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Abstract: Currently, most hybrid electric vehicles (HEVs) equipped with automated mechanical
transmission (AMT) are implemented with the conventional two-parameter gear shift schedule based
on engineering experience. However, this approach cannot take full advantage of hybrid drives.
In other words, the powertrain of an HEV is not able to work at the best fuel-economy points during
the whole driving profile. To solve this problem, an optimization method of gear shift schedule for
HEVs is proposed based on Dynamic Programming (DP) and a corresponding solving algorithm
is also put forward. A gear shift schedule that can be employed in real-vehicle is extracted from
the obtained optimal gear shift points by DP approach and is optimized based on analysis of the
engineering experience in a typical Chinese urban driving cycle. Compared with the conventional
two-parameter gear shift schedule in both simulation and real vehicle experiments, the extracted gear
shift schedule is proved to clearly improve the fuel economy of the HEV.

Keywords: hybrid electric vehicle (HEV); automated mechanical transmission (AMT); gear shift
schedule; dynamic programming (DP)

1. Introduction

To face the challenge of air pollution, dependence on petroleum, and greenhouse gas emissions,
research on improving the performance of electric vehicles (EVs) and hybrid electric vehicles
(HEVs) to promote the wide range public and private use of them has been conducted for decades.
The performance and energy economy of EVs and HEVs are influenced by many factors, such
as transmission control strategy [1–3], traffic environments [4,5], road conditions [6,7] and driver
behaviors [8,9]. Thus, the powertrain control of HEVs plays an important role in accomplishing
objectives such as high energy efficiency and low emissions.

Research on gear shift schedules for conventional vehicles has aroused great interest, since
automatic transmission implemented with different kinds of gear shift schedule can directly affect
the fuel economy, riding comfort, emissions and safety during a gear shift of the vehicles [10]. For a
parallel HEV equipped with AMT, the optimal operating points of a hybrid driveline are determined
not only by the power split, but also the gear ratio of the transmission. However, recently, systematic
methods to optimize gear shifting schedule for HEVs have been rarely reported [11–13]. Study on
HEVs is mainly focused on the power split algorithm between the engine and motor [14–20].

According to the latest literature research, most HEVs are implemented with conventional
two-parameter gear shift schedule based on engineering experience [21–24], such as using the throttle
opening and vehicle speed or the torque of input shaft and vehicle speed as reference parameters.
Besides, a single parameter gear shift schedule is also implemented, which is difficult to improve the
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fuel economy further. The power transmission system of the HEV is very different from the traditional
one; it is necessary to do in-depth research on the gear shift schedule of HEV with the conventional
gear shift schedule as reference.

The remainder of this work is organized as follows. In Section 2, the detailed model
of every concerned component of the powertrain and longitudinal dynamics is developed in
MATLAB/SIMULINK. In Section 3, the gear shift schedule problem is formulated as a multi-objective
optimization problem with the constraints of degree of frequent gear shift, state of the engine, motor,
battery and transmission. The cost function is derived as weighted fuel consumption and emissions,
the state variables are: vehicle speed, power split ratio and battery SOC, the control variable is the
desired gear. In Section 4, the formulated multi-objective problem is solved with DP, and the fmincon
function in MATLAB is employed to speed up the simulation process. In Section 5, an implementable
two-parameter gear shift schedule is extracted based on DP and is optimized based on engineering
experiences. Simulation results and analysis are presented in Section 6. Concluding remarks follow in
Section 7.

2. Modeling of the HEV

To guarantee high modularization of each subsystem and improve the generalization of the
simulation platform, the powertrain of the HEV is modeled in MATLAB/SIMULINK. Configuration
of the simulation platform can be seen in Figure 1, which shows the route of mechanical and electrical
connections. The conventional modeling method [25] derives complicated mathematical equations
describing the static and dynamic behavior of the system components, in cases where is too complex for
the DP algorithm to solve the optimization problem. In order to reduce the computational burden, each
module of the model is rationally simplified. The model of the five simplified subsystems including the
engine, transmission, motor, battery and longitudinal dynamic of the HEV can be described as follows.
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Figure 1. Simulation configuration of the researched HEV.

2.1. Engine Model

Dynamic response of the engine is ignored based on quasi-static assumption of the engine [26]
so the fuel consumption

.
m f ,ice, nitric oxide NOx, particulate matters PM are only determined by the

quasi-static equation of engine speedωice and engine torque Tice, which can be obtained by the look-up
table method. This work assumes that the engine is fully preheated, and temperature of the engine is
also ignored.
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2.2. Clutch Model

The transmitted torque Tc of the clutch during the three working conditions is expressed as the
following piecewise function:

Tc “

$

’

’

&

’

’

%

ioig,tTice engaged
4
3
µdRcFnsign pωci ´ωcoq slipping

0 disengaged

(1)

where io is the gear ratio of final drive, ig,t is the gear ratio of gearbox, µd is the friction coefficient of
the clutch disc, Rc is the effective radius of the clutch disc. Fn is the normal force of the clutch disc,
ωci is angular velocity of the input disc of the clutch,ωco is the angular velocity of the output disc of
the clutch.

2.3. Transmission Model

The power lose in different gears is ignored for the simplified transmission, which can be
described by

ig,t “ iG
`

Ng,act
˘

(2)

where iG is the gear ratio, Ng,act is the current gear of the transmission.
The actual gear Ng,act of a two-parameter (throttle opening and vehicle speed) gear shift schedule

can be described as

Ng,act “ g pα, vq “

$

’

&

’

%

1
0
´1

(3)

where g is the control strategy, α is the throttle opening, v is the vehicle speed, 1 represents upshift,
0 means keep steady, ´1 is downshift.

2.4. Motor Model

The output motor torque Telm can be given as Equation (4), and it is unnecessary to describe
the electromagnetic process in this research, so only mechanical response and efficiency of the motor
is considered. Output torque of the motor is affected by many factors [27], for example, the driver
requested motor torque Telm,req, the maximum driving and braking torque at current motor speed
Telm,dis, Telm,chg, the maximum motor torque when charge and discharge the battery Tbat,dis, Tbat,chg.
Tbat,dis and Tbat,chg are determined by the rated charge, discharge power of the battery and current
angular velocity of the motor. All the mentioned parameters are comprehensively considered to
determine the output torque Telm.

Telm “

$

&

%

min
´

Telm,req, Telm,dis, Tbat,dis

¯

i f Telm,req ą 0

max
´

Telm,req, Telm,chg, Tbat,chg

¯

i f Telm,req ă 0
(4)

2.5. Battery Model

The main purpose of this work is to explore the optimal gearshift schedule that minimizing the
energy consumption, thus, the effect of temperature and dynamic response are ignored and a static
Thevenin model shown in Figure 2 is adopted in this paper [[28]}. Voc is the electromotive force of the
battery package that is measured when no load is attached. R0 and R1 are series resistance of battery
and cables respectively.
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Figure 2. Simplified battery quasi-static circuitry.

The recurrence equation of the State of Charge (SOC) is given as

SOCk`1 “ SOCk ´
Voc ´

b

V2
oc ´ 4 pR0 ` R1q Telmωelm{η

´sgnpTelmq
overall

7200 pR0 ` R1qQ0
(5)

where k is the time step, ηoverall is the energy conversion efficiency from motor to battery, Q0 is the
maximum battery capacity expressed in Ampere-Hours [Ah], Telm,ωelm are torque and speed of motor
output shaft at time step k.

2.6. Longitudinal Dynamics of the HEV

The longitudinal dynamic model is simplified to point-mass model as

m
dv
dt
“
`

ηTcig,tio ` Telm ´ Tw ´ Tr ´ Tb
˘

{rw (6)

Je
dωe

dt
“ Tice ´ Tc (7)

where m is the mass of the whole vehicle, η is the efficiency of the transmission system, Tc is the torque
transferred by clutch, io is the gear ratio of final drive, Telm is torque of the motor, Tw, Tr, Tb are torque
of the air resistance, road resistance and braking torque, rw is the radius of the wheel, Je is the engine
inertia, Je is the engine inertia, Tice is output torque from the engine, io is the gear ratio of final drive, η
is the efficiency of transmission system.

3. Problem Formulation of the HEV Gear Shift Schedule

The state model of the hybrid drive system can be described with discrete recursion equation

Xk`1 “ f pXk, Ukq (8)

where Xk is state vector of the hybrid drive system, Uk is gear shift schedule vector, k is time step, the
simulation time step in this work is set as 1 s.

The aim of the optimization is to find Uk to minimize the cost function J, which is the sum of
equivalent fuel consumption and emissions,

J “
N´1
ÿ

k“0

L pXk, Ukq “

N´1
ÿ

k“0

p1´ Kqm f ,eqv,k ` K
`

A ¨ NOx,k ` B ¨ PMk

˘

(9)

where N is duration of the driving cycle, L is instantaneous value of the cost function including
equivalent fuel consumption m f ,eqv,k and PMk, NOx,k of the engine at time step k, K is the weighting
factor of equivalent fuel economy and emission, K P r0, 1s. When fuel consumption is the cost function
weighting factor K “ 0, A and B are weights of the emissions.

The engine fuel consumption and emissions are determined by the simplified engine model
calibrated in a test bench. We can get the equivalent fuel consumption of the engine and motor with

m f ,eqv,k “ Pice,k
.

m f ,ice ` Pelm,k
.

m f ,elm (10)
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where Pice,k and Pelm,k are power output from the engine and motor at time step k respectively,
.

m f ,ice
and

.
m f ,elm are the equivalent fuel consumption coefficients of the engine and motor respectively. The

state of engine, motor, battery and transmission should be constrained with inequality boundaries in
the optimization process to make sure that each component works in the allowed situation,

ωice_min ď ωice,k ď ωice_max (11)

Tice_min
`

ωice,k
˘

ď Tice,k ď Tice_max
`

ωice,k
˘

(12)

Tebm_min
`

ωelm,k, SOCk
˘

ď Telm,k ď Telm_max
`

ωelm,k, SOCk
˘

(13)

SOCmin ď SOCk ď SOCmax (14)

Ng,min ď Ng,act ď Ng,max (15)

whereωice,k, Tice,k are engine speed and torque in step k,ωice_min andωice_max are engine idle speed
and maximum speed, Tice_min

`

ωice,k
˘

and Tice_max
`

ωice,k
˘

are the minimum and maximum output
torque under current engine speed, Telm,k is output torque of the motor, Tebm_min

`

ωelm,k, SOCk
˘

and
Telm_max

`

ωelm,k, SOCk
˘

are the minimum and maximum output torque of the motor under current
motor speed and SOC, SOCk is the current battery SOC in time k, SOCmin and SOCmax are allowed
range of the battery’s SOC, which is set as 0.2~0.8, Ng,act is current gear, Ng,min and Ng,max are minimum
and maximum gear of the transmission.

In order to reduce frequent gear shift phenomenon, a penalty function is added as

Sk “ φ
ˇ

ˇ

ˇ
Ng,k`1 ´ Ng,k

ˇ

ˇ

ˇ
(16)

where Sk is the cost function of frequency gear shift phenomenon, φ is penalty factor , Ng,k and Ng,k` 1
are current gear and desired gear. Equation (9) can be described as

J “
N´1
ÿ

k“0

L pXk, Ukq “

N´1
ÿ

k“0

p1´ Kqm f ,eqv ` K
`

A ¨ NOXk ` B ¨ PMXk

˘

` Sk (17)

4. Solving Algorithm of the Optimization Problem

It takes a long time to solve the cost to go function by analysis or numerical method directly,
because the hybrid drive system is a continuous nonlinear system. The general approach to solve the
optimization problem of a continuous nonlinear system is to make the state space discrete. The state
space of the hybrid drive system Xk is composed by current vehicle speed vvel,k, power split ratio PSRk
and the battery SOCk,

Xk “
“

vvel,k, PSRk, SOCk
‰1 (18)

These variables are discretized as below,

vvel,k P t0, 1, 2, ¨ ¨ ¨ , 99, 100u (19)

PSRk P t0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1u (20)

SOCk P t0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8u (21)

The control variable µ˚i is the desired gear gact,k,

gact,k P t1, 2, 3, 4, 5u (22)

Based on the principle of DP optimization, the problem is presented as follows:
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Step N ´ 1:
J˚N´1 pXN´1q “ min

uN´1
rL pXN´1, UN´1qs (23)

Step k, 0 ď k ă N ´ 1,

J˚k pXkq “ min
uk

“

L pXk, Ukq ` J˚k`1 pXk`1q
‰

(24)

where J˚k pXkq is the minimum cost function from step k to the end step.
The selection of weight factor has significant influence on the cost function, and the detailed

value of the cost function can be obtained with the discretized state space model Equations (19)–(21) as
inputs with interpolation method. At each step of the DP algorithm, the cost function is only evaluated
at the grid points, if the next state Xk` 1 does not fall exactly on to a grid point, then the interpolation
method is used to determine the value of cost function.

Based on the simplified hybrid drive model, the global optimal strategy can be obtained by
solving the recursion Equation (24) backward, with each optimization step constrained by boundary
inequalities Equations (11)–(15). Although the simplified model and finite grids are utilized, the value
of the cost function needs to be calculated

`

Ng,max
˘t times if the simulation time is t. This will inevitably

lead to dimension disaster. Two approaches are adopted in this paper to accelerate the computing
speed. One is to calculate the demand power Pwheel,req and torque Twheel,req of the HEV in the given
driving cycle at first, the longitudinal dynamic model can be replaced by finite demand torque Twheel,req
and rotational speed ωwheel,req. The other is to find the minimum value of the cost function at each
gear, firstly with the fmincon function in MATLAB with the given power split strategy and map out
the available real time form. The detailed process is shown in Figure 3. For a given driving cycle, the
first approach is used to accelerate the searching process by converting the speed-time graph to the
power-time graph. The output power flow is determined by the power split strategy based on finite
state machine.
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Figure 3. Schematic of the solving algorithm at time step k.

The different optimal gear shift schedule in a typical Chinese city driving cycle can be obtained
based on a DP algorithm by adjusting the gear shift penalty factor φ in Equation (16). Figure 1 shows
gear shift schedule sequences with different φ, when φ “ 2.5 the cost function is minimum and the
degree of frequent gear shift phenomenon is reduced to a reasonable range. This is the obtained
optimal gear shift schedule.

5. Extraction of the Implementable Gear Shift Schedule

A gear shift schedule that can be implemented on the real HEV is extracted based on statistical
analysis of the optimal gear shifting points when φ “ 2.5. With vehicle speed and input torque of
the transmission as state variables that have great influence on shifting behavior, the obtained gear
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shift schedule is shown in Figure 4. The operating area of the AMT is divided into five parts. Each
boundary of the two adjacent regions represents the optimal gear shift threshold value.
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According to the engineering experience, the vehicle starts with the second gear in most cases,
so the designed gear shift schedule is set to start directly from the second gear. In the conventional
two-parameter gear shift schedule, the downshifting point of AMT is lower than upshifting point,
which is called gear shifting delay. The optimization principle of the gear shift schedule is to design
the equal-delay downshifting curve according to driving experiences in a certain driving cycle. The
final derived gear shift schedule is shown in Figure 5.
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6. Analysis of Simulation and Real Vehicle Test

6.1. Simulation Results

The speed following curves of the test in typical Chinese urban driving cycle is shown in Figure 6.
It is shown that the maximum deviation between simulation speed curve (green) and the desired speed
curve (red) is less than 1 km/h. This deviation is primarily caused by power interruption during the
gear shifting process. Due to the high efficiency of regenerative braking, the battery SOC increases
from the initial value 0.5 to 0.62, which can be observed in Figure 7. As shown in Table 1, compared
with the conventional two-parameter gear shift schedule, the fuel economy of the optimized extracted
gear shift schedule is obviously enhanced and even approaches the benchmark gear shift schedule
obtained from DP.

Energies 2016, 9, 220 9 of 12 

6. Analysis of Simulation and Real Vehicle Test 

6.1. Simulation Results 

The speed following curves of the test in typical Chinese urban driving cycle is shown in Figure 7. 

It is shown that the maximum deviation between simulation speed curve (green) and the desired 

speed curve (red) is less than 1 km/h. This deviation is primarily caused by power interruption during 

the gear shifting process. Due to the high efficiency of regenerative braking, the battery SOC increases 

from the initial value 0.5 to 0.62, which can be observed in Figure 8. As shown in Table 1, compared 

with the conventional two-parameter gear shift schedule, the fuel economy of the optimized 

extracted gear shift schedule is obviously enhanced and even approaches the benchmark gear shift 

schedule obtained from DP. 

 

Figure 7. Speed following curve of the test. 

 

Figure 8. Simulation result of battery State Of Charge (SOC). 

Table 1. Simulation result of fuel consumption. 

Schedule Type 
Fuel Consumption 

(L/100 km) 

Fuel-Efficient  

(%) 

Traditional two-parameter gear shift schedule 30.67 n/a 

The optimized extracted two-parameter gear shift schedule 24.54 20 

DP gear shift schedule 23.52 23.3 

Figure 6. Speed following curve of the test.

Energies 2016, 9, 220 9 of 12 

6. Analysis of Simulation and Real Vehicle Test 

6.1. Simulation Results 

The speed following curves of the test in typical Chinese urban driving cycle is shown in Figure 7. 

It is shown that the maximum deviation between simulation speed curve (green) and the desired 

speed curve (red) is less than 1 km/h. This deviation is primarily caused by power interruption during 

the gear shifting process. Due to the high efficiency of regenerative braking, the battery SOC increases 

from the initial value 0.5 to 0.62, which can be observed in Figure 8. As shown in Table 1, compared 

with the conventional two-parameter gear shift schedule, the fuel economy of the optimized 

extracted gear shift schedule is obviously enhanced and even approaches the benchmark gear shift 

schedule obtained from DP. 

 

Figure 7. Speed following curve of the test. 

 

Figure 8. Simulation result of battery State Of Charge (SOC). 

Table 1. Simulation result of fuel consumption. 

Schedule Type 
Fuel Consumption 

(L/100 km) 

Fuel-Efficient  

(%) 

Traditional two-parameter gear shift schedule 30.67 n/a 

The optimized extracted two-parameter gear shift schedule 24.54 20 

DP gear shift schedule 23.52 23.3 

Figure 7. Simulation result of battery State Of Charge (SOC).



Energies 2016, 9, 220 9 of 11

Table 1. Simulation result of fuel consumption.

Schedule Type Fuel Consumption (L/100 km) Fuel-Efficient (%)

Traditional two-parameter gear shift schedule 30.67 n/a

The optimized extracted two-parameter gear shift schedule 24.54 20

DP gear shift schedule 23.52 23.3

6.2. Real Vehicle Test

The conventional two-parameter gear shift schedule and the extracted gear shift schedule are
tested and verified on a hybrid electric bus shown in Figure 8 in a typical city driving cycle. The major
components’ parameters of the tested HEV are listed in Table 2.
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Table 2. Main parameters of hybrid electric vehicles (HEV)’s major components.

Component Specification Value Unit

Engine

Type Nature gas -
Torque 678 N¨ m

Maximum Power 172 kW
Number of Cylinder 6 -
Compressed Ratio 10.5:1 -

Service Mass 446 kg

Motor

Type Permanent magnet motor -
Rated Power 75 kW

Maximum Power 115 kW
Rated Torque 540 N¨ m
Base Speed 1400 rev/min

Maximum Speed 3200 rev/min

Transmission Gear ratios 7.05/3.85/2.52/1.59/1.00 -

Final Reducer Gear ratio 6.167 -

Battery

Battery Pack Voltage 288 V
Battery capacity 8 Ah
Number of cells 90 -
Voltage of cell 3.2 V

Vehicle Body

Vehicle Mass 11,700 kg
Dynamic Tire Radius 0.478 m

Air Density 1.2 kg/m3

Front area of vehicle 6 m2

Aerodynamic drag coefficient 0.7 -
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Considering the fact that the driving profile of the real hybrid electric bus is consistent with typical
Chinese urban driving conditions. The real vehicle test results and the simulation results demonstrate
a high degree of agreement which can be seen from Table 3 (deviation no more than 5%).

Table 3. Fuel consumption in simulation and real vehicle platform.

Schedule Type Simulation Results
(L/100 km)

Real Vehicle Results
(L/100 km) Deviation (%)

Conventional two parameters
gear shift schedule 30.67 29.5 3.8

The optimized two-parameter
gear shift schedule 24.54 23.9 2.6

7. Conclusions

In this paper, a powertrain model and longitudinal dynamics model of a HEV is developed to
optimize the best economic gear shift schedule based on the DP method. The excellent result obtained
by DP is used as a reference to see the potential room for improvement and is used as a benchmark
to evaluate other gear shift schedules. After that, a two-parameter gear shift schedule that can be
used on a real vehicle is extracted from the optimal gear shift schedule sequence and is optimized
based on engineering experience. Simulation and real vehicle test show that the optimized extracted
two-parameter gear shift schedule can clearly improve the fuel economy of the HEV compared with
the conventional two-parameter shift schedule, and can even approach the result obtained by DP.
The design method can also be applied to the design gear shift schedule for other kinds of vehicles
equipped with different kinds of automatic transmission.

Acknowledgments: This research is partially supported by the National Natural Science Foundation of China
(Grant No.51505029).

Author Contributions: All authors contributed to this work in collaboration. Wenchen Shen and Huilong Yu
validated the hybrid electric powertrain model, implemented the proposed strategy and wrote the paper together,
they contributed equally in this work; Yuhui Hu provided important help with the experimental setup; Junqiang
Xi gave many enlightenments during the final achievement gathering.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

HEV Hybrid Electric Vehicle
AMT Automated Mechanical Transmission
DP Dynamic Programming
SOC State of Charge

References

1. Sun, Z.; Hebbale, K. Challenges and Opportunities in Automotive Transmission Control. In Proceedings of
the 2005 American Control Conference, Portland, OR, USA, 8–10 June 2005; pp. 3284–3289.

2. Dorri, M.; Shamekhi, A.H. Design and optimization of a new control strategy in a parallel hybrid electric
vehicle in order to improve fuel economy. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2011, 225, 747–759.
[CrossRef]

3. Lee, H.; Kirn, H. Improvement in fuel economy for a parallel hybrid electric vehicle by continuously variable
transmission ratio control. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2005, 219, 43–51. [CrossRef]

4. Pandian, S.; Gokhale, S.; Ghoshal, A.K. Evaluating effects of traffic and vehicle characteristics on vehicular
emissions near traffic intersections. Transp. Res. Part D Transp. Environ. 2009, 14, 180–196. [CrossRef]



Energies 2016, 9, 220 11 of 11

5. Stevanovic, A.; Stevanovic, J.; Zhang, K.; Batterman, S. Optimizing traffic control to reduce fuel consumption
and vehicular emissions. Transp. Res. Rec. J. Transp. Res. Board 2009, 2128, 105–113. [CrossRef]

6. Chen, K.S.; Wang, W.C.; Chen, H.M.; Lin, C.F.; Hsu, H.C.; Kao, J.H.; Hu, M.T. Motorcycle emissions and fuel
consumption in urban and rural driving conditions. Sci. Total Environ. 2003, 312, 113–122. [CrossRef]

7. Tong, H.Y.; Hung, W.T.; Cheung, C.S. On-road motor vehicle emissions and fuel consumption in urban
driving conditions. J. Air Waste Manag. Assoc. 2000, 50, 543–554. [CrossRef] [PubMed]

8. Wu, C.; Zhao, G.; Ou, B. A fuel economy optimization system with applications in vehicles with human
drivers and autonomous vehicles. Transp. Res. Part D Transp. Environ. 2011, 16, 515–524. [CrossRef]

9. Wang, W.; Xi, J.; Chen, H. Modeling and recognizing driver behavior based on driving data: A survey.
Math. Probl. Eng. 2014, 2014. [CrossRef]

10. Anlin, G. Design and Theory of Vehicle Automatic Gear Shifting; China Machine Press: Beijing, China, 1993.
11. Liu, N. Research on Shift Schedule of Hybrid bus; Jilin University: Changchun, China, 2007.
12. Yu, H.; Xi, J.; Chen, Y. Research on Shift Schedule of Hybrid Bus Based on Dynamic Programming Algorithm.

In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC),
Anchorage, AK, USA, 16–19 September 2012; pp. 1067–1071.

13. Ngo, V.; Hofman, T.; Steinbuch, M.; Serrarens, A. Optimal control of the gearshift command for hybrid
electric vehicles. IEEE Trans. Veh. Technol. 2012, 61, 3531–3543. [CrossRef]

14. Hofman, T.; Steinbuch, M.; van Druten, R.; Serrarens, A.F.A. Design of cvt-based hybrid passenger cars.
IEEE Trans. Veh. Technol. 2009, 58, 572–587. [CrossRef]

15. Hofman, T.; Steinbuch, M.; van Druten, R.; Serrarens, A. Rule-based energy management strategies for
hybrid vehicles. Int. J. Electr. Hybrid Veh. 2007, 1, 71–94. [CrossRef]

16. Koot, M.; Kessels, J.T.B.A.; de Jager, B.; Heemels, W.P.M.H.; van den Bosch, P.P.J.; Steinbuch, M. Energy
management strategies for vehicular electric power systems. IEEE Trans. Veh. Technol. 2005, 54, 771–782.
[CrossRef]

17. Sciarretta, A.; Guzzella, L. Control of hybrid electric vehicles. IEEE Control Syst. 2007, 27, 60–70. [CrossRef]
18. Sciarretta, A.; Back, M.; Guzzella, L. Optimal control of parallel hybrid electric vehicles. IEEE Trans. Control

Syst. Technol. 2004, 12, 352–363. [CrossRef]
19. Ambühl, D.; Sundström, O.; Sciarretta, A.; Guzzella, L. Explicit optimal control policy and its practical

application for hybrid electric powertrains. Control Eng. Pract. 2010, 18, 1429–1439. [CrossRef]
20. Xiong, W.; Zhang, Y.; Yin, C. Optimal energy management for a series-parallel hybrid electric bus.

Energy Convers. Manag. 2009, 50, 1730–1738. [CrossRef]
21. Sundstrom, O.; Soltic, P.; Guzzella, L. A transmission-actuated energy-management strategy. IEEE Trans.

Veh. Technol. 2010, 59, 84–92. [CrossRef]
22. Casavola, A.; Prodi, G.; Rocca, G. Efficient gear shifting strategies for green driving policies. In Proceedings

of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; IEEE: New York, NY,
USA, 2010; pp. 4331–4336.

23. Wang, W.; Wang, Q.; Zeng, X. Automated Manual Transmission Shift Strategy for Parallel Hybrid Electric Vehicle;
SAE International: New York, NY, USA, 2009.

24. Qin, G.; Ge, A.; Lee, J.-J. Knowledge-based gear-position decision. IEEE Trans. Intell. Transp. Syst. 2004, 5,
121–125. [CrossRef]

25. Isermann, R. Mechatronic Systems: Fundamentals; Springer London: London, England, 2007.
26. Bertsekas, D.P. Dynamic Programming and Optimal Control: Approximate Dynamic Programming; Athena Scientific:

New Hampshire, NH, USA, 2012.
27. Zhu, Z.Q.; Pang, Y.; Chen, J.T.; Xia, Z.P.; Howe, D. Influence of Design Parameters on Output Torque of

Flux-Switching Permanent Magnet Machines. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion
Conference, VPPC ’08, Harbin, China, 3–5 September 2008; pp. 1–6.

28. Hentunen, A.; Lehmuspelto, T.; Suomela, J. Time-domain parameter extraction method for thévenin-
equivalent circuit battery models. IEEE Trans. Energy Convers. 2014, 29, 558–566. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

