) can be described by the generic system dynamic model:

x(t) = f [x(t− 1), x(t− 2), . . . , u(t− 1), u(t− 2), . . .] (9)

Notice that x(t) represents here the model output, not the state vector. Also important is the fact
that f can be either a linear or a nonlinear function. Furthermore, the disturbance n(t) can be modeled
as colored noise through a filter with the transfer function:

n(t) =
C(q−1)

D(q−1)
e(t) (10)

where e(t) is uncorrelated (white) noise with zero-mean and C, D are monic polynomials in the
backward shift operator q−1. The disturbance model must be designed to achieve the robustness of the
control loop against unmeasured disturbances and modeling errors [24].

Using the generic process model (Equation (8)), the predicted values of the output are represented
in Equation (11). Notice the notation ...(t + k|t), which denotes the future values up to time t + k of a
signal, postulated at time t.

y(t + k|t) = x(t + k|t) + n(t + k|t) (11)

where x(t+ k|t) and n(t+ k|t) can be predicted by recursion of the process model (Equation (9)) and by
using filtering techniques on the noise model (Equation (10)), respectively [33]. Notice that u(t + k|t)
denotes future values of the input, postulated at time t.
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4.2. Computing the Optimal Control Action

A key element in linear MPC is the use of base (or free) and optimizing (or forced) response
concepts [34]. In EPSAC, the future response can be expressed as:

y(t + k|t) = ybase(t + k|t) + yoptimize(t + k|t) (12)

The two contributing factors have the following origin:

• ybase(t + k|t) is the effect of the past inputs, the a priori-defined future base control sequence
ubase(t + k|t) and the predicted disturbance n(t + k|t).

• yoptimize(t + k|t) is the effect of the additions δu(t + k|t) that are optimized and added to
ubase(t + k|t), according to δu(t + k|t) = u(t + k|t)− ubase(t + k|t). The effect of these additions is
the discrete time convolution of ∆U = {δu(t|t), . . . , δu(t + Nu − 1|t)} with the impulse response
coefficients of the system (G matrix), where Nu is the chosen control horizon.

The control ∆U is the solution to the following constrained optimization problem:

∆U =arg min
∆U∈RNu

N2

∑
k=N1

[r(t + k|t)− y(t + k|t)]2

s.t. A.∆U ≤ B

(13)

where N1 and N2 are the minimum and maximum prediction horizons, Nu is the control horizon and
r(t + k|t) is a future setpoint or reference sequence. The various process input and output constraints
can all be expressed in terms of ∆U, resulting in matrices A, B. Since Equation (13) is quadratic
with linear constraints in decision variables ∆U, then the minimization problem can be solved by
a quadratic programming (QP) algorithm [24,34].

4.3. Low-Order Model for Prediction

In order to obtain the low-order model required by the MPC strategy, a parametric identification
procedure is performed. Two models are identified from the manipulated variable: pump speed (Npp)
to the evaporating temperature (Tsat,ev) and superheating (∆Tsh).

Notice that the heat source temperature (Th f ) also influences evaporating temperature and
superheating, thus becoming a measured disturbance. As a result, we are interested in identifying
a system consisting of two inputs (one manipulated (Npp) and one measured disturbance Th f ) and
two outputs (Tsat,ev and ∆Tsh). A linear parametric identification is thus performed in the system
using the prediction error minimization method from the data collected using a multisine excitation
signal [35]. The identified model presented in (Equation (14)) is in the form of discrete-time transfer
functions for a sampling time Ts = 1 s.

∆Tsh(t) =
−0.063q−1+0.059q−2

1−2.44q−1+1.955q−2−0.51q−3 Npp(t) +
0.47q−1

1−0.51q−1 Th f (t) (14a)

Tsat,ev(t) =
0.066q−1−0.063q−2

1−2.42q−1+1.91q−2−0.49q−3 Npp(t) +
0.0017q−11−0.0017q−12

1−3.6q−1+4.88q−2−2.95q−3+0.67q−4 Th f (t) (14b)

5. Simulation Results

The developed ES algorithm is tested with three low-level control strategies: the proposed
EPSAC-MPC and two PI-like controllers. Furthermore, the performance of a PI controller that
would simply maintain a constant superheating, as commonly implemented in industrial practice, is
also investigated.

The heat source and heat sink profiles of the ORC system are depicted in Figure 6. The thermal oil
evaporator inlet temperature is characterized by a gradual increase of 10 ◦C, while the other variables
slightly oscillates around the operating point.
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Figure 6. Heat source (left) and heat sink (right) used to test the capabilities of the proposed strategies.

5.1. Constrained EPSAC-MPC Strategy

The control objective for EPSAC-MPC consists of tracking the setpoint generated by the optimizer
(Figure 3), while keeping the superheating above a desired threshold value to guarantee a safe
operation. The control strategy must satisfy these conditions using only one degree of freedom (i.e.,
pump speed Npp), while satisfying actuator constraints (Npp,min = 1320 rpm; Npp,max = 2100 rpm;
∆Npp = 100 rpm) and constraints at the process output (∆Tsh,min = 10 ◦C).

The EPSAC-MPC is designed with control horizon Nu = 1 and prediction horizons N1 = 1,
N2 = 15. The ES optimizer is designed with tuning parameters: k = 1/38, ωl = 0.02 rad/s,
ωh = 0.1 rad/s, γ = 0.05 and ω = 0.06 rad/s. The results are depicted in Figure 7, where two optimal
evaporating temperatures are present, one computed using the ES algorithm (dashed red line) and the
other (black circles) computed from correlation in Equation (4).
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Figure 7. Control performance of MPC. The dashed red line represents the ES optimizer, while black
circles represent the optimizer obtained from the dynamic model (Equation (4)).
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The ES algorithm is able to adapt properly to the heat source variation, maximizing the output
power. Notice that in the time range between 250 and 300 s, the controller is not following the ES
setpoint. The latter is due to the active constraint in superheating, which causes the controller to take
actions in the pump to bring the system to a safer regime (i.e., ∆Tsh > 10 ◦C).

5.2. PI-Like Strategies

The performance of the MPC regulator is compared with two PI-like strategies.

1. Single PI strategy: a PI controller for evaporating temperature, PITsat, is used to track the reference
given by the ES optimizer.

2. Switching PI strategy: this consists of using a PI controller, PITsat, to track the optimal evaporating
temperature, unless superheating goes below the threshold value of 10 ◦C, in which case, a second
PI controller for superheating, PIDT , with reference at ∆Tsh = 10 ◦C, is enabled, thus bringing the
system back into a safer regime.

The results for the single PI strategy are depicted in Figure 8. The ES optimizer (dashed red line)
adapts the reference to the local PI controller, PITsat, towards the optimal evaporating temperature,
Tsat,opt, in order to maximize the output power. As the superheating is not controlled, the ORC unit
is brought to hazardous working conditions characterized by a two-phase state (i.e., gas and liquid
phase) at the expander inlet as observed at time 250–300 s and 350–400 s.
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Figure 8. Control performance for a PI strategy. The dashed red line represents the ES optimizer, while
black circles represent the optimizer obtained from the dynamic model (Equation (4)).

The performance of the switching PI-like strategy is reported in Figure 9. The PITsat controller
tracks the reference generated by the ES optimizer, unless the superheating value goes below a
threshold value, in which case the PIDT controller with reference at ∆Tsh = 10 ◦C is enabled. The latter
takes the system back to a safe operating condition, avoiding the two-phase state at the expander inlet.
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Figure 9. Control performance for a switching PI strategy. The dashed red line represents the ES
optimizer, while black circles represent the optimizer obtained from the dynamic model (Equation (4)).

Despite the adoption of two controllers, super-heating values below 10 ◦C are registered during
operation from time 250–300 s. Furthermore, more aggressive control actions are imposed on the pump
rotational speed compared to the MPC methodology.

In order to assess the capabilities of the proposed control strategies to maximize the ORC unit
performance, the net energy generation is computed by integrating the net output power over the
simulation time. As the single PI strategy is not able to ensure safety conditions, it is discarded from
this comparison. Taking the switching PI as a reference (100%), the EPSAC-MPC strategy allows
increasing the net energy production by 15%. This is due to a better handling of the constraints, thus
operating the system closer to the constraint for superheating while requiring a lower control effort
(i.e., less power consumption in the pump).

5.3. Superheating Control Strategy

Many contributions available in the literature and most of approaches followed in industrial
practice suggest the use of a controller that would simply maintain a constant superheating. It is
therefore interesting to investigate its performance and to compare it to the approach proposed in
this paper.

The PI controller in charge of regulating superheating is tuned, making a trade-off between
diminishing the output variability (i.e., minimizing the tracking error) and the required control effort.
The reference for the controller is set at ∆Tsh = 14 ◦C, in order to get an extra safety margin, thus
avoiding superheating going below the desired minimum limit (i.e., ∆Tsh = 10 ◦C).

The PI controller is able to regulate the superheating level around the setpoint, respecting almost at
all times the superheating safety limit of 10 ◦C (Figure 10). In terms of power production, it sometimes
outperforms the ES with a low-level controller as observed from time 350–450 s, where, due to the active
constraint, the controllers allow a larger tracking error in order to bring the system to a safer regime.

Although the controller for superheating is performing well, it requires more aggressive control
actions, leading to a higher pump power consumption. The net energy output is thus reduced and
lower compared to the proposed strategy using ES and a low-level controller. Computing the net
energy produced, the PI superheating controller generates (3%) more compared to the switching PI
strategy, but (12%) less if compared to the ES-MPC approach.
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Figure 10. Control performance for the superheating PI strategy, with the reference at ∆Tsh = 14 ◦C.

6. Guidelines for ES Tuning and the Stability Test

The perturbation-based extremum seeking algorithm includes five parameters that should be
tuned: the cut frequencies of the low ωl and high ωh pass filters, the integrator gain k, the amplitude γ

and frequency ω of the dither signal. This section is an attempt to provide guidelines for the
ES parametrization.

Selecting the dither frequency ω is a trade-off between the speed of convergence and precision.
The dither signal should vary slowly enough for the plant to settle, thus preventing the plant
dynamics from interfering with the peak seeking scheme [32]. On the other hand, increasing the
dither frequency allows the integrator gain to be increased proportionally, while retaining the same
domain of attraction [36]. As a rule of thumb, the dither frequency should be slower than the open-loop
dynamics of the plant to obtain a useful signal to noise ratio (SNR) at the input of the ES scheme. It is
worth mentioning that although the exact bandwidth of the plant is unknown, the low-order model
used for MPC can be used to determine a suitable value for ω.

The value of the integrator gain k is a trade-off between the speed of convergence, precision and
stability. A higher gain results in faster convergence, but the influence of any noise present in the
output of the low pass filter becomes more dominant. Furthermore, there is an upper limit on the
integrator gain with respect to the stability of the adaptation loop. Increasing the integrator beyond
this value will render the adaptation unstable [37].

The amplitude of the dither signal is a trade-off between accuracy and precision. A large γ

results in a larger offset with respect to the optimal point [36]. On the other hand, a smaller γ leads
to a reduction in precision, as the decrease in the amplitude of the modulated gradient brings a
deterioration of the SNR at the input of the ES scheme.

In order to investigate the stability and robustness of the presented adaptive control strategy,
a second test is performed including measurement noise, as well as large variations in the heat source
mass flow rate ṁh f . The heat source and heat sink profiles used for the test are depicted in Figure 11.
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Figure 11. Temperature and mass flow rate variations in the heat source (left) and heat sink (right)
employed to test the capabilities of the proposed adaptive constrained strategy.

In Figure 12, the performance of the proposed constrained adaptive strategy is tested when using
a dither signal amplitude of γ = 0.02. The algorithm faces some problems to quickly converge to the
optimal evaporating temperature, represented by the dashed black line obtained from Equation (4).
This is due to the low SNR obtained using such a low amplitude of the dither signal. The system,
although stable, is not performing optimally as concluded by observing the ‘high’ level of superheating
obtained and the power generated.

A new experiment is performed using the same external conditions, but increasing the dither
signal amplitude by two, i.e., γ = 0.04. By increasing the value for γ, the SNR is increased, thus
making it possible for the algorithm to quickly converge close to the optimal value, as reported in
Figure 13. Attention has to be paid to avoid increasing this value unnecessarily, as a large γ could
result in a larger offset with respect to the optimal point [36].
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Figure 12. Control performance of the proposed adaptive constrained strategy for large heat source
variations and measurement noise, using γ = 0.02.
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Figure 13. Control performance of the proposed adaptive constrained strategy for large heat source
variations and measurement noise, using γ = 0.04.

7. Conclusions

In this contribution, a two-layer control structure to achieve constrained optimal operation
of an organic Rankine cycle unit for waste heat recovery applications is proposed. It is based on
an extremum seeking algorithm in the high layer and a constrained model predictive control in the
low layer. The convergence accuracy of the proposed optimizer is investigated by comparing its
results to the optimal evaporating temperature obtained using the model of the system. Its stability
and robustness is assessed for the case of measurement noise, providing some guidelines to avoid
instability or an inconsistent estimation. Furthermore, safety and energy production are investigated
when comparing the performance obtained for MPC and two different low-level PI-like control
schemes; and for the case of a PI controller to maintain a constant superheating.

In light of the simulation study performed, the following conclusions are drawn:

• A validated dynamic model of an 11 kWel sub-critical organic Rankine cycle unit for waste heat
recovery application is used to illustrate the existence of an optimal evaporating temperature,
which maximizes energy production for some given heat source conditions.

• The extremum seeking strategy allows determining the optimal operating conditions of the ORC
system without the need for a model, thus dealing with possible modeling errors that could cause
a bias in the estimation. Some guidelines to properly tune the ES algorithm are presented, where
it has been shown that a low signal to noise ratio due to measurement noise can influence the
convergence of the adaptive optimizer and how the amplitude of the dither signal can be used to
recover the system performance.

• The MPC control strategy outperforms in terms of energy generation the PI-like strategies. It is
shown that a single PI regulating the evaporation temperature cannot guarantee safety conditions;
therefore, a switching PI is proposed, resulting in a safer operation compared to a single PI,
but being less effective compared to model predictive control, since it violates the safety limit
for superheating.

• In terms of energy production, the proposed adaptive constrained strategy provides a more
efficient operation, as it requires less control effort and operates closer to the boundary conditions,
thus offering a higher net energy production compared to PI strategies. When compared to
traditional control strategies aiming at maintaining a constant superheating, the gain is about 12%
for the proposed test case.
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Future work will include the development of a multivariable control strategy by making use of
the expander speed, as an additional manipulated variable.
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Abbreviations

ORC organic Rankine cycle
WHR waste heat recovery
MPC model predictive control
EPSAC extended prediction self-adaptive control
PI proportional-integral control
ES extremum seeking
∆ difference
s Laplace complex variable
ṁ mass flow (kg/s)
Ẇ power (W)
N rotational speed (rpm)
p pressure (Pa)
T temperature (◦C)

Subscript
el electrical
ev evaporator
exp expander
pp pump
hf hot fluid
cf cold fluid
sh super-heated

Greek letter
η efficiency
γ amplitude dither signal
ξ gradient direction
k integrator gain
ω frequency dither signal
α time constant MPC
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