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Abstract: Electric load forecasting is an important issue for a power utility, associated with the
management of daily operations such as energy transfer scheduling, unit commitment, and load
dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR),
this paper presents an SVR model hybridized with the differential empirical mode decomposition
(DEMD) method and quantum particle swarm optimization algorithm (QPSO) for electric load
forecasting. The DEMD method is employed to decompose the electric load to several detail
parts associated with high frequencies (intrinsic mode function—IMF) and an approximate part
associated with low frequencies. Hybridized with quantum theory to enhance particle searching
performance, the so-called QPSO is used to optimize the parameters of SVR. The electric load data of
the New South Wales (Sydney, Australia) market and the New York Independent System Operator
(NYISO, New York, USA) are used for comparing the forecasting performances of different forecasting
models. The results illustrate the validity of the idea that the proposed model can simultaneously
provide forecasting with good accuracy and interpretability.

Keywords: electric load forecasting; support vector regression; quantum theory; particle swarm
optimization; differential empirical mode decomposition; auto regression

1. Introduction

Electric energy can not be reserved, thus, electric load forecasting plays a vital role in the daily
operational management of a power utility, such as energy transfer scheduling, unit commitment,
load dispatch, and so on. With the emergence of load management strategies, it is highly desirable
to develop accurate, fast, simple, robust and interpretable load forecasting models for these electric
utilities to achieve the purposes of higher reliability and better management [1].

In the past decades, researchers have proposed lots of methodologies to improve the load
forecasting accuracy level. For example, Bianco et al. [2] proposed linear regression models for
electricity consumption forecasting; Zhou et al. [3] applied a Grey prediction model for energy
consumption; Afshar and Bigdeli [4] presented an improved singular spectral analysis method to
predict short-term load in the Iranian power market; and Kumar and Jain [5] compared the forecasting
performances among three Grey theory-based time series models to explore the consumption situation
of conventional energy in India. Bianco et al. [6] indicate that their load model could be successfully
used as an input of broader models than those of their previous paper [2]. References [7–10] proposed
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several useful artificial neural networks models to conduct short-term load forecasting. The authors
of [11–14] proposed hybrid models with evolutionary algorithms that demonstrated improved energy
forecasting performances. These methods can achieve significant improvements in terms of forecasting
accuracy, but without reasonable interpretability, particularly for ANN models. Artificial neural
networks (ANNs), with mature nonlinear mapping capabilities and data processing characteristics,
have achieved widely successful applications in load forecasting. Recently, expert systems with fuzzy
rule-based linguistic means provided good interpretability while dealing with system modeling [15].
Various approaches and models have been proposed in the last decades in many area such as climate
factors (temperature and humidity), social activities (human social activities), seasonal factors (seasonal
climate change and load growth), and so on. However, these models have strong dependency on an
expert and lack expected forecasting accuracy. Therefore, combination models which are based on
these popular methods and other techniques can satisfy the two desired requests: high accuracy level
and interpretability.

With superiority in handling high dimension nonlinear data, support vector regression (SVR)
has been successfully used to solve forecasting problems in many fields, such as financial time series
(stocks index and exchange rate) forecasting, tourist arrival forecasting, atmospheric science forecasting,
and so on [16–18]. However, SVR methods have a significant disadvantage, in that while its three
parameters are determined simultaneously during the nonlinear optimization process, the solution
is easily trapped into a local optimum. In addition, it also lacks a statistically significant level of
robustness. These two shortcomings are the focused topics in the SVR research field [19]. On the
other hand, the empirical mode decomposition (EMD) with auto regression (AR), a reliable clustering
algorithm, has been successfully used in many fields [20–22]. The EMD method is particularly powerful
for extracting the components of the basic mode from nonlinear or non-stationary time series [23], i.e.,
the original complex time series can be transferred into a series of single and apparent components.
However, this method cannot deal well with the signal decomposition effects while the gradient of the
time series is fluctuating. Based on the empirical decomposition mode, reference [24] proposes the
differential empirical mode decomposition (DEMD) to improve the fluctuating changes problem of
the original EMD method. The derived signal is obtained by several derivations of the original signal,
and the fluctuating gradient is thus eliminated, so that the signal can satisfy the conditions of EMD.
The new signal is then integrated into EMD to obtain each intrinsic mode function (IMF) order and the
residual amount of the original signal. The differential EMD method is employed to decompose the
electric load into several detailed parts with higher frequency IMF and an approximate part with lower
frequencies. This can effectively reduce the unnecessary interactions among singular values and can
improve the performance when a single kernel function is used in forecasting. Therefore, it is beneficial
to apply a suitable kernel function to conduct time series forecasting [25]. Since 1995, many attempts
have been made to improve the performance of the PSO [26–31]. Sun et al. [32,33] introduced quantum
theory into PSO and proposed a quantum-behaved PSO (QPSO) algorithm, which is a global search
algorithm to theoretically guarantee finding good optimal solutions in the search space. Compared
with PSO, the iterative equation of QPSO needs no velocity vectors for particles, has fewer parameters
to adjust, and can be implemented more easily. The results of experiments on widely used benchmark
functions indicate that the QPSO is a promising algorithm [32,33] that exhibits better performance
than the standard PSO.

In this paper, we present a new hybrid model to achieve satisfactory forecasting accuracy.
The principal idea is hybridizing DEMD with QPSO, SVR and AR, namely the DEMD-QPSO-SVR-AR
model, to achieve better forecasting performance. The outline of the proposed DEMD-QPSO-SVR-AR
model is as follows: (1) the raw data can be divided into two parts by DEMD technology, one is the
higher frequency item, the other is the residuals; (2) the higher frequency item has less redundant
information than the raw data and trend information, because that information is gone to the residuals,
then, QPSO is applied to optimize the parameters of SVR (i.e., the so-called QPSO-SVR model), so the
QPSO-SVR model is used to forecast the higher frequency, the accuracy is higher than the original SVR
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model, particularly around the peak value; (3) fortunately, the residuals is monotonous and stationary,
so the AR model is appropriate for forecasting the residuals; (4) the forecasting results are obtained
from Steps (2) and (3). The proposed DEMD-QPSO-SVR-AR model has the capability of smoothing
and reducing the noise (inherited from DEMD), the capability of filtering dataset and improving
forecasting performance (inherited from SVR), and the capability of effectively forecasting the future
tendencies (inherited from AR). The forecast outputs obtained by using the proposed hybrid method
are described in the following sections.

To show the applicability and superiority of the proposed model, half-hourly electric load data
(48 data points per day) from New South Wales (Australia) with two kind of sizes are used to compare
the forecasting performances among the proposed model and other four alternative models, namely
the PSO-BP model (BP neural network trained by the PSO algorithm), SVR model, PSO-SVR model
(optimizing SVR parameters by the PSO algorithm), and the AFCM model (adaptive fuzzy combination
model based on a self-organizing mapping and SVR). Secondly, another hourly electric load dataset
(24 data points per day) from the New York Independent System Operator (NYISO, USA), also, with
two kinds of sizes are used to further compare the forecasting performances of the proposed model
with other three alternative models, namely the ARIMA model, BPNN model (artificial neural network
trained by a back-propagation algorithm), and GA-ANN model (artificial neural network trained by a
genetic algorithm). The experimental results indicate that this proposed DEMD-QPSO-SVR-AR model
has the following advantages: (1) it simultaneously satisfies the need for high levels of accuracy and
interpretability; (2) the proposed model can tolerate more redundant information than the SVR model,
thus, it has more powerful generalization ability.

The rest of this paper is organized as follows: in Section 2, the DEMD-QPSO-SVR-AR forecasting
model is introduced and the detailed illustrations of the model are also provided. In Section 3, the data
description and the research design are illustrated. The numerical results and comparisons are shown
in Section 4. The conclusions of this paper and the future research focuses are given in Section 5.

2. Support Vector Regression with Differential Empirical Mode Decomposition

2.1. Differential Empirical Mode Decomposition (DEMD)

The EMD method assumes that any signal consists of different simple intrinsic modes of oscillation.
Each linear or non-linear mode will have the same number of extreme and zero-crossings. There is only
one extreme between successive zero-crossings. In this way, each signal could be decomposed into a
number of intrinsic mode functions (IMFs). With the definition, any signal x(t) can be decomposed,
and the corresponding flow chart is shown as Figure 1:

(1) Identify all local extremes.
(2) Repeat the procedure for the local minima to produce the lower envelope m1.
(3) The difference between the signal x(t) and m1 is the first component, h1, as shown in Equation (1):

h1 “ xptq ´m1 (1)

In general, h1 is unnecessary to satisfy the conditions of the IMF, because h1 is not a standard IMF,
and until the mean envelope approximates zero it should be determined k times. At this point, the
data could be as shown in Equation (2):

h1k “ h1pk´1q ´m1k (2)

where h1k is the datum after k siftings. h1pk´1q stands for the data after shifting k ´ 1 times. Standard
deviation (SD) is defined by Equation (3):

SD “

T
ÿ

k“1

ˇ

ˇ

ˇ
h1pk´1qptq ´ h1kptq

ˇ

ˇ

ˇ

2

h2
1pk´1qptq

P p0.2, 0.3q (3)

where T is the length of the data.
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(4) When h1k has met the basic conditions of SD, based on the condition of c1 = h1k , and a new series
r1 could be presented as Equation (4):

r1 “ x1ptq ´ c1 (4)

(5) Repeat previous steps 1 to 4 until the rn cannot be decomposed into the IMF. The sequence rn is
called the remainder of the original data x(t) as Equations (5) and (6):

r1 “ x1ptq ´ c1, r2 “ r1 ´ c2, ..., rn “ rn´1 ´ cn (5)

x1ptq “
n
ÿ

i“1

ci ` rn (6)

Finally, the differential EMD is proposed by Equation (7):

DEMD “ xnptq ´ c0ptq (7)

where xnptq refers to dependent variables.
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2.2. Support Vector Regression

The notion of an SVR model is briefly introduced. Given a data set with N elements
tpXi, yiq , i “ 1, 2, ..., Nu, where Xi is the i-th element in n-dimensional space, i.e., Xi “ rx1i, ...xnis P <n,
and yi P < is the actual value corresponding to Xi. A non-linear mapping p¨q : <n Ñ <nh is defined to
map the training (input) data Xi into the so-called high dimensional feature space (which may have
infinite dimensions), <nh . Then, in the high dimensional feature space, there theoretically exists a
linear function, f, to formulate the non-linear relationship between input data and output data. Such a
linear function, namely SVR function, is shown as Equation (8): align equations

f pXq “ WT ϕ pXq ` b (8)

where f (X) denotes the forecasting values; the coefficients W (W P <nh ) and b (b P <) are adjustable.
As mentioned above, the SVM method aims at minimizing the empirical risk, shown as Equation (9):

Rempp f q “
1
N

N
ÿ

i“1

Θεpyi, WTφpXiq ` bq (9)

where Θεpyi, f pXqq is the ε-insensitive loss function and defined as Equation (10):

Θεpyi, f pXqq “

#

| f pXq ´ y| ´ ε , i f | f pXq ´ y| ě ε
0 , otherwise

(10)

In addition, Θεpyi, f pXqq is employed to find out an optimum hyper-plane on the high dimensional
feature space to maximize the distance separating the training data into two subsets. Thus, the SVR
focuses on finding the optimum hyperplane and minimizing the training error between the training
data and the ε-insensitive loss function. Then, the SVR minimizes the overall errors, shown as
Equation (11):

Min
W,b,ξ˚,ξ

RεpW, ξ˚, ξq “
1
2

WTW ` C
N
ÿ

i“1

pξ˚i ` ξiq (11)

with the constraints:
yi ´WTφpXiq ´ b ď ε` ξ˚i
´yi `WTφpXiq ` b ď ε` ξi
ξ˚i , ξi ě 0
i “ 1, 2, ..., N

(12)

The first term of Equation (11), employing the concept of maximizing the distance of two separated
training data, is used to regularize weight sizes to penalize large weights, and to maintain regression
function flatness. The second term penalizes training errors of f (x) and y by using the ε-insensitive loss
function. C is the parameter to trade off these two terms. Training errors above ε are denoted as ξ˚i ,
whereas training errors below ´ε are denoted as ξi.

After the quadratic optimization problem with inequality constraints is solved, the parameter
vector w in Equation (8) is obtained as Equation (13):

W “

N
ÿ

i“1

pβ˚i ´βiqφpXiq (13)

where β˚i , ξi are obtained by solving a quadratic program and are the Lagrangian multipliers. Finally,
the SVR regression function is obtained as Equation (14) in the dual space:

f pXq “
N
ÿ

i“1

pβ˚i ´βiqKpXi, Xq ` b (14)
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where K(Xi,X) is called the kernel function, and the value of the kernel equals the inner product of
two vectors, Xi and Xj, in the feature spaceϕ(Xi) andϕ(Xj), respectively; that is, K(Xi,Xj) =ϕ(Xi)ϕ(Xj).
Any function that meets Mercer’s condition [34] can be used as the kernel function.

There are several types of kernel function. The most used kernel functions are the Gaussian radial
basis functions (RBF) with a width of σ:K pXqi , Xjq “ exp

´

´0.5||Xi ´ Xj||2
{σ2

¯

and the polynomial

kernel with an order of d and constants a1 and a2: K(Xi,Xj) = (a1Xi + a2Xj)d. However, the Gaussian
RBF kernel is not only easy to implement, but also capable of non-linearly mapping the training data
into an infinite dimensional space, thus, it is suitable to deal with non-linear relationship problems.
Therefore, the Gaussian RBF kernel function is specified in this study.

2.3. Particle Swarm Optimization Algorithm

PSO is a heuristic global optimization algorithm broadly applied in optimization problems.
PSO is developed on a very simple theoretical framework that is easily implemented with only
primitive mathematical operators [26]. In PSO, a group of particles is composed of m particles in
D dimension space where the position of the particle i is Xi = (xi1, xi2, . . ., xiD) and the speed is
Vi = (vi1, vi2, . . ., viD). The speed and position of each particle are changed in accordance with the
following equations, Equations (15) and (16):

vj`1
id “ wvj

id ` c1r1pp
j
id ´ xj

idq ` c2r2pp
j
gd ´ xj

idq (15)

xj`1
id “ xj

id ` vj`1
id (16)

where i = 1, 2, . . . , m; d = 1,2,. . . , D; m is the particle size; pj
id is the dth dimension component of the

pbest that is the individual optimal location of the particle i in the jth iteration; pj
gd is the dth dimension

component of the gbest that is the optimal position of all particles in the jth iteration; w is the inertia
weight coefficient; c1 and c2 are learning factors; r1 and r2 are random numbers in the range [0,1].

The inertia weight w, which balances the global and local exploitation abilities of the swarm,
is critical for the performance of PSO. A large inertia weight facilitates exploration but slows down
particle convergence. Conversely, a small inertia weight facilitates fast particle convergence it
sometimes leads to the local optimal. The most popular algorithm for controlling inertia weight
is linearly decreasing inertia weight PSO [31]. The strategy of linearly decreasing inertia weight is
widely used to improve the performance of PSO, but this approach has a number of drawbacks [27].
Several adaptive algorithms for tuning inertia weight have been presented [27–30]. In the present
work, we propose the method of nonlinearly decreasing inertia weight to tune the value of w for
further performance improvement as Equation (17):

w “ wmax ´
pwmax ´wminq ˆ pt´ 1q2

ptmax ´ 1q2
(17)

where wmax and wmin are the maximum and minimum values of w, respectively; t is the current
iteration number; and tmax is the maximum iteration number.

2.4. Quantum-Behaved Particle Swarm Optimization

The main disadvantage of the PSO algorithm is that global convergence is not guaranteed [35].
To address this problem, Sun et al. [32,33], inspired by the trajectory analysis of PSO and quantum
mechanics, developed and proposed the QPSO algorithm. Particles move according to the following
iterative equations, Equations (18) to (21), and the flow chart is shown as Figure 2.

xijpt` 1q “ pijptq `α
ˇ

ˇ

ˇ
mbestjptq ´ xijptq

ˇ

ˇ

ˇ
ˆ ln p1{uq i f k ě 0.5 (18)

xijpt` 1q “ pijptq ´α
ˇ

ˇ

ˇ
mbestjptq ´ xijptq

ˇ

ˇ

ˇ
ˆ ln p1{uq i f k ď 0.5 (19)
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mbestjptq “
1
M

M
ÿ

i“1

pbestijptq (20)

pijptq “ φijptqpbestijptq ` p1´φijptqqgbestjptq (21)

where mbest is the mean best position defined as the mean of all the pbest positions of the population;
k, u and ϕu are random numbers generated using a uniform probability distribution in the range
[0,1]. The parameter α is called the contraction expansion coefficient, which is the only parameter
in the QPSO algorithm that can be tuned to control the convergence speed of particles. In general,
this parameter can be controlled by two methods: (1) fixing; or (2) varying the value of α during the
search of the algorithm. In [36], setting α to a number in the range (0.5, 0.8) generates satisfied results
for most benchmark functions. However, fixing the value of α is sensitive to population size and the
maximum number of iterations. This problem can be overcome by using a time-varying CE coefficient.
The literatures on QPSO suggest that decreasing the value of α linearly from α1 to α0 (α0 < α1) in the
course of the search process makes the QPSO algorithm perform efficiently [36,37].Energies 2016, 9, 221 8 of 20 
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In this paper, the value of α is computed as Equation (22):

α “ α1 ´
pt´ 1q ˆ pα1 ´α0q

T´ 1
(22)

where α1 and α0 are the final and initial values of α, respectively; t is the current iteration number;
and T is the maximum iteration number. Previous studies on QPSO [36,37] recommend that α be
linearly decreased from 1.0 to 0.5 for the algorithm to attain a generally good performance.

QPSO has already been implemented with excellent results [32] in various standard optimization
problems. Moreover, the QPSO algorithm has been proven more effective than traditional algorithms
in most cases [38–42]. In the current work, QPSO algorithm is utilized in SVR parameter optimization
for forecasting the high frequency data, and its performance is compared with that of the classical PSO
algorithm [43,44].

2.5. AR Model

Equation (23) expresses a p-step autoregressive model, referring as AR(p) model [45]. Stationary
time series {Xt} that meet the model AR(p) is called the AR(p) sequence. That a = (a1, a2, . . . , ap)T is
named as the regression coefficients of the AR(p) model:

Xt “
p
ř

j“1
ajXt´j ` εt

t P Z
(23)

2.6. The Full Procedure of DEMD-QPSO-SVR-AR Model

The full procedure of the proposed DEMD-QPSO-SVR-AR model is briefed as follows and is
illustrated in Figure 3.
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Step 1: Decompose the input data by DEMD. Each electric load data (input data) could be decomposed
into a number of intrinsic mode functions (IMFs), i.e., two parts, one is the higher frequency item,
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the other one is the residuals. Please refer Section 2.1 and Figure 1 to learn more about the DEMD
process details.

Step 2: QPSO-SVR modeling. The SVR model is employed to forecast the high frequency item,
thus, to look for most suitable parameters by QPSO, different sizes of fed-in/fed-out subsets will
be set in this stage. Please refer Section 2.2 to learn in more details the SVR process. The QPSO
algorithm is utilized in SVR parameter optimization for forecasting the higher frequency data, please
refer Sections 2.3 and 2.4 and Figure 2 to learn more about the details of the QPSO process.

Step 3: AR modeling. The residuals item is forecasted by the AR model due to its monotonous
and stationary nature. Please refer Section 2.5 to learn in more detail the processes of AR modeling.
Similarly, while the new parameters have smaller MAPE values or maximum iteration is reached, the
new three parameters and the corresponding objective value are the solution at this stage.

Step 4: DEMD-QPSO-SVR-AR forecasting. After receiving the forecasting values of the high
frequency item and the residuals item from SVR model and AR model, respectively, the final forecasting
results would be eventually obtained from the high frequency item and the residuals.

3. Numerical Examples

To illustrate the superiority of the proposed model, we use two datasets from different electricity
markets, that is, the New South Wales (NSW) market in Australia (denoted as Case 1) and the New York
Independent System Operator (NYISO) in the USA (Case 2). In addition, for each case, we all use
two sample sizes, called small sample and large sample, respectively.

3.1. The Experimental Results of Case 1

For Case 1, firstly, electric load data obtained from 2 to 7 May 2007 is used as the training data set
in the modeling process, and the testing data set is from 8 May 2007. The electric load data used are all
based on a half-hourly basis (i.e., 48 data points per day). The dataset containing only 7 days is called
the small size sample in this paper.

Secondly, for large training sets, it should avoid overtraining during the SVR modeling process.
Therefore, the second data size has 23 days (1104 data points from 2 to 24 May 2007) by employing all
of the training samples as training set, i.e., from 2 to 17 May 2007, and the testing data set is from 18 to
24 May 2007. This example is called the large sample size data in this paper.

(i) Results after DEMD in Case 1

As mentioned in the authors’ previous paper [25], the results of the decomposition process
by DEMD, can be divided into the higher frequency item (Data-I) and the residuals term (Data-II).
The trend of the higher frequency item is the same as that of the original data, and the structure is
more regular and stable. Thus, Data-I and Data-II both have good regression effects by the QPSO-SVR
and AR, respectively.

(ii) Forecasting Using QPSO-SVR for Data-I (The Higher Frequency Item in Case 1)

After employing DEMD to reduce the non-stationarity of the data set in Case 1, QPSO with SVR
can be successfully applied to reduce the performance volatility of SVR with different parameters, to
perform the parameter determination in SVR modeling process.

The higher frequency item is simultaneously employed for QPSO-SVR modeling, and the better
performances of the training and testing (forecasting) sets are shown in Figure 4a,b, respectively.
This implies that the decomposition and optimization by QPSO is helpful to improve the forecasting
accuracy. The parameters of a QPSO-SVR model for Data-I are shown in Tables 1 and 2 in which the
forecasting error for the higher frequency decomposed by the DEMD and QPSO-SVR has been reduced.
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Figure 4. Comparison the forecasted electric load of train and test by the QPSO-SVR model for the
data-I of sample data: (a) One-day ahead prediction of May 8, 2007 are performed by the model;
(b) One-week ahead prediction from May 18, 2007 May 24, 2007 are performed by the model.

Table 1. The QPSO’s parameters for SVR in Data-I.

N Cmin Cmax σmin σmax itmax

30 0 200 0 200 300

Table 2. The SVR’s parameters for Data-I.

Sample Size m σ C ε Testing MAPE

The samall sample data 20 0.12 88 0.0027 9.13
The large sample data 20 0.19 107 0.0011 4.1

where N is number of particles, Cmin is the minimum of C, Cmax is the maximum of C, σmin is the
minimum of σ, σmax is the maximum of σ, itmax is maximum iteration number.

(iii) Forecasting Using AR for Data-II (The Residuals in Case 1)

As mentioned in the authors’ previous paper [25], the residuals are linear locally and stable, so
use of the AR technique to predict Data-II is feasible. Based on the geometric decay of the correlation
analysis for Data-II (the residuals), it can be denoted as the AR(4) model. The associated parameters
of the AR(4) model for Data-II are indicated in Table 3. The errors almost approach the level of 10´5

both for the small or large amounts of data, i.e., the forecasting error for Data-II by DEMD has been
significantly reduced. This shows the superiority of the AR model.
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Table 3. Summary of results of the AR forecasting model for data-II.

Residuals MAE Equation

The small sample size 9.7732ˆ 10´ 5 xn “ 5523.827` 1.23xn´1 ` 0.5726xn´2 `

0.0031xn´3 ´ 0.70465xn´4

The large sample size 7.5923ˆ 10´5 xn “ 5524.9` 1.0152xn´1 ` 0.3628xn´2 `

0.0019xn´3 ´ 0.6752xn´4

3.2. The Experimental Results of Case 2

For Case 2, electric load data obtained from 1 to 12 January 2015 is used as the training data set in
the modeling process, and the testing data set is from 13 to 14 January 2015. These employed electric
load data are all based on an hour basis (i.e., 24 data points per day). The dataset contains only 14 days
so it is also called the small sample in this paper.

Secondly, for large training sets, the second dataset size is 46 days (1104 data points from 1 January
to 15 February 2015) by employing all of the training samples as training set, i.e., from 1 January to
1 February 2015, and the testing dataset is from 2 to 15 February 2015. This example is also called the
large size sample data in this paper.

(i) Results after DEMD in Case 2

As mentioned in the authors’ previous paper [25], similarly, the data results of the decomposition
process by DEMD can be divided into the higher frequency item (Data-I) and the residuals term
(Data-II). The trend of the higher frequency item is also the same as that of the original data, and the
structure is also regular and stable. Thus, Data-I and Data-II both have good regression effects by the
QPSO-SVR and AR, respectively.

(ii) Forecasting Using QPSO-SVR for Data-I (The Higher Frequency Item in Case 2)

After employing DEMD to reduce the non-stationarity of the data set in Case 2, to further resolve
these complex nonlinear, chaotic problems for both small sample and large sample data, the QPSO
with SVR can be successfully applied to reduce the performance volatility of SVR with different
parameters to perform the parameter determination in the SVR modeling process, to improve the
forecasting accuracy. The higher frequency item is simultaneously employed for QPSO-SVR modeling,
and the better performances of the training and testing (forecasting) sets are shown in Figure 5a,b,
respectively. This implies that the decomposition and optimization by QPSO is helpful to improve the
forecasting accuracy. The parameters of a QPSO-SVR model for Data-I are shown in Tables 1 and 4 in
which the forecasting error for the higher frequency decomposed by the DEMD and QPSO-SVR has
been reduced.

Table 4. The SVR’s parameters for data-I in Case 2.

Sample Size m σ C ε Testing MAPE

The small data 24 0.10 102 0.0029 7.19
The large data 24 0.19 113 0.0011 4.62

(iii) Forecasting Using AR for Data-II (The Residuals in Case 2)

As mentioned in the authors’ previous paper [25], the residuals are linear locally and stable, so
the AR technique is feasible to predict Data-II. Based on the geometric decay of the correlation analysis
for Data-II (the residuals), that can also be denoted as the AR(4) model, the associated parameters of
the AR(4) model for Data-II are indicated in Table 5. The errors almost approach a level of 10´5 both
for the small or large amount of data, i.e., the forecasting error for Data-II by DEMD has significantly
reduced. This shows the superiority of the AR model.
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Figure 5. Comparison the forecasted electric load of training and test data by the QPSO-SVR model
for the data-I of sample data in Case 2: (a) One-day ahead prediction from 13 to 14 January 2015 are
performed by the model; (b) One-week ahead prediction from 2 to 15 February 2015 are performed by
the model.

Table 5. Summary of results of the AR forecasting model for Data-II in Case 2.

Residuals MAE Equation

The small sample size 9.138ˆ 10´ 5 xn “ 5521.7` 1.13xn´1 ` 0.5676xn´2 `

0.021xn´3 ´ 0.845xn´4

The large sample size 6.02ˆ 10´5 xn “ 5522.7` 0.9152xn´1 ` 0.3978xn´2 `

0.0049xn´3 ´ 0.52xn´4

where xn is the n-th electric load residual, xn´1 is the (n ´ 1)th electric load residual similarly, etc.

4. Results and Analysis

This section illustrates the performance of the proposed DEMD-QPSO-SVR-AR model in terms
of forecasting accuracy and interpretability. Taking into account the superiority of an SVR model for
small sample size and superiority comparisons, a real case analysis with small sample size is used in
the first case. The next case with 1104 data points is devoted to illustrate the relationships between
two sample sizes (large size and small size) and accurate levels in forecasting.

4.1. Setting Parameters for the Proposed Forecasting Models

As indicated by Taylor [46], and according to the same conditions of the comparison with
Che et al. [47], the settings of several parameters in the proposed forecasting models are illustrated as
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follows. For the PSO-BP model, 90% of the collected samples is used to train the model, and the rest
(10%) is employed to test the performance. In the PSO-BP model, these used parameters are set as
follows: (i) for the BP neural network, the input layer dimension (indim) is set as 2; the dimension of
the hidden layer (hiddennum) is set as 3; the dimension of the output layer (outdim) is set as 1; (ii) for
the PSO algorithm, the maximum iteration number (itmax) is set as 300; the number of the searching
particles, N, is set as 40; the length of each particle, D, is set as 3; weight c1 and c2 are set as 2.

The PSO-SVR model not only has its embedded constraints and limitations from the original
SVR model, but also has huge iteration steps as a result of the requirements of the PSO algorithm.
Therefore, it would be time consuming to train the PSO-SVR model while the total training set is
used. For this consideration, the total training set is divided into two sub-sets, namely training subset
and evaluation subset. In the PSO algorithm, the parameters used are set as follows: for the small
sample, the maximum iteration number (itmax) is set as 50; the number of the searching particles, N, is
set as 20; the length of each particle, D, is set as 3; weight c1 and c2 are set as 2; for the large sample,
the maximum iteration number (itmax) is set as 20; the number of the searching particles, N, is set as 5;
the length of each particle, D, is also set as 3; weight c1 and c2 are also set as 2.

Regarding Case 2, to be based on the same comparison conditions used in Fan et al. [25], the newest
electric load data from NYISO is also employed for modeling, five alternative forecasting models
(including the ARIMA, BPNN, GA-ANN, EMD-SVR-AR, and DEMD-SVR-AR models) are used for
comparison with the proposed model. Some parameter settings of the employed forecasting models
are set the same as in [25], and are briefly as follows: for the BPNN model, the node numbers of its
structure are different for small sample size and large sample size; for the former one, the input layer
dimension is 240, the hidden layer dimension is 12, and the output layer dimension is 48; and these
values are 480, 12, 336, respectively, for the latter one. The parameters of GA-ANN model used in this
case are as follows: generation number is set as 5, population size is set as 100, bit numbers are set as
50, mutation rate is set as 0.8, crossover rate is 0.05.

4.2. Evaluation Indices for Forecasting Performances

For evaluating the forecasting performances, three famous forecasting accurate level indices,
RMSE (root mean square error), MAE (mean absolute error), and MAPE (mean absolute percentage
error), as shown in Equations (24) to (26), are employed:

RMSE “

g

f

f

f

e

n
ř

i“1
pPi ´ Aiq

2

n
(24)

MAE “

n
ř

i“1
|Pi ´ Ai|

n
(25)

MAPE “

n
ř

i“1

ˇ

ˇ

ˇ

ˇ

Pi ´ Ai
Ai

ˇ

ˇ

ˇ

ˇ

n
˚ 100 (26)

where Pi and Ai are the i-th forecasting and actual values, respectively, and n is the total number
of forecasts.

In addition, to verify the suitability of model selection, Akaike’s Information Criterion (AIC),
an index of measurement for the relative quality of models for a given set of data, and Bayesian
Information Criterion (BIC), also known as the Schwartz criterion, which is a criterion for model
selection among a finite set of models (the model with the lowest BIC is preferred), are both taken into
account to enhance the robustness of the verification. These two indices are defined as Equations (27)
and (28), respectively:

AIC “ LogpSSEq ` 2q (27)
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where SSE is the sum of squares for errors, q is the number of estimated parameters:

BIC “ LogpSSEq ` qLogpnq (28)

where q is the number of estimated parameters and n is the sample size.

4.3. Empirical Results and Analysis

For the first experiment in Case 1, the forecasting results (the electric load on 8 May 2007) of
the original SVR model, the PSO-SVR model and the proposed DEMD-QPSO-SVR-AR model are
shown in Figure 6a. For Case 2, the forecasting results of the ARIMA model, the BPNN model, the
GA-ANN model and the proposed DEMD-QPSO-SVR-AR model are shown in Figure 7a. Based on
these two figures, the forecasting curve of the proposed DEMD-QPSO-SVR-AR model seems to achieve
a better fit than other alternative models for the two cases in this experiment.
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Figure 6. Comparison of the original data and the forecasted electric load by the DEMD-QPSO-SVR-

AR Model, the SVR model and the PSO-SVR model for (a) the small sample size (One-day ahead 

prediction of 8 May 2007 are performed by the models); (b) the large sample size (One-week ahead 

prediction from 18 May 2007 to 24 May 2007 are performed by the models). 

Figure 6. Comparison of the original data and the forecasted electric load by the DEMD-QPSO-SVR-AR
Model, the SVR model and the PSO-SVR model for (a) the small sample size (One-day ahead prediction
of 8 May 2007 are performed by the models); (b) the large sample size (One-week ahead prediction
from 18 May 2007 to 24 May 2007 are performed by the models).
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Figure 8. The local enlargement (peak) comparison of the DEMDQPSOSVRAR Model, the SVR model 

and the PSO-SVR model for (a) the small sample size (1); (b) the large sample size (2). 

To better explain the superiority, the shape factor (SF), defined as Equation (29) and shown in 

Figure 9, is employed to illustrate the fitting effectiveness of the method, the SF value of the model 

closer to the one of the raw data, the fitness of the model is better than others. The results are shown 

in Table 6. It indicates that the data of SF from DEMD-QPSO-SVR-AR model is closer to the raw data 
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S1 S2

 

Figure 9. The definition of shape factor. 

Figure 7. Comparison of the original data and the forecasted electric load by the DEMD-QPSO-SVR-AR
Model, the ARIMA model, the BPNN model and the GA-ANN model for: (a) the small sample size
(One-day ahead prediction from 13 to 14 January 2015 are performed by the models); (b) the large
sample size (One-week ahead prediction from 2 to15 February 2015 are performed by the models).

The second experiments in Cases 1 and 2 show the large sample size data. The peak load
values of the testing set are bigger than those of the training set. The detailed forecasting results
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in this experiment are illustrated in Figures 6b and 7b. It also shows that the results obtained
from the proposed DEMD-QPSO-SVR-AR model seem to have smaller forecasting errors than other
alternative models.

Notice that for any particular sharp points in Figures 6 and 7 after extracting the direction
feature of the trend by DEMD technology, these sharp points fixed in their positions represent the
higher frequency characteristics of the remaining term, therefore, quantizing the particles in PSO
the algorithm is very effective for dealing with this kind of fixed point characteristics. In other
words, the DEMD-QPSO-SVR-AR model has better generalization ability than other alternative
comparison models in both cases. Particularly in Case 1, for example, the local details for sharp points
in Figure 6a,b are enlarged and are shown in Figure 8a,b, respectively. It is clear that the forecasting
curve of the proposed DEMD-QPSO-SVR-AR model (red solid dots and red curve) fits more precisely
than other alternative models, i.e., it is superior for capturing the data change trends, including any
fluctuation tendency.
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To better explain the superiority, the shape factor (SF), defined as Equation (29) and shown in
Figure 9, is employed to illustrate the fitting effectiveness of the method, the SF value of the model
closer to the one of the raw data, the fitness of the model is better than others. The results are shown in
Table 6. It indicates that the data of SF from DEMD-QPSO-SVR-AR model is closer to the raw data
than other models:
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Table 6. The shape factor (SF) for local sharp points comparison.

Algorithms Small Sample Size Large Sample Size

SF SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8 MSF *

Raw data 0.83 0.92 0.95 0.81 0.76 0.73 0.71 0.74 0.71 0.791
Original SVR 1.05 1.13 1.02 0.92 0.88 0.90 0.85 0.96 0.83 0.924

PSO-SVR 1.12 0.99 0.82 0.89 0.85 0.87 0.64 0.72 0.79 0.821
DEMD-QPSO-SVR-AR 0.90 0.94 0.93 0.81 0.75 0.69 0.74 0.72 0.70 0.785

* MSF = mean(SF).

The forecasting results in Cases 1 and 2 are summarized in Tables 7 and 8 respectively.
The proposed DEMD-QPSO-SVR-AR model is compared with alternative models. It is indicated
that our hybrid model outperforms all other alternatives in terms of all the evaluation criteria. One of
the general observations is that the proposed model tends to fit closer to the actual value with a smaller
forecasting error. This is ascribed to the fact that a well combined DEMD and QPSO can effectively
capture the exact shape characteristics, which are difficult to illustrate by many other methods while
data often has intertwined effects among the chaos, noise, and other unstable factors. Therefore,
the unstable impact is well solved by DEMD, especially for those border points, and then, QPSO
can accurately illustrate the chaotic rules, i.e., achieve more satisfactory parameter solutions for an
SVR model.

Table 7. Summary of results of the forecasting models in Case 1.

Algorithm MAPE RMSE MAE AIC BIC Running
Time (s) MSF (Data)

For the first experiment (small sample size)

Original SVR [47] 11.6955 145.865 10.9181 112.3 111.9 180.4 0.972 (0.749)
PSO-SVR [47] 11.4189 145.685 10.6739 120.7 125.8 165.2 0.904 (0.749)
PSO-BP [47] 10.9094 142.261 10.1429 110.5 116.0 159.9 0.897 (0.749)
AFCM [23] 9.9524 125.323 9.2588 82.6 85.5 75.3 0.761 (0.749)

DEMD-QPSO-SVR-AR 9.1325 122.368 9.2201 80.9 83.1 100.7 0.756 (0.749)

For the second experiment (large sample size)

Original SVR [47] 12.8765 181.617 12.0528 167.7 180.9 116.8 1.062 (0.830)
PSO-SVR [47] 13.503 271.429 13.0739 215.8 220.3 192.7 0.994 (0.830)
PSO-BP [47] 12.2384 175.235 11.3555 150.4 157.2 163.1 0.925 (0.830)
AFCM [23] 11.1019 158.754 10.4385 142.1 146.7 160.4 0.838 (0.830)

DEMD-QPSO-SVR-AR 4.1499 140.105 9.6258 129.0 128.1 169.0 0.826 (0.830)

In view of the model effectiveness and efficiency on the whole, we can conclude that the proposed
model is quite competitive against other compared models, such as the ARIMA, BPNN, GA-ANN,
PSO-BP, SVR, PSO-SVR, and AFCM models. In other words, the hybrid model leads to better accuracy
and statistical interpretation.

In particular, as shown in Figure 8, our method shows higher accuracy and good flexibility in
peak or inflection points, because the little redundant information could be used by statistical learning
or regression models, and the level of optimization would increase. This also ensures that it could
achieve more significant forecasting results due to the closer SF values to the raw data set. For closer
insight, this can be viewed as the fact that the shape factor reflects how the electric load demand
mechanism ia affected by multiple factors, i.e., the shape factor reflects the change tendency in terms of
ups or downs, thus, closer SF value to the raw data set can capture more precise trend changes than
others, and this method no doubt can reveal the regularities for any point status.
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Table 8. Summary of results of the forecasting models in Case 2.

Algorithm MAPE RMSE MAE AIC BIC MSF (Data)

For the first experiment (small sample size)

ARIMA(4,1,4) [25] 45.33 320.45 25.72 278.4 285.1 1.132 (0.864)
BPNN [25] 31.76 219.43 21.69 198.5 200.2 0.955 (0.864)
GA-ANN [25] 23.89 220.96 23.55 199.3 202.3 0.947 (0.864)
EMD-SVR-AR [25] 14.31 158.11 17.44 140.7 141.9 0.873 (0.864)
DEMD-SVR-AR [25] 8.19 140.16 12.79 128.3 130.1 0.865 (0.864)
DEMD-QPSO-SVR-AR 7.48 138.89 14.44 125.4 126.7 0.859 (0.864)

For the second experiment (large sample size)

ARIMA(4,1,4) [25] 60. 65 733.22 54.05 551.4 579.4 1.091 (0.875)
BPNN [25] 42.5 479.48 50.39 334.6 342.3 0.976 (0.875)
GA-ANN [25] 33.12 450.63 44.35 321.7 323.6 0.953 (0.875)
EMD-SVR-AR [25] 11.29 289.21 20.76 239.0 238.2 0.890 (0.875)
DEMD-SVR-AR [25] 5.37 160.58 15.82 141.4 142.2 0.884 (0.875)
DEMD-QPSO-SVR-AR 4.62 153.22 16.30 132.5 133.8 0.879 (0.875)

Several findings deserved to be noted. Firstly, based on the forecasting performance comparisons
among these models, the proposed model outperforms other alternative models. Secondly, the
proposed model has better generalization ability for different input patterns as shown in the second
experiment. Thirdly, from the comparison between the different sample sizes of these two experiments,
we conclude that the hybrid model can tolerate more redundant information and construct the model
for the larger sample size data set. Fourthly, based on the calculation and comparison of SF in Table 6,
the proposed model also receives closer SF values to the raw data than other alternative models.
Finally, since the proposed model generates good results with good accuracy and interpretability, it is
robust and effective, as shown in Tables 7 and 8 comparing the other models, namely the original SVR,
PSO-SVR, PSO-BP and AFCM models. Overall, the proposed model provides a very powerful tool
that is easy to implement for electric load forecasting.

Eventually, the most important issue is to verify the significance of the accuracy improvement
of the proposed model. The forecasting accuracy comparisons in both cases among original SVR,
PSO-SVR, PSO-BP, AFCM, ARIMA, BPNN, and GA-ANN models are conducted by a statistical
test, namely a Wilcoxon signed-rank test, at the 0.025 and 0.05 significant levels in one-tail-tests.
The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when comparing
two related samples, matched samples, or repeated measurements on a single sample to assess whether
their population mean ranks differ (i.e., it is a paired difference test). It can be used as an alternative
to the paired Student’s t-test, t-test for matched pairs, or the t-test for dependent samples when
the population cannot be assumed to be normally distributed [48]. The test results are shown in
Tables 9 and 10. Clearly, the outstanding forecasting results achieved by the proposed model is only
significantly superior to other alternative models at a significance level of 0.05. This also implies that
there are still lots of improvement efforts that can be made for hybrid quantum-behavior evolutionary
SVR-based models.
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Table 9. Wilcoxon signed-rank test in Case 1.

Compared Models Wilcoxon Signed-Rank Test

α = 0.025; W = 4 α = 0.05; W = 6

DEMDQPSOSVRAR vs. original SVR 8 3 a

DEMDQPSOSVRAR vs. PSO-SVR 6 2 a

DEMDQPSOSVRAR vs. PSO-BP 6 2 a

DEMDQPSOSVRAR vs. AFCM 6 2 a

a denotes that the DEMD-QPSO-SVR-AR model significantly outperforms other alternative models.

Table 10. Wilcoxon signed-rank test in Case 2.

Compared Models Wilcoxon Signed-Rank Test

α = 0.025; W = 4 α = 0.05; W = 6

DEMDQPSOSVRAR vs. ARIMA 6 2 a

DEMDQPSOSVRAR vs. BPNN 6 2 a

DEMDQPSOSVRAR vs. GA-ANN 6 2 a

DEMDQPSOSVRAR vs. EMD-SVR-AR 6 2 a

DEMDQPSOSVRAR vs. DEMD-SVR-AR 6 2 a

a denotes that the DEMD-QPSO-SVR-AR model significantly outperforms other alternative models.

5. Conclusions

This paper presents an SVR model hybridized with the differential empirical mode decomposition
(DEMD) method and quantum particle swarm optimization algorithm (QPSO) for electric load
forecasting. The experimental results indicate that the proposed model is significantly superior
to the original SVR, PSO-SVR, PSO-BP, AFCM, ARIMA, BPNN, and GA-ANN models. To improve the
forecasting performance (accuracy level), quantum theory is hybridized with PSO (namely the QPSO)
into an SVR model to determine its suitable parameter values. Furthermore, the DEMD is employed to
simultaneously consider the accuracy and comprehensibility of the forecast results. Eventually, a hybrid
model (namely DEMD-QPSO-SVR-AR model) has been proposed and its electric load forecasting
superiority has also been compared with other alternative models. It is also demonstrated that a well
combined DEMD and QPSO can effectively capture the exact shape characteristics, which are difficult
to illustrate by many other methods while data often has intertwined effects among the chaos, noise,
and other unstable factors. Hence, the instability impact can be well solved by DEMD, especially for
those border points, and then, QPSO can accurately illustrate the chaotic rules, thus achieving more
satisfactory parameter solutions than an SVR model.
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