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Abstract: Logging residues, which refer to the unused portions of trees cut during logging, are
important sources of biomass for the emerging biofuel industry and are critical feedstocks for the
first-type biofuel facilities (e.g., corn-ethanol facilities). Logging residues are under-utilized sources
of biomass for energetic purposes. To support the scaling-up of the bioenergy industry, it is essential
to design cost-effective biofuel supply chains that not only minimize costs, but also consider the
biomass quality characteristics. The biomass quality is heavily dependent upon the moisture and the
ash contents. Ignoring the biomass quality characteristics and its intrinsic costs may yield substantial
economic losses that will only be discovered after operations at a biorefinery have begun. This paper
proposes a novel bioenergy supply chain network design model that minimizes operational costs
and includes the biomass quality-related costs. The proposed model is unique in the sense that it
supports decisions where quality is not unrealistically assumed to be perfect. The effectiveness of the
proposed methodology is proven by assessing a case study in the state of Tennessee, USA. The results
demonstrate that the ash and moisture contents of logging residues affect the performance of the
supply chain (in monetary terms). Higher-than-target moisture and ash contents incur in additional
quality-related costs. The quality-related costs in the optimal solution (with final ash content of
1% and final moisture of 50%) account for 27% of overall supply chain cost. Based on the numeral
experimentation, the total supply chain cost increased 7%, on average, for each additional percent in
the final ash content.

Keywords: quality costing; optimization; logging residues; bioenergy; bioethanol; supply chain
network design; logistics; biomass

1. Introduction

Bioenergy has been regarded as an important alternative energy source that has the potential to
help nations alleviate their reliance on petroleum energy, thereby, producing positive impacts on the
economy, the environment, and the society [1]. Diverse studies have concluded that the production of
bioenergy is expected to increase in the years to come [2–4]. One of the most important obstacles for the
bioenergy utilization is related to the high feedstock-logistics costs and the dearth of technologies to
convert biomass into useful forms of energy [5]. “Feedstock logistics” include the necessary operations
to harvest the biomass and transport it from the reference site to the pertinent biorefinery. These
operations must ensure that the delivered feedstocks meet a set of physical and chemical quality
specifications [1]. To date, most assessments of the biofuel feedstocks availability have focused on
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quantifying the feasibility of having enough biomass supply to meet the biofuel production goals at
minimal cost. However, as the industry grows and matures, concerns related to the quality variability
of the feedstock arise and have become critical in the energy conversion process and in the market
environment. The inherent variability of the biomass quality is a barrier that restrains the development
of reliable bioenergy energy conversion processes. Hence, advanced biomass supply systems and
practices are needed to reduce the variability of the biomass quality parameters, such as the ash and
the moisture contents [6].

One of the main challenges of the bioenergy industry consists in quantifying the impacts of
the biomass quality across the supply chain (SC). Despite bioenergy being an emerging industry, it
inherited concepts and models from the well-established agricultural and logging industries. The
primary objective in the traditional biomass feedstock logistics modeling approaches consists in
reducing the overall cost of the SC, under the assumption that the biomass quality specifications
are consistent and similar to forage and pulpwood [6]. The single objective of minimizing the total
cost (e.g., composed of the feedstock base cost and the logistics and processing operations costs,
among others) may produce considerable negative impacts on the biomass quality and, thereby, on the
performance of bioenergy SCs. In practice, bioenergy SCs often work with highly variable and/or poor
quality biomass characteristics, which in turn impacts the bioenergy conversion process. A recent paper
from Idaho National Laboratory [6] raises the concern that research on feedstock quality still lacks
proper theoretical support and that conventional approaches often disregard quality-related issues by
focusing solely on decreasing the logistics cost. The emphasis of cost over quality is exemplified by the
current pricing structure of the biomass, which is based on the measure “dollar per dry ton” instead of
“dollar per clean dry carbohydrate.”

Practitioners who have reached pilot-scale operations, which require large quantities of feedstock,
have experienced considerable differences between “pristine” and “field-run” biomass [7]. The
scaling-up process is often accompanied by an undesirable level of risk, which becomes a very
important parameter to consider in the bioenergy industry as new technologies with associated quality
specifications evolve from the laboratory to the commercial settings [8]. For example, consider the
scenario in which the biorefinery equipment, designed to work with a biomass moisture content of
approximately 10%, has to work with a moisture content of 30% continuously throughout an entire
year. For this particular case, the biorefinery would incur larger operation and maintenance costs.
Equivalently, consider the financial losses if one load of feedstock yields 90 gallons/ton and another
load yields 60 gallons/ton. Kenney et al. [6] demonstrated through the analysis of the biomass quality
characteristics that these scenarios are very likely to occur in practice. The biomass quality is critically
dependent upon the moisture, ash and sugar contents, as well as the particle morphology of the
feedstock, among other variables. Ignoring the biomass quality variations and, thus, the associated
costs when modeling biomass SCs is expected to yield considerable economic losses that will only be
discovered after the operations at a biorefinery have begun. The opening of the first commercial-scale
cellulosic-ethanol plant to use corn residues as a feedstock, which began operations on 3 September
2014 [9], highlights the need for creating robust SC models and tailored solution procedures that
capture the multiple trade-offs and impacts of the quality level during the SC network design. This
biorefinery named Project LIBERTY consumes about 285,000 tons of biomass annually, which are
harvested from a 45-mile radius of the plant.

While energy crops (e.g., switchgrass) are expected to constitute the major portion of the biofuel
feedstocks in 2022 and beyond, residues from the forest and the agricultural operations are critical
feedstocks for the first-type generation of biofuel conversion facilities (e.g., corn-ethanol biorefineries).
The report of the U.S. Department of Energy (DOE) “U.S. Billion-Ton Update: Biomass Supply for a
Bioenergy and Bioproducts Industry” [10] projects that nearly 97 million dry tons of logging residues
(unused portions of trees cut during logging) are currently available for bioenergy purposes. This
makes up 38% of the 258 million dry tons of biomass that are available for new biofuel production. For
example, as shown in Figure 1, logging residues are concentrated in the eastern and north western
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regions of the United States. In order to take advantage of such energetic potential, the design of
efficient large-scale bioenergy SCs is required. Moreover, forest residues are low cost biomass sources;
however, they also possess unfavorable quality characteristics, specially, the high ash content [11].
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This paper addresses the problem of designing cost-effective bioenergy SCs by presenting a novel
supply chain network design modeling approach that integrates the inherent costs associated to the
quality of logging residues. Particularly, this research aims to amend the lack of theoretical background
that directly hinders the design of robust biomass-to-biorefinery supply chains. It integrates the
logging residues quality specifications needed by the conversion process and the impact of biomass
quality characteristics on the supply chain network design. A special characteristic of the proposed
computational and theoretical scheme is that it can be straightforwardly transferred to other types of
biomass SCs and can also be transferred to other chemical and food industry SCs.

This paper is structured as follows: Section 2 presents a brief literature review of supply chain
design, modeling and optimization; poor quality costing; and biofuel feedstock logistics models.
Section 3 presents the novel modeling approach, named the Bioenergy Supply Chain including Quality
(BioSC-Q) model, which is used to quantify the impact of quality control strategies implemented during
collection, storage and transportation on the overall cost. Section 4 presents a realistic case study in
the state of Tennessee and the analysis of the results employing the proposed framework. Section 5
presents a summary of the key insights and the concluding remarks, as well as recommendations for
future work.

2. Literature Review

2.1. Quality Costing

The proposed model aims to quantify biomass quality costs and it is inspired in the accounting
and quality management concept of the Cost of Quality (COQ). A brief review of the COQ or cost of
poor quality models is presented in the following paragraphs. Joseph Juran´s [12] analogy of “Gold
in the Mine” is defined as the “total of avoidable costs of quality.” According to Juran et al. [13],
this concept suggests that costs resulting from defects were a gold mine in which lucrative digging
could be done. Feigenbaum [14] developed the prevention-appraisal-failure (PAF) classification.
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The PAF classification offers specific advantages, such as its universal acceptance, identification of
different types of expenditures, and provides a criterion to help determining whether specific costs
can be classified as quality-related costs. The premise behind Feigenbaum’s classification [14] is that
a company can reduce the quality-related costs by cutting the two major cost segments of quality
(i.e., failures and appraisal costs) by means of much smaller increases in the prevention costs. The
definitions for each of the categories of the PAF classification were defined by Campanella [15], and
are summarized as follows:

- Prevention costs are “the costs of all activities specifically designed to prevent poor quality in
products and services.”

- Appraisal costs are “the costs associated with measuring, evaluating, or auditing products or
services to assure conformance to quality standards and performance requirements.”

- Internal failure costs are “the costs resulting from products or services not conforming to
requirements which occur prior to delivery or shipment to the customer.”

- External failure costs are “the costs resulting from products or services not conforming to
requirements which occur after delivery or shipment of the product, and during or after furnishing
of a service to the customer.”

According to Porter and Rayner [16], the main assumptions of the PAF model are that
(1) investments in appraisal will reduce failure costs and (2) further investments in prevention activities
will also reduce failure costs. The PAF classification allows practitioners to identify quality-related
costs and expresses each category in terms of percentages of the total cost (e.g., refer to Figure 2).
Juran et al. [13] merged the Feigenbaum’s PAF concept with their original concepts, which resulted is
what is known as the traditional COQ trade-off between the prevention, the appraisal and the failure
costs. A variety of studies performed during the 1980´s demonstrated that the traditional COQ trade-off
model of Juran was not completely valid. Schneiderman [17] affirmed that the minimum COQ could
lie at 100% good products if the incremental cost of approaching a quality level of 100% is less than the
incremental return from the improvement. In response, Juran and Gryna [18] revised the COQ trade-off
between the prevention, the appraisal and the failure costs and eliminated the asymptotic behavior
of the sum of the appraisal and the prevention costs. They asserted that 100% quality conformance
might be reached for finite prevention and appraisal costs, considering the conditions of the twentieth
century where a growth of the manufacturing and the automated inspection technologies occurred.
Figure 2 compares the classical model with the updated model.
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In this work, the following definition for the COQ across a supply chain is adopted: The sum of
the costs incurred across a supply chain in preventing poor quality of product and/or service to the
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final consumer, the costs incurred to ensure and evaluate that the quality requirements are being met,
and any other incurred as a result of poor quality [19].

2.2. Integrated Biofuels Supply Chain Modeling

Supply chain modeling aims to provide an optimal platform for the efficient and effective SC
management by developing mathematical models and optimization methods that enhance the resource
utilization. Supply chain modeling can be divided into three main decision timeframes: operational,
tactical and strategic decisions (i.e., hourly and weekly, monthly and yearly decisions, respectively) and
into three main SC levels: upstream (from farms, passing through storage facilities, to pre-processing
facilities), midstream (related to the activities within biorefineries) and downstream (spanning from
distribution centers to the customer service stations.)

An et al. [20] provided a comprehensive review of biofuel and petroleum-based fuel SC models.
The downstream level is similar in the biofuel and the petroleum-based fuel SC; therefore, some
practices and models can be adapted to address biofuel SC design problems. However, the upstream
and the midstream levels are significantly different for the biofuel industry due to the biomass
properties and conversion processes, among other things. An et al. [20] found that most of the research
on biofuel SC modeling has been done for the upstream-operational level. Nonetheless, integrated
frameworks for biofuel SC planning and design should have the capacity to (1) quantify the economic
losses due to poor quality of the feedstock and (2) evaluate the impacts of investments on quality
activities to improve the conversion throughput. Integrated SC modeling includes various strategic,
tactical and operational decisions, in which, very often, several modules are interconnected.

Zhang et al. [21] formulated an optimization framework for switchgrass-based bioethanol SCs
that aimed to minimize the total costs and determine the optimal SC/logistic decisions. The authors
proposed an integrated mathematical model to determine the optimal overall SC/logistics decisions
while considering existing constraints. Shabani and Sowlati [22], proposed a tactical SC design
approach for conventional forest biomass power plants using a mixed integer non-linear programming
(MINP) model. The model considers the biomass procurement, its storage, the energy production
potential and the ash management. The authors established that the cost of generating energy from
forest biomass is higher compared to other biomass sources due to various factors including the
transportation costs and the quality of the raw material. They demonstrated that investments in the
ash recovery systems have both economic and environmental benefits during the production of energy.

Regarding previous research employing multi-objective approaches in bioenergy SC modeling,
Ayoub et al. [23] proposed an optimization framework for bioenergy SCs that simultaneously utilize a
set of bio-resources from diverse nature and source (i.e., wet, dry, agricultural, and industrial residues,
among others). The model considers four objectives simultaneously: (1) the minimization of the total
costs; (2) the minimization of bioenergy emissions; (3) the minimization of the energy to produce
bioenergy; and (4) the minimization or maximization of personnel hires. Bioenergy systems are
labor-intensive projects, thus, the maximization of the personnel hires (i.e., the fourth performance
measure) was due to the conditions of the case study, which considered data from the city of Lida
in Japan, where the workforce is decreasing. Thus, the number of workers was considered as a
design variable.

The quality of the raw materials and the quality of the final products have not been considered in
the majority of the bioenergy SC frameworks. The seminal work by Gunnarsson et al. [24] consider a
constraint for the maximum proportion of low quality biomass. Decision variables considered whether
or not additional crop areas and sawmills have to be contracted, the flow of products from sawmills
and import harbors, and the terminals to be used. A case study from Sweden is analyzed.

Castillo-Villar et al. [25–27] successfully integrated the cost of poor quality as an analytical
expression within the supply chain modeling of manufacturing processes. No work has integrated
the quality-related issues and costs within bioenergy supply chains. Hence, the research conducted
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by Castillo-Villar et al., within the manufacturing field serves as a foundation for the purposes of
modeling the bioenergy supply chain.

From the previous literature review, it becomes evident the need for more scholarly work to
extend, implement and apply the theoretical concept of cost of poor quality, that is, to define and
model the cost of poor quality in the biomass-to-biorefinery supply chains. Thereby, this relevant need
motivates this research, which ultimately proposes a complete scheme that integrates the applicable
quality-related costs, as well as the traditional costs such as operational/logistic costs, into the SC
design process. The challenge is to define the critical-to-quality characteristics (e.g., the ash and the
moisture contents) and translate these characteristics into an analytical expression that conveys the
cost of poor quality.

This paper proposes a Mixed Integer Quadratically Constraint Programming (MIQCP) model
that minimizes the entire bioethanol SC costs, considering quality-related costs (BioSC-COQ). The
BioSC-COQ model is unique in the sense that it incorporates the following characteristics:

‚ The BioSC-COQ model considers two quality characteristics: the moisture and the ash contents,
which have not been considered in the literature. The inclusion is achieved through a quality
costing classification of forest residues, where prevention, failure and opportunity costs are
quantified across the SC.

‚ The BioSC-COQ model selects among different harvesting methods, which differ depending
on the initial moisture contents. The selection of different harvesting methods directly impacts
the transportation costs and the costs incurred to mechanically dry the biomass prior to the
conversion process.

‚ The BioSC-COQ model selects the ash content, which in turn produces the minimum overall cost.
A trade-off between the quality control activity to reduce ash and losses due to high ash content
is modeled.

Noteworthy, the BioSC-COQ is a proof-of-concept novel model that aims to quantify biomass
quality-related costs for the implementation of quality control activities and the impact of biomass
quality on the supply chain design. This model is single objective, but can be extendable to a
multi-criteria model that includes environmental objectives (as discussed in Section 7).

3. The BioSC-COQ Model Formulation

3.1. Harvesting Methods

Two collection strategies for logging residues are considered, as depicted in Figure 3; the whole-tree
and cut-to-length harvesting methods. The whole-tree (WT) harvesting system uses a feller-buncher to
fall and stack trees in the forest. A skidder collects the stacks of trees and hauls them to the landing. At
the landing, a delimber removes the tops and branches from the trunk of the tree, which are to be sold
for logs or pulpwood. The residues can be chipped for transportation to a biorefinery.

The cut-to-length (CTL) system consists of a specialized harvester that cuts the tree at the base.
Then, it rotates the tree to a position parallel with the ground and pulls it through rollers that delimb
the tree as it cuts the logs into customized lengths. The residues are typically left in the forest. If these
residues are to be used for bioenergy production purposes, they can be left in the forest for several
weeks or months to allow them to dry naturally as part of a moisture management strategy. After
being allowed to dry, they are collected and transported to the landing for chipping and transport.
Collecting and transporting loose residues can be a time-consuming and costly operation.

As with all woody biomass, the moisture and the ash contents are critical parameters while
determining the efficiency of the conversion technologies (e.g., the yields and the feasibility to use as-is
biomass). Woody biomass is best suited for thermo-chemical conversion processes, which require that
feedstocks have moisture contents of 10% or less and ash contents of 1% or less (i.e., these represent
the target values). Biomass with moisture and ash concentrations above these target values will incur
additional costs within the SC.
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Woody biomass entering a thermochemical conversion facility will undergo a process of
mechanical drying (e.g., using a rotary drum dryer). The time spent in the dryer and the energy
used by the dryer will depend on the initial moisture content. Allowing residues to dry in the forest
(e.g., the CTL system) prior to the transportation to the biorefinery will reduce the energy required
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and, thus, the costs to dry the biomass. For the purposes of this study, it is assumed that the moisture
content of the useful residues at the time a tree is cut is 50% (this corresponds to the WT system). After
the residues are allowed to dry in the forest, the moisture content can be expected to be lower [28]. For
this study, the CTL system can reach a 35 or 15% moisture content depending on the time the biomass
is allowed to naturally dry in the forest.

On the other hand, if the biomass contains more ash than the target content, the remaining ash
will be left in the reactor; thus, it will require proper disposal. As expected, the cost associated with the
ash disposal increases with increasing initial ash content. This study considers the beneficial effects of
passing the biomass through a screener following grinding, as described by Dukes et al. [29], to separate
ash from the woody biomass chips, as shown in Figure 3. Table 1 shows the harvesting methods that
are considered in this work, indicating the different moisture contents and which scenarios employ
biomass screening as a prevention activity.

Table 1. Harvesting Methods.

Method Description

P1 Whole-tree without screening
P2 Cut-to-Length without screening (dried to 15%)
P3 Cut-to-Length without screening (dried to 35%)
P4 Whole-tree with screening
P5 Cut-to-Length with screening (dried to 15%)
P6 Cut-to-Length with screening (dried to 35%)

3.2. Quality Costing Model for the Logging Residues Supply Chain

This section presents a formal methodology to compute the cost incurred by quality and
operational affairs within the SC. The BioSC-COQ model defines as critical-to-quality characteristics
the moisture and the ash contents. The costs include the fixed equivalent annual investment costs
required to open collection facilities, the fixed equivalent annual investment costs required to open
the bio-refineries, the mechanical drying, grinding, screening, ash disposal, ash penalty and the
transportation costs. As mentioned in the background section, the total cost of poor quality can be
broken into the conformance costs (prevention and appraisal categories) and the nonconformance
costs (internal and external failure as well as opportunity costs). The definitions of these costs within
the logging BioSC-COQ model are described as follows.

The conformance costs are linked to two prevention costs. The first prevention cost is related to
the moisture content and consists of the collection cost after drying the useful residues. A benefit of
implementing the CTL harvest strategy is the opportunity to naturally dry the biomass in the forest
to reduce, to some extent (e.g., 35% or 15%), the initial moisture content (e.g., ~50%). Reducing the
moisture content decreases the transportation cost as moist biomass is bulky and reduces the energy
required during the mechanical drying process at the biorefinery. However, the additional costs of
collecting the residues and transporting them to the landing are incurred. In the baseline WT system,
the collection cost is null as all the collection costs are only attributed to conventional products (logs or
pulpwood). The second prevention cost is related to the ash content and consists of the screening cost
incurred in order to reduce the initial ash concentration. Passing the wood chips through a screener
after grinding is considered in some harvesting methods (e.g., P1 and P4 in Table 1). It is worth noting
that no inspection-related techniques (appraisal costs) are considered for this BioSC-COQ model
because inspecting the quality of the biomass is not a common practice and inspection per se does
improve the biomass quality.

The non-conformance costs are linked to the failure costs associated to biomass that does not meet
the moisture and the ash contents specifications for the energy conversion process. Although the CTL
harvest strategy incurs an additional cost for collecting residues as a separate operation, it reduces
the energy required to dry woody biomass from a 35% or 15% to 10% moisture content (i.e., the target
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value required by the conversion process). The cost of the mechanical drying process is considered a
nonconformance cost and it is directly related to the moisture content. Similarly, the cost to dispose the
ash that remains in the reactor, after the conversion process takes place, is also a nonconformance cost
that is directly associated to not having the target ash content before the biomass is left at the throat of
the reactor.

Moreover, the opportunity cost is modeled as the ash penalty cost for reduced oil yield. The difference
between the profit that would have been generated when meeting the target ash content versus the
yield obtained with a high ash content is computed.

All these quality-related costs are expressed in analytical expressions and integrated into the
mathematical model presented in Section 3.3.

3.3. Mathematical Formulation

The bioenergy supply chain network modeled is depicted in Figure 4.
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Indices/Sets

I Set of parcels.
J Set of potential sites for collection facilities.
K Set of potential sites for bio-refineries.
L Set of customers.
P Set of harvesting methods.

Decision Variables

xijp
Amount of biomass [ton] harvested via method p, shipped from parcel i to the collection
facility j, in period t, where p P P, i P I and j P J.

yjkp
Amount of biomass [ton] harvested via method p, shipped from the collection facility j to
the bio-refinery k, in period t, where p P P, j P J and k P K.

zkl
Amount of biofuel [liters] shipped from bio-refinery k to customer l in period t, where
k P K and l P L.

Aijp
Binary variable that is equal to 1 if parcel i connected to the collection facility j that uses
the harvesting method p is active in period t, and equal to 0 otherwise.

f j Binary variable that is equal to 1 if collection facility j is open, and equal to 0 otherwise.
gk Binary variable that is equal to 1 if bio-refinery k is operating, and equal to 0 otherwise.

FAH
1 Variable that establishes the final ash content, where Ash P p0.08, 0.07, . . . , 0.01q.
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Parameters

Operational Parameters

Ωi Maximum amount [tons] of available biomass in parcel I, where i P I.
MPj Capacity of a collection facility [tons] j, where j P J.
MCk Capacity of the bio-refinery [MLPY] k, where k P K.

ρl Customer demand [MLPY] l, where l P L.
CFj Fixed annual equivalent cost [USD $] for opening the collection facility j, where j P J.
CBk Fixed annual equivalent fixed cost [USD $] for opening the bio-refinery k, where k P K.
W Number of bio-refineries k that can operate.
M Very large positive value.
S2

p Grinding cost [USD $] employing harvesting method p, where p P P.

Transportation Parameters

Cijp
Transportation cost [USD $] per dry ton using harvesting method p from parcel i to
collection facility j, where p P P, i P I and j P J.

Cjkp
Transportation cost [USD $] per dry ton using harvesting method p from collection facility
j to bio-refinery k, where p P P, j P J and k P K.

Ckl
Transportation cost [USD $] per volume from bio-refinery k to the customer l, where k P K
and l P L.

Quality Parameters

CHip
Collection cost [USD $] per dry ton of feedstock harvested employing the method p, in
parcel i, where p P P and i P I.

FAH
0 Parameter that establishes the initial content of ash, where Ash P p0.08, 0.07, . . . , 0.01q.
S1

p Mechanical drying cost [USD $] employing harvesting method p, in period t, where p P P.

S3AH Ash disposal cost [USD $], which is calculated from a linear regression such that
S3AH “ 28.86FAH

1 , where Ash P p0.08, 0.07, . . . , 0.01q.

S4AH Ash penalty cost [USD $], which is calculated from a linear regression such that
S4AH “ 492.66FAH

1 ´ 4.9266, where Ash P p0.08, 0.07, . . . , 0.01q.

S5AH

Screening cost [USD $], which is calculated from a linear regression such that
S5AH “ 135

`

FAH
0 ´ FAH

1
˘

, where FAH
0 is the initial level of ash content, and FAH

1 is the
final level of ash content, where Ash P p0.08, 0.07, . . . , 0.01q , with the conditional
FAH

1 ď FAH
0 .

S6AH Oil yield [liters], which is calculated from a linear regression such that
S6AH “ ´10507.4FAH

1 ` 324.69, where Ash P p0.08, 0.07, . . . , 0.01q.

Mathematical Model

The BioSC-COQ model aims to minimize overall costs, as follows:

Min
“

Obj1 “ CTo “ CT` CH ` CP` CB`MD` AS` SC` GR` AP
‰

(1)

where CT [$] is the total cost of transportation, CH [$] is the total cost of the harvest processes, CP [$]
is the fixed annual equivalent cost for opening the collection facilities, CB [$] is the fixed annual
equivalent cost for opening the bio-refineries, MD [$] is the mechanical drying cost, AS [$] is the ash
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disposal cost, SC [$] is the screening cost, GR [$] is the grinding cost and AP [$] is a penalty cost for
reduced oil yield due to high ash content. Each cost is modeled as follows:

CT “
I
ÿ

i“1

J
ÿ

j“1

P
ÿ

p“1

Cijpxijp `

J
ÿ

j“1

K
ÿ

k“1

P
ÿ

p“1

Cjkpyjkp `

K
ÿ

k“1

L
ÿ

l“1

Cklzkl (2)

CH “

I
ÿ

i“1

J
ÿ

j“1

P
ÿ

p“1

CHijpxijp (3)

CP “
J
ÿ

j“1

CFj f j (4)

CB “
K
ÿ

k“1

CBkgk (5)

MD “

J
ÿ

j“1

K
ÿ

k“1

P
ÿ

p“1

S1
pyjkp (6)

AS “
J
ÿ

j“1

K
ÿ

k“1

P
ÿ

p“1

S3AHyjkp (7)

SC “
I
ÿ

i“1

J
ÿ

j“1

P
ÿ

p“1

S5AHxijp (8)

GR “
I
ÿ

i“1

J
ÿ

j“1

P
ÿ

p“1

S2
pxijp (9)

AP “
J
ÿ

j“1

K
ÿ

k“1

P
ÿ

p“1

S4AHyjkp (10)

The BioSC-COQ model is subject to the following constraints:

J
ÿ

j“1

P
ÿ

p“1

xijp ď Ωi @i P I (11)

Constraints Equation (11) impede to exceed the capacity of each parcel i:

I
ÿ

i“1

P
ÿ

p“1

xijp ď MPjt f j @j P J (12)

Constraints Equation (12) limit the capacity of each collection facility j:

L
ÿ

l“1

zkl ď MCkgk @k P K (13)

Constraints Equation (13) impede to exceed the capacity of each bio-refinery k:

K
ÿ

k“1

zkl “ ρl @l P L (14)
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Constraints Equation (14) ensure demand satisfaction for each customer l:

I
ÿ

i“1

J
ÿ

j“1

xijp ´

J
ÿ

j“1

K
ÿ

k“1

yjkp “ 0 @j P J, @p P P (15)

Constraints Equation (15) allow the balance of flow between the parcel i and the facility j, and
between the facility j and the bio-refinery k:

J
ÿ

j“1

K
ÿ

k“1

P
ÿ

p“1

S6AHyjkp ´

K
ÿ

k“1

L
ÿ

l“1

zkl “ 0 @k P K (16)

Constraints Equation (16) allow the balance of flow between the facility j and the bio-refinery k,
and between the bio-refinery k and the customer l:

xijp ´MAijp ď 0 @i P I, @j P J, @p P P (17)

Constraints Equation(17) ensure that biomass shipment can only be done through active parcels
i P I:

J
ÿ

j“1

P
ÿ

p“1

Aijp “ 1 @i P I (18)

Constraints Equation (18) ensure that only one harvesting method p can be employed at each
parcel i:

K
ÿ

k“1

gk ď W (19)

Constraints Equation (21) establish the maximum number of biorefineries that can operate:

xijp ě 0 yjkp ě 0 zkl ě 0 @i P I, @j P J, @k P K, @p P P (20)

Aijpt P t1, 0u f j P t1, 0u gk P t1, 0u @i P I, @j P J, @k P K (21)

FAH
1 P t0.01, . . . , 0.08u (22)

Constraints Equations (20)–(22) define the type of the decision variables in the model.

4. Case Study

A realistic case study is presented to test the BioSC-COQ model; the input parameters are shown
in Table A1 in the Appendix and discussed in this section. The supply chain consists of three potential
collection facilities, two potential biorefineries and twenty customers.

4.1. Operational Parameters

We consider data of the availability of logging residues in the region of Tennessee in the
United States, including a few adjacent counties in the states of Kentucky, Virginia, North Carolina,
Alabama, Mississippi, Arkansas and Missouri. A total of ninety nine counties were considered in this
study, as shown in Table A2. The availability of biomass (at the county level) is retrieved from the
National Renewable Energy Laboratory’s (NREL) website [30]. The average annual forest residues are
300,530 dry tons.

In practice, the moisture content in the biomass is determined by several factors such as the
weather conditions, the storage duration and the management practices. Equation (26) is used to
estimate the moist biomass available:

Ωi “

ˆ

DryTon
1´mc

˙

(23)
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where Ωi [tons] is the weight of the moist biomass, mc [%] is initial moisture content (i.e., 50% is the
baseline scenario in this case study) and DryTon [tons] is the weight of the dry biomass (as shown in
Table A2).

The equivalent annual cost (EAC) for opening the biorefineries (CBk) is calculated in this study
assuming a project life of 20 years and an interest rate of 15% [31]. The equivalent annual cost method
is used to provide the annual cost incurred due to the net present value (NPV) of $39 million and
$72 million corresponding to biorefineries of 190 and 380 MLPY, respectively [21]. Similarly, the
equivalent annual investment costs for opening and operating the collection facilities is computed
considering 20 years and an interest rate of 15% [31]; the net present value (NPV) of $2.5, $4.5 and
$6.5 million associated with a capacity of 110,000, 200,000 and 300,600, respectively is used for the
collection facilities [21]. The demand is assumed to follow a normal distribution with mean 3.4 [MLPY]
and a standard deviation of 15% from the mean [32]. Finally, the cost of grinding is $13/dry ton [10].

4.2. Quality Parameters

A description of the quality-related input parameters follows. The conformance costs are the sum
of (1) the collection cost after drying the biomass and (2) the screening cost. The CTL harvesting method
provides the flexibility of drying the biomass naturally in the field; however, an additional collection
cost is incurred by the biorefinery. The collection costs, which include collecting the residues and
transporting them to the landing, is estimated as $11.25/dry ton [33]. As stated previously, allowing
the biomass to dry in the forest reduces the moisture content from 50% to up to 15% (possibly in some,
but not all, locations and seasons). In the WT harvesting method (with residues chipped at landing),
the collection cost is assumed null as all collection costs are attributed to the conventional products
(logs or pulpwood).

The screening cost is computed as a function of the amount of ash to be removed and is based
on costs reported by Dukes et al. [29]. The initial ash concentration (FAH

0 ) is assumed to be 8%.
The ash screening costs ranged from $2.70/dry ton up to $9.45/dry ton for final ash contents of 6%
and 1%, respectively. Based on these cost figures, a linear regression equation was fitted, that is,
S5AH “ 135pFAH

0 ´ FAH
1 q, as shown in Section 3.3.

The non-conformance costs consist of the sum of: (1) the drying cost; (2) the ash disposal cost and (3) the
ash penalization cost. The mechanical drying cost (S1

p) is based on the estimates reported by Mani et al. [34].
Their analysis estimated a fixed cost of $2.46 for drying biomass. Additionally, the report estimates an
operating cost of $7.84/dry ton for biomass with 40% moisture content. Using these cost figures as
baseline, the cost for mechanically drying biomass was computed as $12.26, $9.32, and $5.40 per dry
ton of biomass delivered to the biorefinery at 50%, 35% and 15% moisture contents, respectively.

The cost to dispose the ash that remains in the reactor after the energy conversion process takes
place was derived from the results provided by Humbird et al. [7]. They estimated a total cost of
$28.86 per ton of ash disposed. Using this value, the ash disposal cost estimates ranged from $0.29 to
$2.31 for ash concentrations from 1% to 8%. The equation used to compute the ash disposal costs as a
function of the final ash content is S3AH “ 28.86 FAH

1 .
The ash content produces a significant impact on the yield of pyrolysis oil [11]. A linear

relationship between the ash content and the percentage of oil yield was obtained from the
data reported by Fahmi et al. [35]; we consider a baseline yield of 315.67 liters/dry ton with
1% ash. Then, we fitted a linear regression equation for predicting the oil yield (liters/dry
ton) as: S6AH “ ´10507.4FAH

1 ` 324.69. In order to quantify the monetary losses due to high ash
concentrations, the price of No. 2 heating oil as of June 2015 (i.e., $0.4683/liter of oil) is used as a
proxy of pyrolysis oil [36]. The ash penalty cost is applied to biomass that exhibited ash concentrations
exceeding the desired value of 1% (i.e., the specification for thermochemical processes). The penalty
cost is calculated as the difference between the profit made from selling the oil produced from feedstock
with an ash concentration of 1% and the profit made from selling the oil produced from feedstock
with higher ash concentrations. The higher the ash content, the lower the oil yield and the higher
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the economic loss. The prediction of this cost is performed through the following linear regression:
S4AH “ 492.66FAH

1 ´ 4.9266.

4.3. Transportation Parameters

In order to compute the transportation costs, we used the equation proposed by Abbas et al. [37],
Cijp “ 3.85 ` 0.085

`

dijp
˘

and Cjkp “ 3.85 ` 0.085
´

djkp

¯

where dijp is the distance from supplier
i to collection facility j using method p and djkp represents the distance from collection facility
j to bio-refinery k using method p. Since the baseline moisture content is assumed to be 50%
(i.e., Whole-Tree scenario), the amount of biomass shipped (xijpq needs to be adjusted for the CTL
scenarios where the biomass was naturally dried to 15% or 35% since the moisture content at the
time of collection affects the transportation costs pCTq as well as the cost of mechanically drying
the biomass (S1

p) to meet the conversion technology specifications. Thus, the transportation costs
for CTL harvesting methods (i.e., P2, P3, P5, P6) are computed as Cijp “ 3.85` 0.085

`

dijp
˘

p1´mcq

and Cjkp “ 3.85` 0.085
´

djkp

¯

p1´mcq where mc indicates the moisture content. The bioethanol
transportation cost pCklq is estimated at $0.000028/km.

5. Computational Results

The computational experiments were conducted in a workstation with an Intel® Xenon® X5550
processor that operates at 2.67 GHz and with 4 GB of RAM. The implementation of the models was
performed in GAMS 12 and solved with CPLEX 23.6.2 [38]. The implementation calls a mixed integer
quadratically constrained programming (MIQCP) solver since the BioSC-COQ model is quadratic and
contains design variables of integer-binary type.

5.1. Case Study Results

Table 2 (second column) summarizes the results of the case study. The breakdown of the overall
cost consists of costs associated with the biomass quality control activities, including both the initial
and the final ash and moisture contents, as well as operational and transportation costs. Moreover, the
computational effort to achieve the results (in CPU seconds) is presented as well as the biomass utilized.

The initial ash content is 8% and the initial moisture content is 50%. The optimization algorithm
selects the harvesting method, and consequently the final moisture content, as well as the ash level
that minimizes the overall cost.

The optimal solution is shown in the second column in Table 2. The first finding is that the selected
harvesting method is P4 (Whole-tree with screening, which has 50% moisture content). The second
finding is that the optimized final ash content is 1%, which indicates that investing in preventive
activities to reduce the ash content before reaching the throat of the reactor is more cost-effective than
allowing the biomass to have an ash content higher than the specification at the conversion phase and,
next, applying remedial activities such as the ash disposal and penalization for reduced yield.
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Table 2. Summary of the computational results (the annual costs are in USD). Optimal solution is in bold numbers.

Final Ash Content [%] 1% 2% 3% 4% 5% 6% 7% 8%

Final Moisture Content [%] 50% 50% 50% 50% 50% 50% 50% 50%
Biomass used (Dry tons) 220,944 228,588 236,781 245,583 255,064 265,308 276,408 288,477
Processing time [CPU sec] 1.37 0.91 0.87 0.90 0.83 0.89 0.83 0.78
Cost of Transportation [$/year] 2,951,344 3,052,446 3,160,795 3,277,200 3,402,592 3,538,056 3,684,856 3,844,475
Collection Cost [$/year] 0 0 0 0 0 0
Cost for Opening the Collection Facilities [$/year] 1,038,450 1,038,450 1,038,450 1,038,450 1,038,450 1,038,450 1,038,450 1,038,450
Cost for opening and operation the Biorefineries [$/year] 6,230,697 6,230,697 6,230,697 6,230,697 6,230,697 6,230,697 6,230,697 6,230,697
Ash Disposal Cost [$/year] 63,764 131,941 205,005 283,501 368,058 459,406 558,399 666,036
Screening Cost [$/year] 2,087,917 1,851,566 1,598,273 1,326,148 1,033,011 716,330 373,150 0
Grinding Cost [$/year] 2,872,267 2,971,649 3,078,155 3,192,579 3,315,838 3,448,998 3,593,299 3,750,203
Mechanical Drying Cost [$/year] 2,708,769 2,802,494 2,902,937 3,010,847 3,127,091 3,252,670 3,388,758 3,536,730
Ash Penalty Cost [$/year] 0 1,126,164 2,333,052 3,629,668 5,026,403 6,535,320 8,170,500 9,948,482
Performance Measure (Total Cost) [$/year] 17,953,208 19,205,406 20,547,363 21,989,090 23,542,140 25,219,928 27,038,108 29,015,073
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Columns 3–9 in Table 2 illustrate the impact of changing the ash content lower limit. The original
interval for the final ash content is from 1% to 8% and the optimal ash content is the minimum value
(i.e., 1%). Columns 3–9 shown the impact of different minimum final ash contents (i.e., 2%, 3%, . . . , 8%)
in the cost structure. The following remarks can be made. Firstly, as the ash content increases, more
biomass is needed to meet the demand. This is due to the fact that high ash content reduces the oil
yield; thus, more biomass is needed to meet the demand. More biomass increases the transportation,
grinding and drying costs in 30% when comparing costs incurred with 8% versus 1% concentrations.
Secondly, the ash disposal cost is 10 times higher if the final ash content is left at 8%. Similarly, the ash
penalty cost considerably increases when the final ash content is left at 8% (from $0 to 45% of the total
cost). If we compare the ash-related nonconformance costs (i.e., ash disposal and ash penalty) with the
preventive or conformance costs (i.e., screening cost) incurred when reaching a final ash content of 1%,
the screening cost needed to reduce the ash content to 1% represents only 15% of the total cost. Hence,
prevention activities are cost-effective and ash quality control activities are recommended to reduce
the nonconformance quality-related costs.

5.2. Quality-related Costs Analysis

Figure 5 depicts the trade-off curves of the ash quality-related costs at different levels of final ash
content while considering the harvest method that minimizes the overall cost (i.e., Whole-Tree with
50% final moisture content). The conformance cost represented by the screening cost shows a decreasing
behavior and reaches zero at 8% of ash. Contrary, the nonconformance costs linked to the ash disposal and
ash penalty costs show an increasing behavior; specially, the ash penalty increases considerably when
the ash content increases. Interestingly, Figure 5 shows that the conformance and nonconformance cost
are balanced in between 2% and 3% ash. This represents the optimal COQ ash level (only considering
the quality-related costs for ash). Above this point, the ash-related nonconformance costs increase
substantially due to the losses caused by a reduced yield of oil. If the ash penalty is not considered in
the analysis, the screening and the ash disposal costs would balance between 6% and 7% ash and this
ash level would be the optimal COQ point.
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It is worth noting that, with any final ash content from 1% to 8%, the model selects the method P4
Whole-tree harvesting without screening, with a final moisture content of 50%.

Figure 6 illustrates the COQ trade-off related to the moisture content for different harvesting
methods. The selection of the harvesting method impacts the final moisture content of the logging
residues, as indicated in the x axis. The collection cost only applies for the CTL methods (which
achieve lower moisture contents) and the drying costs decrease as moisture content decreases. The
ash level was kept at 1% in the results shown in Figure 6. As discussed above, the optimal solution
is to select the WT method at 50% moisture content (refer to Table 2) because the BioSC-COQ model
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optimizes both the ash and moisture contents that minimize the overall cost (i.e., fixed, operational,
transportation and quality costs).
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The results showed that the ash and moisture contents of logging residues affect the performance
of the supply chain in monetary terms. Higher-than-target moisture and ash contents incur in
additional quality-related costs. These costs are hidden in traditional supply chain network design
models. Figure 7 depicts the contribution of the quality-related costs to the overall supply chain cost for
different final ash contents while keeping the selected harvesting method (P4). The quality-related costs
account for 27% of overall supply chain cost in the optimal solution. In contrast, the quality-related
represent up to 49% of the overall supply chain cost if the final ash content is kept at 8%.
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Figure 8 breaks down all the quality-related costs shown in Figure 7. For instance, the 27%
corresponding to the first bar in Figure 7 can be broken down into 15% and 12%, associated with
drying and screening costs, respectively. The trade-offs between the screening and the ash penalty
costs represent the biggest change as the ash content increases. Particularly, the ash penalty cost is the
biggest contributor to the quality-related costs and it goes from 0% (for 1% ash content) to 34% (for 8%
ash content).
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5.3. Sensitivity Analysis

Eleven interest rate cases are investigated to understand the impact on the fixed annual equivalent
cost for opening the collection facilities (CFj) and the biorefineries (CBk). From Figure 9, it can be
observed that the impact of changing the interest rate from 5% to 15% increases the total supply chain
cost in around $3.6M. This change represents about 20% of the total cost of the original case study.
Figure 9 also investigates the impact of changing the customer demand from a normally distributed
demand with mean 3.4 MLPY with standard deviation of 15% to a normally distributed demand
with mean 4.6 MLPY with standard deviation of 15%. In the optimized solution, the same collection
facilities and biorefineries are selected; however, the total cost is increased in $3.5M when compared to
the demand with mean of 3.4 MLPY.
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We also investigate the impact of the price of oil on the ash penalty costs for reduced yield.
Figure 10 shows a sensitivity analysis for prices starting from $0.9/gal (minimum price since 2010) to
$2.2/gal. Higher slopes of ash penalty cost occur with final ash contents above 4%. In the extreme case
of 8% final ash content, the penalty costs vary from $17.61 to $43.06. The proposed BioSC-COQ model
selects the lowest final ash content (i.e., 1%); therefore, the ash penalty cost is zero and this parameter
does not affect the optimal solution or the conclusion drawn from the numerical example.
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6. Conclusions

A cost classification for quality-related costs in bioenergy supply chains using logging residues
and a method to quantitatively incorporate the Cost of Quality (COQ) into a holistic supply chain
model are presented in this paper. The proposed BioSC-COQ model selects the optimal final moisture
and ash contents that minimize the overall cost within the supply chain by balancing the conformance
(preventive) and nonconformance (reactive) quality control activities/losses. Furthermore, it includes
traditional costs in supply chains such as logistic costs and operational costs of collection centers and
bio-refineries while integrating a novel method of quantifying feedstock quality-related costs and
selecting cost-effective quality control activities.

Based on the numeral experimentation, the total supply chain cost increased 7%, for each
additional percent in the final ash content. Higher final ash contents result in a lower fuel production;
therefore, greater amount of biomass is required to meet the customer demands. With each unit
percentage increase of the final ash content from target value, oil yield decreased by 3.8% on average.
Moreover, an ash content greater than the target value increases the overall cost by incurring in losses
(i.e., ash penalty and ash disposal).

Regarding the impact of moisture content, the model selects the Whole-Tree harvesting method
to reach a final moisture content of 50%. The moisture content in the logging residues increases
the transportation and mechanical drying costs. However, the cost of collection (incurred when the
biomass is left to dry) is higher than the mechanical drying and transportation costs.

In summary, this paper presents a model and solution approach that can be used as a decision
support tool for the strategic and tactical planning and management of the logging residues supply
chain network. The model takes into consideration aspects related to the biomass quality such as its
ash and moisture contents (critical-to-quality characteristics). Previous works have acknowledged the
importance of biomass quality in the decision making process but have not incorporated it into an
analytical model that can serve as a decision support system. The proposed model closes this gap by
building a more comprehensive model that considers and quantifies the feedstock quality implications.

7. Future Work

Future lines of research include, firstly, expanding this model to a stochastic programming model.
For instance, weather conditions can be treated as a stochastic factor that could affect the initial
moisture content. Secondly, this model is a single objective model; additional performance metrics can
be considered. Some examples of alternative metrics include, but are not limited to: environmental
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objectives (e.g., minimize the impact of social footprint) and social objectives (e.g., maximize the jobs
created by the project) [39]. Thirdly, this model considers the production of biofuels from a single type
of biomass, future work might involve to model a mix of different types of biomass for the production
of biofuels [5,40]. Thus, a natural extension of our work is to study the effect of ash and moisture
content of various types of biomass. Fourth, an in-depth study of the effects of storage of biomass
in the collection facilities and how storage affects the moisture content and the quality-related costs
as well as the identification of optimal inventory management policies of the supply chain can be
investigated as future work.
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Appendix

Table A1 summarizes the parameters used in the case study and their sources.

Table A1. List of input parameters for the BioSC-COQ model.

Source Input Parameter Value

Operational Parameters

[30] Available biomass. Ωi = According to Equation (26) and
Table A2 in Appendix (@i).

[41] Capacity of collection facilities. MPj = [110,000; 200,000; 300,600] Ton (@j).

[21] Capacity of bio-refineries. MCk = [190, 380] MLPY (@k).

[32] Demand from customers.
rl = demand follows a normal
distribution with a standard deviation of
15% from the mean.

[41] Fixed equivalent annual cost (EAC) for
opening collection facilities. CFj = [399,404; 718,927; 1,038,450] (@j).

[21] Fixed equivalent annual cost (EAC) for
bio-refineries of 190 MLPY. CBk = 6,230,696 (@k).

[21] Fixed equivalent annual cost (EAC)
cost for bio-refineries of 380 MLPY. CBk = 11,502,825 (@k).

[10] Cost of grinding ($/dry ton). S2
p = 13.00 (@p).

Transportation Parameters

[37] Transportation cost per dry ton. Cijp = Refer to Section 3 (@p, i, j).

[37] Transportation cost per dry ton using
harvest method p. Cjkp = Refer to Section 3 (@p, j, k).

[42] Bioethanol transportation cost from k
to l ($/km). Ckl = 0.000028 (@k, l, t).

Quality Parameters

[34] Cost of the mechanical drying. S1
p = Refer to Section 3 (@p).

[7] Cost of ash disposal. S3AH = Refer to Section 3

INL Thermochemical Design, based on data in [35] Cost of ash penalty. S4AH = Refer to Section 3

[29] Cost of screening. S5AH = Refer to Section 3

INL Thermochemical Design, based on data in [35] Yield of biomass. S6AH = Refer to Section 3 (@p, i).

[33] Collection Cost ($/dry ton). Chip =11.25 (@p, i).
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The availability of biomass for the counties considered in the case study is retrieved from the
National Renewable Energy Laboratory’s (NREL) website [30] and shown in Table A2.

Table A2. List of counties included in the case study.

County Thousand Dry Tons/Yr County Thousand Dry Tons/Yr County Thousand Dry Tons/Yr

Alcorn 1080.9 DeSoto 196.95 Lawrence 2702.1
Allen 2403.4 Dickson 1674.8 Lewis 5505.3

Anderson 1208.2 Dyer 334.94 Limestone 668.8
Ashe 2276.2 Fayette 644.33 Lincoln 832.03

Bedford 303.44 Fentress 1163.6 Logan 871.65
Bell 1521.5 Franklin 1534.9 Loudon 200.43

Benton 653.24 Gibson 332.81 Macon 1175.4
Benton 1016.6 Giles 2365.2 Macon 1936.4
Bledsoe 2123 Graham 629.7 Madison 1103.3
Blount 413.95 Grainger 815.52 Madison 1193.5
Bradley 1069.8 Greene 451.34 Madison 1816.6

Buncombe 1530.2 Grundy 3219.1 Marion 2013.9
Calloway 976.41 Hamblen 117.64 Marshall 1453.7
Campbell 2285.1 Hamilton 1341.5 Marshall 197.07
Cannon 526.1 Hancock 396.49 Maury 675.99
Carroll 1835.1 Hardeman 3395.8 McCreary 1415.9
Carter 325.2 Hardin 5323.5 McMinn 2370.3

Cheatham 754.42 Hawkins 976.49 McNairy 4228.9
Cherokee 2065 Haywood 2369.7 Meigs 360.4
Chester 2128.3 Haywood 305.98 Mitchell 845.59

Christian 2757.5 Henderson 1271.3 Monroe 2019
Claiborne 1451.2 Henderson 1927.1 Monroe 1755.2

Clay 734.9 Henry 1429 Montgomery 799.36
Clay 568.15 Hickman 3202.1 Simpson 28.481

Clinton 1318.5 Houston 2847 Swain 430.99
Cocke 705.36 Humphreys 2542.3 Tippah 2022
Coffee 508.47 Jackson 5090.1 Tishomingo 3158.7

Crittenden 47.35 Jackson 4100.8 Todd 902.08
Cumberland 5840.5 Jackson 1274.9 Transylvania 137.39
Cumberland 2958.3 Jefferson 174.55 Trigg 2150.9
Davidson 54.19 Johnson 470.21 Wayne 1508.2
Decatur 2212.4 Knox 346.14 Whitley 2930.5
DeKalb 598.05 Lauderdale 1577.4 Yancey 760.85
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