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Abstract: As data and supercomputing centres increase their performance to improve service quality
and target more ambitious challenges every day, their carbon footprint also continues to grow, and
has already reached the magnitude of the aviation industry. Also, high power consumptions are
building up to a remarkable bottleneck for the expansion of these infrastructures in economic terms
due to the unavailability of sufficient energy sources. A substantial part of the problem is caused
by current energy consumptions of High Performance Computing (HPC) clusters. To alleviate
this situation, we present in this work EECluster, a tool that integrates with multiple open-source
Resource Management Systems to significantly reduce the carbon footprint of clusters by improving
their energy efficiency. EECluster implements a dynamic power management mechanism based on
Computational Intelligence techniques by learning a set of rules through multi-criteria evolutionary
algorithms. This approach enables cluster operators to find the optimal balance between a reduction
in the cluster energy consumptions, service quality, and number of reconfigurations. Experimental
studies using both synthetic and actual workloads from a real world cluster support the adoption of
this tool to reduce the carbon footprint of HPC clusters.

Keywords: energy-efficient cluster computing; multi-criteria decision making; evolutionary
algorithms

1. Introduction

Data and supercomputing centres are an essential element in modern society, as the vast majority
of IT services are supported by them, profiting from the consolidation and centralization of high
performance processors and networks. Targeting both academic and industrial communities, they
provide the key infrastructure for web and application servers, e-commerce platforms, corporate
databases, network storage, data mining, or the high performance computing resources required to
address fundamental problems in science and engineering, to name a few examples.

The versatility of these computing facilities, coupled with the ever-increasing demand for IT
services and their substantial power consumption, makes data and supercomputing centres one
of the fastest-growing users of electricity in developed countries [1]. According to [1,2], electricity
consumptions is the U.S. alone escalated from 61 billion kilowatt-hours (kWh) in 2006 to 91 billion kWh
in 2013, and is projected to increase to 140 billion kWh in 2020. However, it should be noted that these
large energy demands not only produce a significant economical impact for IT services providers [3,4],
but also a carbon footprint equivalent to the aviation industry [5], which is expected to reach 340 million
metric tons of CO2 by 2020 worldwide [6].
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Because of this, there is an unyielding need to improve the energy efficiency of data and
supercomputing centres to reduce their environmental impact, operation costs and to improve the
reliability of their components.

Abundant research has been conducted over the last years on the improvement of cluster
computing efficiency, following multiple approaches that could be taxonomically classified in two
categories: static and dynamic power management [7]. Static approaches focus on the development
of low power CPUs seeking maximum efficiency, such as the IBM PowerPC A2 processors [8,9],
as well as using GPUs or Intel Xeon Phi coprocessors as the main computing resources, given
that this type of hardware is designed for an optimal FLOPS/watt relation instead of just raw
performance. Dynamic techniques focus on the reconfiguration of the compute resources to best
suit current workloads, saving energy when the cluster is underused. Among these techniques is the
Dynamic Voltage and Frequency Scaling (DVFS) [10–17], which adjusts CPU frequency and voltage to
match current demand, energy-efficient job schedulers that implement algorithms capable of reducing
intercommunication-related power consumptions [18,19], thermal-aware methods which take into
account the cooling efficiency of each area of the cluster [20,21], or software frameworks to assist
in the development of energy-efficient applications [22–26]. Lastly, the adaptive resource cluster
technique consists of the automatic reconfiguration of the cluster resources to fit the workload at every
moment by switching on or off its compute nodes, thus saving energy whenever these are idle. This
technique has been applied to Load-Balancing clusters in [27–32] and in VMware vSphere [33] and
Citrix XenServer [34] hypervisors. Recently, various software tools implementing this technique in
HPC clusters have also been developed [35–37].

However, previous adaptive resource solutions for High Performance Computing (HPC) clusters
have limited practical applications for two fundamental reasons. Firstly, as shown in [38,39], closed
sets of expert-defined rules are not optimal to every scenario, leading to a lack of flexibility when it
comes to complying with the preferences and tolerances of real-world cluster administrators in terms
of impact in service quality and node reliability. Secondly, these solutions require its expert system to
be tuned by hand, what is a complex task and is likely to conduce to incorrectly-configured systems
that can cause substantial interferences with the cluster operation, such as node thrashing or reduction
of its productivity, as demonstrated in [40].

Because of this, the tool EECluster is presented that overcomes these limitations. EECluster can
improve the energy efficiency of HPC clusters by dynamically adapting their resources to the changing
workloads. This is done using a Hybrid Genetic Fuzzy System as the decision-making mechanism
and is tuned by means of multi-objective evolutionary algorithms in a machine learning approach to
achieve good compliance with the administrator preferences.

The remainder of the paper is as follows. Section 2 explains the concept of eco-efficiency
and details the modelling assumptions for the carbon footprint of an HPC. Section 3 explains the
architecture of the EECluster tool. Section 4 explains the decision making-mechanism. Section 5
explains the learning algorithm used. Section 6 shows multiple experimental results in both synthetic
and actual scenarios. Section 7 concludes the paper and discusses the future work.

2. Eco-Efficiency

The concept of eco-efficiency brings together economic and environmental factors for a more
efficient use of resources and lower emissions [41]. Eco-efficiency is represented by the quotient
between the service value and its environmental influence. In the particular case of HPCs, the service
value is related to the Quality of Service (QoS), and the environmental influence affects both energy
consumption and greenhouse gas emissions.

As mentioned in the introduction, the dependence between the energy consumption and
the Quality of Service has been studied, and different strategies were proposed to improve their
balance [35–40]. In this work, these studies are updated by including other sources of carbon dioxide
emissions that are originated in the life cycle of a compute node. These additional sources are of
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secondary importance but nonetheless represent a significant part of the emissions. According to [42],
manufacturing a computer requires more than 1700 kWh of primary energy, and more than 380 kg of
CO2 are emitted in the process, accounting for a significant fraction of the greenhouse emissions during
the whole life of the equipment. It must be noted that a standard factor of 220 kg CO2/MWh was
assumed for manufacturing-related consumptions, corresponding to an energy mix with a significant
proportion of wind power. For operation-related consumptions, the 370 kg CO2/MWh emission
factor reported by the Ministry of Agriculture, Food and Environment from the Government of Spain
(“Ministerio de Agricultura, Alimentación y Medio Ambiente”) [43] was used. This factor must be
altered accordingly for clusters operating under different energy mixes.

As a consequence of this, in this paper it is proposed that three different aspects are taken into
account in the model of the emissions of an HPC:

1. Dependence between QoS and primary consumption of energy. The primary savings are about
370 g of CO2 for each kWh of electrical energy that is saved during the operation of the HPC.

2. Dependence between the QoS and the lifespan of the equipment. According to our own experience,
the average life of a compute node in an HPC cluster is between 4 and 5 years. The number of
failures of a given node during its whole lifetime is typically two or three. A rough estimation
of the average number of failures of a single node during a year is 0.5 failures/year (thus
0.5 failures/year * 5 years = 2.5 failures). Both the life extent and the quantity of failures
depend on the number of power-on and power-off cycles. Heavily loaded nodes might suffer
from 0.75 failures/year and a shorter lifespan of 3 years. Assuming that the most common
failures are power supplies, motherboards, and disk drives, the typical cost of a reparation can be
estimated in 5% of the acquisition cost, i.e., about 20 kg of CO2 are saved for each failure that is
prevented. Each additional year of use of a compute node saves more than 80 kg of CO2 (approx.
22% of the total manufacturing emissions if the life is between 4 and 5 years, as mentioned).
This includes the primary energy used for manufacturing a new node and the recycling costs of
the discarded equipment.

3. Dependence between the QoS and the lifespan of the support equipment. An additional 1% was
added for each saved kWh (2.2 g CO2) and 1 g CO2 for each saved power cycle. In the first
case, this models the improved failure rate of support equipment such as cooling fans and air
conditioning. The second case models different failures in the datacenter that may be caused by
current surges when a large number of compute nodes are powered on or off at the same time.

The emissions model described in this section will be applied in the experiments of Section 6
to estimate global energy savings and carbon footprint reductions as a result of adopting of the
proposed system.

3. Architecture

Computing clusters are a type of computer system consisting of multiple computers
interconnected that, together, work as a single computing resource [44]. High Performance
Computing (HPC) clusters are a particular type of cluster whose main purpose is to address
complex and computationally-demanding problems, such as new material, semiconductors, or drugs
design, cardiovascular engineering, new combustion systems, cancer detection and therapies, CO2

sequestration, etc. [45].
HPC clusters typically combine a master node and several compute nodes. The master node

is the only one accessible by the users and is tasked with the cluster management using various
software components, including the Resource Management System (RMS) and monitoring tools (such
as Ganglia, Nagios, Zabbix), among others. The RMS is a software layer which abstracts users from the
cluster underlying hardware by providing a mechanism where they can submit resource requests to
run any supplied software program (hereafter denoted as jobs). It is worth noting that cluster resources
are represented logically by a number of slots which, depending on the RMS configuration, can depict
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form a single CPU core to a whole compute node. The RMS working cycle consists of (1) gathering
job submissions in an internal queue; (2) running a job scheduling algorithm to find the best possible
matching between the resources available in the compute nodes and the slots requested by each job
and (3) assigning slots and dispatching the job to the compute nodes (see Figure 1). Data and results
are passed between the master and the compute nodes through a shared network storage space by
means of a network file system or a storage area network.

Master

Resource Management System

Compute node 1

  Slot 1

  Slot 2

Job scheduler

Job 1

Job 1

Compute node 2

  Slot 1

  Slot 2 Job 1

Job 3Job 4Job 5

Job queue

Compute node m

  Slot 1

  Slot 2

Job 2

 Jobs

User 1

User 2

User 3

User n

Network storage

Job 1 

Standard 

Output

Job 1 

Error 

OutputJob 1 data

Job 1 

software

Job 2 

Standard 

Output

Job 2 

software

Figure 1. Resource Management System (RMS) components.

The EECluster tool is a solution which can reduce the carbon footprint of ordinary HPC clusters
running open-source RMS, such as OGE (Oracle Grid Engine, Open Grid Engine/SGE (Sun Grid
Engine, Son of Grid Engine) and PBS (Portable Batch System)/TORQUE (Terascale Open-source
Resource and QUEue Manager) by implementing an intelligent mechanism to adapt the cluster
resources to the current workload, saving energy when the cluster is underused. Specifically, the
prototype of EECluster features only two out-of-the-box connectors for OGE/SGE and PBS/TORQUE,
as these are two of the most used RMS worldwide in HPC infrastructures. As mentioned in reference
[46], the OGE/SGE family (including its multiple branches of products and projects, such as Sun
Grid Engine, Oracle Grid Engine, Open Grid Engine, and Son of Grid Engine) is a suitable choice
for small and medium sites because it is easy to deploy and operate, what has leaded to a very
substantial expansion over the last decade in HPC centres. On the other hand, TORQUE (Terascale
Open-source Resource and QUEue Manager) is the open-source RMS based on the original PBS project
(Portable Batch System), and it is arguably the most widely-used batch system nowadays in HPC
grid infrastructures and also in small and medium site [46]. It is noteworthy that EECluster can be
potentially integrated with any RMS as long as it provides a suitable interface in the form of either a
series of command-line utilities or an API (Application Programming Interface) that allows EECluster
to obtain the required information for its operation (detailed below).

EECluster is composed of a service (EEClusterd) and a learning algorithm, coupled with
a Database Management System (DBMS) as the persistence system, and a web-based administration
dashboard. The EEClusterd service periodically updates an internal set of cluster status records
by retrieving information from multiple command-line applications. This information, which is
stored in a Database Management System, is used by the EECluster decision-making mechanism to
dynamically reconfigure the cluster resources by issuing power-on or shutdown commands to the
compute nodes using the Power Management module. The learning algorithm mission is to find
a set of optimal configurations for the decision-making mechanism from which the administrator can
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choose one according to its preferences in terms of impact in the service quality, energy savings, and
node reconfigurations.

A functional prototype of EECluster can be downloaded via web [47,48], where can also be found
a brief description of the software, quick start guides, contact address and acknowledgements.

Figure 2 provides a high-level overview of the system components. A detailed description of this
architecture is out of the scope of this paper and can be found in reference [49].

Master

EEClusterd

DBMS

EECluster 

dashboard

Host Information 

Retrieval

Decision-making 

mechanism

RMS Connector

Coordinator

RMS

Compute node

Power 

Management

Learning 

algorithm
Simulator

Figure 2. EECluster Tool: System components overview. DBMS: Database Management System.

4. Decision-Making Mechanism

The essential component in an adaptive resource cluster solution is the decision-making
mechanism, for it is the one that determines the amount of nodes that will be available at every
moment. As mentioned earlier, multiple approaches have been proposed previously based on sets of
expert-defined rules, such as “if the node i has been idle for more than a t time threshold, it must be
powered off”. Closed expert systems like these have the advantage of coping better with unforeseen
workload scenarios over systems learnt automatically in a machine learning approach. This is because
machine-learnt systems are more likely to overtrain, especially in scenarios with great changes in
the pattern of job arrivals. However, this advantage of simple expert systems comes at the price of
low flexibility to adapt to both the sharp changes inherent to ordinary HPC clusters due to the large
granularity of its workload (low number of concurrent jobs and multiple resources requested by each
job), and the complex set of constraints implicit in the preferences of the cluster administrator. The first
limitation leads to worse results than the ones obtainable with a pure machine learning approach. The
second limitation leads to a potentially inadmissible solution for the cluster administrator if it does not
comply with his or her tolerance of negative impacts on service quality and node reliability.

In order to avoid overtraining and achieve good generalization and flexibility capabilities,
EECluster decision-making mechanism is a Hybrid Genetic Fuzzy System (HGFS) composed of
both a set of crisp expert-defined rules and a set of fuzzy rules elicited automatically from previous
workload records in a machine learning approach. The first set of human-generated expert rules was
adapted from reference [36], and can be defined as follows:

• If the current number of resources are insufficient to run every queued job in a sequential manner,
then keep powered on at least the highest number of slots requested by any queued job, as long
as that amount does not exceed the total number of slots in the cluster.

• If the average waiting time for the queued jobs is higher than a given threshold tmax or if the
number or queued jobs is higher than a given threshold nmax, then power on one slot.
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• If the average waiting time for the queued jobs is lower than a given threshold tmin or if the
number of queued jobs is lower than a given threshold nmin, then power off one slot.

The mission of this rule set is to assure that minimum working conditions for the cluster are met,
avoiding undesired behaviours in unforeseen scenarios, which may lead to a dramatic impact in the
service quality or to a node thrashing effect reducing node reliability and causing early damages in the
hardware equipment.

The purpose of the second set of computer-generated rules is the progressive shutdown of
idle nodes when the cluster load decreases. Each rule in this set defines the degree of truth of the
assertion “the i-node must be powered off”. This degree of truth is computed using a zero-order
Tagaki–Sugeno–Kang fuzzy model [50,51] with N triangular fuzzy subsets on the domain of the nodes
idle times and N weights between 0 and 1. For instance, if N = 3 then the computer-generated rules
would consider three linguistic terms regarding the total amount of time that the i-node has been at
idle state, with N1 being “SHORT”, N2 being “MEDIUM” and N3 being “LARGE”. In this case, the
degree of truth of the aforementioned assertion would be computed as:

off(node i) = ˜SHORT(idlei) · w1 + ˜MEDIUM(idlei) · w2 + ˜LARGE(idlei) · w3 (1)

idlei is the amount of time that the i-node has been idle, ˜SHORT, ˜MEDIUM, and L̃ARGE are fuzzy
sets with triangular memberships [50], and w1, w2, w3 are the N weighs taking values between 0 and 1.

Once each rule has been computed, results are combined so that the number of nodes to be
powered off is the sum of the values off for each node. As can be seen, this second set of fuzzy rules
does not require nodes to reach a certain crisp value before they can be selected for shutting down, but
rather is applied to the cluster as a whole, as opposed to the rules proposed previously to power off
idle nodes, such as in reference [36]. This approach allows the system to respond to smaller changes in
the cluster load more frequently, thus progressively adapting its resources to better match workload
valleys produced when jobs release their resources upon completion. Further information on the
Hybrid Genetic Fuzzy System can be found in references [38,39].

Once a decision is made by the HGFS determining the number of slots that must be powered
on/off, then this decision is translated to a set of physical compute nodes that will be chosen for
reconfiguration. This is done considering the state of each node (only idle nodes can be shutdown and
only powered-off nodes are candidates for power-on) plus two additional values: the node efficiency,
measured as performance

power consumption , and the timestamp of its last failure. The latter is used to determine how
likely it is for a given node to fail upon a reconfiguration request, in such a way that if a node was
recently issued a power on/off command and it failed to comply with it, then the same problem is
expected also to occur in the near future. However, if the node failed a long time ago it is more likely
to have been repaired. The target nodes to be reconfigured are first split into two groups depending
on whether they failed or not to comply with the last issued command. The first group, consisting
of the nodes which worked correctly, are sorted according to their efficiency so that the least efficient
ones are chosen to be powered off and, conversely, the most efficient ones are chosen to be powered on.
If the nodes in the previous group are not enough to match the slots in the reconfiguration decision, the
remaining nodes are chosen from the second group, which are sorted according to the timestamps of
their failures, choosing first the nodes with the earliest values. That is, when a node is chosen from the
second group it is because its last failure occurred before the failure of any other node. If this chosen
node fails again, the timestamp of the last failure would be updated, thus the next time nodes are
sorted, then it will be the last one. The idea behind this design is to prevent the system from selected
systematically the same malfunctioning node if others are available for reconfiguration.

5. Learning Algorithm

The Hybrid GFS described is flexible enough to behave as desired in order to suit the cluster
administrator preferences. However, this requires every HGFS parameter to be properly tuned, which
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is a complex task due to the presence of multiple conflicting objectives and to the huge amount of
combinations that renders infeasible an extensive search. In particular, every instance or configuration
for the previous HGFS is the combination of the following parameters:

(tmin, tmax, nmin, nmax, w1, . . . , wN) (2)

To address this problem, the EECluster learning algorithm uses multi-objective evolutionary
algorithms (MOEAs) to find the parameters defining the HGFS by optimizing a fitness function
consisting in three conflicting criteria: the quality of service (QoS), the energy saved, and the number
of node reconfigurations. Specifically, EECluster uses the MOEA Framework [52] implementation of
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [53] to obtain a Pareto Efficient Frontier
from which the administrator can choose a suitable HGFS configuration. The Pareto Efficient Frontier
is the set of configurations for the HGFS obtained in the experiment that are not worse than any other
configuration in all components of the fitness function simultaneously. Every configuration in the
Pareto Efficient Frontier is known to be “non-dominated”. As can be seen, the result of the learning
algorithm is not a single optimal solution (configuration for the HGFS) but rather a set of optimal
configurations from which an expert human can pick the one that is best given his or her preferences.
The reason for this is that there is no optimal solution because the three objectives involved are in
conflict and attempts to apply any form of weighted sorting of the solutions obtained would lead to
an inaccurate model of the preferences of the administrator.

For a given set of n jobs, where the j-th job (j = 1 . . . n) is scheduled to start at time tschj, but
effectively starts at time tonj and stops at time toffj, the quality of service in an HPC cluster reflects
the amount of time that each job has to wait before it is assigned its requested resources. Once the
job starts its execution, it will not be halted; thus, we focus only on its waiting time. Because jobs do
not last the same amount of time, their waiting in the queue is better expressed as a ratio considering
their execution time. It is noteworthy that the execution times of the job can differ greatly since they
range from seconds to weeks or months. This can potentially lead to situations where very short jobs
must wait over a hundred times their execution timespan, distorting the measurement of the quality of
service and depicting inaccurately the cluster performance. Because of this, the 90 percentile is used
instead of average:

QoS = min

{
p : ||{j ∈ 1 . . . n :

tonj − tschj

toffj − tonj
≤ p}|| > 0.9 n

}
(3)

where ||A|| is the cardinality of the set A.
The energy saved is measured as the amount of watts-hour that were prevented from being wasted

by shutting down idle nodes. Let c be the number of nodes, let state(i, t) be 1 if the i-th node (i = 1 . . . c)
is powered at time t, and 0 otherwise, let the time scale be the lapse between tini=minj{tschj} and
tend= maxj{toffj}. Lastly, let poweridle(i) be the power consumption measured in watts of the i-th
node when it is at idle state. Then,

Energy saved =
c

∑
i=1

poweridle(i) · (tend− tini)−
c

∑
i=1

poweridle(i)
∫ tend

tini
state(i, t)dt. (4)

The node reconfigurations is the number of times that a node has been powered on or off. Let nd(i)
be the number of discontinuities of the function state(i, t) in the time interval t ∈ (tini, tend):

Reconfigured nodes =
c

∑
i=1

nd(i) (5)
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The mission of the NSGA-II algorithm is to obtain a set of non-dominated configurations for
the HGFS, guided by the previous fitness function, whose values are calculated by running a cluster
simulation with a given number of nodes, slots, and job records, as seen in Figure 3.

Learning 

algorithm
Simulator

(tmin, tmax, nmin, nmax, 

w1, w2   wN)

(QoS, energy saved, reconfigured nodes)

(c nodes, s slots, n jobs)

Figure 3. EECluster learning process. QoS: Quality of Service.

6. Experimental Results

In order to provide a sound answer on whether the decision-making mechanism has the required
flexibility to perform correctly and suit any desired working mode, it must be tested in a range of
cluster scenarios which together can build a significant representation of real-world clusters. To do so,
a combination of synthetically-generated and actual cluster workloads from the Scientific Modelling
Cluster (CMS) of the University of Oviedo [54] were used. Synthetic workloads represent four different
scenarios with an increasing degree of fluctuation in terms of job arrival rates, each one spanning 24
months. Job arrivals in each scenario follow a Poisson process with the λ values shown in Table 1, and
job run times are distributed exponentially with rate λ = 10−5 s in all scenarios. As can be seen in the
table, scenario 1 exhibits a cluster with a stable and sustained workload where all hours of the year
have the same job arrival pattern. Scenario 2 adds a distinction between working, non-working, and
weekend hours. Scenario 3 adds a substantial variation in the arrival rates depending on the week
of the month, and scenario 4 increases this variation even more. On the other hand, the workloads
from the CMS cluster consist of 2907 jobs spanned over 22 months. This real-world cluster, built from
three independent computing clusters and five transversal queues using PBS as Resource Management
System (RMS), can accurately show a very common activity pattern in most HPC clusters.
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Table 1. Poisson process of job arrivals in each scenario.

Scenario Day of Week Hour Range Week of Year λ Value

1 All All All 2× 10−4 s

2
Monday–Friday 8:00–20:00 All 2× 10−4 s

Saturday–Sunday 8:00–20:00 All 2× 10−5 s
Monday–Sunday 20:00–8:00 All 10−5 s

3
Monday–Friday 8:00–20:00

w % 5 = 0 10−4 s
w % 5 = 1 2× 10−4 s
w % 5 = 2 5× 10−4 s
w % 5 = 3 5× 10−4 s
w % 5 = 4 2× 10−4 s

Monday–Sunday 20:00–8:00 All 2× 10−5 s
Monday–Friday 8:00–20:00 All 10−5 s

4
Monday–Friday 8:00–20:00

w % 5 = 0 10−4 s
w % 5 = 1 10−4 s
w % 5 = 2 5× 10−4 s
w % 5 = 3 5× 10−4 s
w % 5 = 4 10−4 s

Monday–Sunday 20:00–8:00 All 2× 10−5 s
Monday–Friday 8:00–20:00 All 10−5 s

To assess the flexibility of the Hybrid GFS to suit the desired behaviour of the cluster
administrator under different scenarios, a wide range of preferences must be tested. Given that
these preferences are inherently subjective, a set of five different synthetic preferences were used
in the experiments allowing us to measure to what extent the HGFS complies with them in each
scenario as well to compare results across different scenarios. These synthetic preferences, denoted
as “Hybrid GFS (QoSmax, reconfigurationsmax)”, determine that the HGFS configuration chosen in
each case is the one with the maximum energy savings that has a service quality below QoSmax and
a number of node reconfigurations not higher than reconfigurationsmax over the timespan of the
validation and test sets. It must be noted that values used for these parameters in the experiment differ
slightly from one scenario to another in order to adapt to the different average loads and arrival rates
in each scenario.

To measure the effect of applying each HGFS configuration, a cluster simulator has been developed
for both training and testing, so that every model can be evaluated in the three criteria of the fitness
function. The holdout method was used for validation, with a 50/25/25% split in training, validation,
and test, respectively. Results obtained from the experiment using the test set of each workload
are shown in the following tables. They are measured in terms of impact in the service quality and
reduction in the cluster carbon footprint achieved according to the CO2 emission factors for the
current energy mix, and the number node reconfigurations. Observe that the “Energy saved” column
depends on this energy mix that has been estimated according to the 370 kg CO2/MWh emission
factor reported by the Ministry of Agriculture, Food and Environment from the Government of Spain
(“Ministerio de Agricultura, Alimentación y Medio Ambiente”) [43], but some of the greenhouse
gas is not emitted at Spain; the primary energy consumption is assumed to be served by Spanish
sources but secondary sources are located at the country where the compute nodes are manufactured.
In this respect, Megawatt-hours of saved energy are understood as the amount of energy that would
be saved according to the Spanish mix of generation; the actual amount of globally saved energy is
possibly higher. Also, charts have been generated to depict the evolution over time of the active
cluster resources and the requested slots by the queued and running jobs. In particular, results for
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scenario 1 are displayed in Table 2 and in Figure 4, scenario 2 in Table 3 and in Figure 5, scenario 3 in
Table 4 and in Figure 6, and scenario 4 in Table 5 and in Figure 7. Lastly, results obtained for the CMS
cluster recorded workloads are displayed in Table 6 and in Figure 8.

Table 2. Experiment results for the test set of scenario 1.

Scenario 1 Test Set

QoS Energy Saved (%) Energy Saved (MWh) Carbon Reduction (MtCO2) Reconfigurations

Hybrid GFS (0.00, 1000) 0.00 × 100 28.62% 8.30 3.07 487
Hybrid GFS (0.005, 1250) 4.25 × 10−3 33.19% 9.63 3.56 945
Hybrid GFS (0.01, 1500) 9.32 × 10−3 35.63% 10.34 3.82 1412
Hybrid GFS (0.015, 2000) 1.35 × 10−2 37.16% 10.78 3.99 1921
Hybrid GFS (0.02, 3000) 1.92 × 10−2 38.50% 11.17 4.13 2835
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Figure 4. Cluster simulation trace for the test set of scenario 1. GFS: Genetic Fuzzy System.

Table 3. Experiment results for the test set of scenario 2.

Scenario 2 Test Set

QoS Energy Saved (%) Energy Saved (MWh) Carbon Reduction (MtCO2) Reconfigurations

Hybrid GFS (0.00, 500) 0.00 × 100 60.07% 17.43 6.45 218
Hybrid GFS (0.005, 500) 4.88 × 10−3 65.46% 18.99 7.03 384
Hybrid GFS (0.01, 750) 9.45 × 10−3 69.50% 20.17 7.46 635
Hybrid GFS (0.015, 1000) 1.43 × 10−2 71.61% 20.78 7.69 838
Hybrid GFS (0.02, 1500) 1.84 × 10−2 73.44% 21.31 7.88 1082
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Figure 5. Cluster simulation trace for the test set of scenario 2.
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Table 4. Experiment results for the test set of scenario 3.

Scenario 3 Test Set

QoS Energy Saved (%) Energy Saved (MWh) Carbon Reduction (MtCO2) Reconfigurations

Hybrid GFS (0.00, 500) 0.00 × 100 27.99% 8.12 3.00 194
Hybrid GFS (0.005, 500) 2.19 × 10−3 41.53% 12.05 4.46 342
Hybrid GFS (0.01, 750) 8.12 × 10−3 50.73% 14.72 5.45 671
Hybrid GFS (0.015, 1000) 1.17 × 10−2 56.02% 16.25 6.01 1006
Hybrid GFS (0.02, 1500) 1.69 × 10−2 59.44% 17.25 6.38 1334
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Figure 6. Cluster simulation trace for the test set of scenario 3.

Table 5. Experiment results for the test set of scenario 4.

Scenario 4 Test Set

QoS Energy Saved (%) Energy Saved (MWh) Carbon Reduction (MtCO2) Reconfigurations

Hybrid GFS (0.00, 500) 0.00 × 100 25.00% 7.25 2.68 173
Hybrid GFS (0.005, 500) 2.48 × 10−3 46.09% 13.37 4.95 367
Hybrid GFS (0.01, 750) 4.23 × 10−3 51.50% 14.94 5.53 473
Hybrid GFS (0.015, 1000) 1.43 × 10−2 60.06% 17.42 6.45 1010
Hybrid GFS (0.02, 1500) 1.92 × 10−2 63.51% 18.43 6.82 1253
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Figure 7. Cluster simulation trace for the test set of scenario 4.

Table 6. Experiment results for the test set of the Scientific Modelling Cluster (CMS) workload records.

CMS Cluster Test Set

QoS Energy Saved (%) Energy Saved (MWh) Carbon Reduction (MtCO2) Reconfigurations

Hybrid GFS (0.00, 100) 0.00 × 100 46.67% 13.38 4.95 42
Hybrid GFS (0.05, 500) 4.46 × 10−2 64.26% 18.42 6.82 293
Hybrid GFS (0.10, 500) 6.82 × 10−2 68.60% 19.67 7.28 361
Hybrid GFS (0.25, 750) 1.49 × 10−1 70.34% 20.17 7.46 363
Hybrid GFS (0.50, 750) 1.95 × 10−1 75.54% 21.66 8.01 590
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Figure 8. Cluster simulation trace for the test set of the CMS cluster workload records.

As can be seen from these results, in every cluster scenario used in the experiments, the learning
algorithm found a configuration for the HGFS that achieves significant energy savings without any
noticeable impact in service quality. Also, additional configurations were found that comply with
the synthetic administrator preferences defined, increasing energy savings while strictly complaining
with the constraints set in the aforementioned preferences in terms of QoS and node reconfigurations.
It should be noted that the five configurations displayed in the previous tables are only a small selection
of the vast set obtained in the Pareto Efficient Frontier, and many other solutions are available that can
save even more energy at the cost of a higher penalty in service quality.

The experiments also show that the results obtained differ significantly depending on the
characteristics of the workload. In scenario 1, the regular job arrival rate depicts a workload where
the distances between peaks are very short and valleys tend to be shallow. This leads to HGFS
configurations with a higher average number of reconfigurations and a relatively low amount of
saved energy. Also, as can be seen in Table 2, rising the degree of tolerance for impact in QoS from
0.0 to 0.02 and node reconfigurations up to 3000 only allows an increase in the overall energy savings of
9.88%. Results improve progressively as job arrival patterns vary over time and the workload becomes
more irregular with deeper valleys and longer distances between peaks. For instance, scenario 2 allows
an increase in energy savings of 13.37% between the HGFS configurations obtained for a QoS of 0.0 and
a QoS of 0.02. In scenario 3, the difference grows up to 31.45%, and in scenario 4 reaches 38.51%.

These two last scenarios show important results since they represent the workload patterns
most likely to occur in real-world HPC clusters. This can be verified by the results obtained using
actual records from the CMS cluster of the University of Oviedo, where the workload is even sharper
than in scenario 4, with energy savings between 46.67% and 75.54%, depending on the administrator
preferences. These values can be translated to actual power savings ranging from 13.38 MWh to
21.66 MWh over the course of the test set, and figures of carbon reduction between 4.95 and 8.01 tonnes
of CO2.

7. Concluding Remarks

The EECluster tool has been designed to reduce the carbon footprint of HPC clusters by improving
their energy efficiency. This software package implements the adaptive resource cluster technique in
clusters running OGE/SGE or PBS/TORQUE as RMS, allowing for practical application in real-world
scenarios, owing to the flexibility of its sophisticated machine-learnt decision-making mechanism to
comply with cluster administrator preferences. This mechanism, based on Computational Intelligence
techniques, is learnt by means of multi-objective evolutionary algorithms to assure finding a suitable
configuration that maximises energy savings within the tolerance region of the administrator in terms
of service quality and node reliability.
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Thorough experimental studies based on both synthetic and actual workloads from the Scientific
Modelling Cluster of Oviedo University [54] provide empirical evidence of the ability of EECluster
to deliver good results in multiple scenarios, supporting the adoption of EECluster to reduce the
environmental impact of real world clusters.
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Acronyms

HPC High Performance Computing
RMS Resource Management System
OGE Oracle Grid Engine/Open Grid Engine
SGE Sun Grid Engine/Son of Grid Engine
PBS Portable Batch System
TORQUE Terascale Open-source Resource and QUEue Manager
DBMS Database Management System
IPMI Intelligent Platform Management Interface
WOL Wake On Lan
SSH Secure SHell
HGFS Hybrid Genetic Fuzzy System
TSK Tagaki-Sugeno-Kang
QoS Quality of Service
NSGA-II Non-dominated Sorting Genetic Algorithm-II
MOEAs MultiObjective Evolutionary Algorithms
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