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Abstract: With the ongoing large-scale implementation of electric vehicles (EVs), the exploration of
a more flexible approach to maintain fair interaction between EVs and the power grid is urgently
required. This paper presents an aggregator-based interactive charging management scheme adopting
interruptible load (IL) pricing, in which the EV aggregator will respond to the load control command
of the grid in an EV interactive mode. Charging managements are carried out according to battery
state-of-charge and the EV departure time in EV charging stations. A power-altering charging (PAC)
control method is proposed to dispatch the EVs charging fairly in a station and guarantee EV owners’
preferences. The method does not require classical iterative procedures or heavy computations;
furthermore, it is beneficial for EVs to depart earlier than expected for reasons beyond keeping
homeostatic charging. The proposed scheme, which is tested to charge individual EVs well according
to its preference, was implemented as part of an “EV Beijing” project. The proposed management
scheme provides new insight into EV charging strategy and provides another choice to EV users.

Keywords: charging management; electric vehicle (EV); EV Aggregator; load control

1. Introduction

Modern civilization facilitates our lives while at the same time highlighting such problems as
the consumption of fossil fuels, environmental pollution, and so on. As a promising solution for
these problems, electric vehicles (EVs) are being vigorously promoted in many countries. The EVs’
implementation on a large scale is a big challenge for the power grid. Research shows that the
accumulation of uncontrolled EV loads in space and time will bring regional load imbalance and boost
peak load, which will affect the load character of the grid, overload transformers and cables, generate
voltage and current impacts, and infect voltage profiles and power quality [1–4]. Optimized charging
management is required to maintain a fair interaction between EVs on a large scale as huge mobile
distributed power sources and the grid itself are used to increase the EV access rate. Many proposed
schemes show that proper charging management can lessen the impact of EVs on the grid [5,6];
nevertheless, EV charging management should still be further explored for different requirements.

There are three types of EV charging managements based on the relationship between EVs and
the power grid, including EV-dominant, grid-dominant, and aggregator-based ones. EV-dominant
management contributes to the availability of departure, lowest energy cost and longest battery
life of EVs [7]. Because there is a great difference between the demands of each EV, EV-dominant
management may cause unpredictable load strikes, which will impair power quality and security in
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addition to uncontrolled charging [2,4]. Grid-dominant management places more emphasis on the
grid, while EVs are regarded as uncertain loads. In addition, load control and optimization algorithms
are incorporated into EV charging schemes through forecasting [8,9]. Grid-dominant management
is good at minimizing loss and costs, and avoiding constraint violations in the distribution system.
Although the driving patterns of EV owners are considered in some cases [5,6], most grid-dominant
management concerns multiple EVs in the charging control rather than the demand of a single EV,
especially customer preferences and battery life [10]. To coordinate the grid and EVs, distributed
optimization algorithms and methods such as decentralized charging control [11], multi-agent-based
control [12], and aggregator-based control [13] have been proposed. Based on coordination and
combination, aggregator-based management of EV charging can optimize the operation of the power
grid, lower power loss, improve voltage profiles, and decrease damage to battery life [14–16]. Taken
together, the previous managements have been shown to promote the prosperous application of EVs,
which brings out new requirements for individual charging preferences.

Aggregator-based charging managements can effectively participate in the power market and
utility grid operation [17]. Power market-related algorithms, such as day-ahead optimization and least
squares Monte Carlo (LSMC), have been used to dispatch aggregators [18,19]. Price-only controlled
aggregator dispatching schemes are indirect load control and are highly sensitive to the choice of a
regularization penalty term [20], which may produce unexpected load peak boosts [2]. Furthermore,
dynamic pricing is not commonly accepted by customers [21]. As a promising solution, we take
the EV aggregator in demand response program [22] and adopt an interruptible load (IL) pricing
scheme in this paper. We propose a charging management approach using power control in aggregator
and interaction between aggregators and the grid to respond to the load-control command. The
EV aggregator interacts with the grid control centre at a certain interval by reporting the charging
load range (minimum and maximum) and obtaining the charging power command for the next time
interval from the grid control centre. Through the dispatch and control of the charging inside the
aggregator, the EV aggregators act as relatively predictable and controllable loads, which participate
in the interruptible-load program [23]. EV aggregators sign an IL contract with a utility to reduce
their charging power as requested by the utility (through charging power control command), while
as an incentive, EV aggregators get a price discount as they adopt interactive charging. It has been
proven that with the proper contract price, the benefits to both the utility and the aggregators can be
guaranteed [24,25]. In the aggregator, EVs are divided into two categories: the uncontrolled ones with
higher charging fees as they decline the dispatch of the aggregator, and the controlled ones with lower
charging fee as they participate in load control and grid supply. Although the pricing strategy will
affect whether an EV obeys the dispatch or not, it will not influence the proposed mechanism and is not
discussed in this paper. In order to guarantee the individual EV preferences (such as departure time,
State of charge (SOC), and battery life) of the controlled EVs and fairness among EVs, we build up a
power-altering strategy to manage the charging and dispatch of controlled EVs in the aggregator. The
system is implemented in an “EV-Beijing” project involving 100 EVs on the campus of Beijing Jiaotong
University, China. The proposed charging management are compared with those of the uncontrolled
charging and time-altering charging, showing more flexibility and reliability to satisfy the individual
needs of each EV in response to the load control command of the grid.

Our approach is not to challenge the existing ones, but to support a useful supplement to them,
which is destined to be one more choice for the users. The main contributions of this paper can be
summarized as follows:

‚ An aggregator-based interactive charging management system adopting the IL pricing scheme
is proposed in which the charging of EVs in an aggregator are clustered to form a relatively
predictable and controllable load via interactive charging management. This will benefit the grid
for peak-shifting, valley-filling, and optimal operation.

‚ A power-altering charging (PAC) control in aggregator is proposed to guarantee fair charging
and EV owners’ preferences such as expected departure time and SOC. Furthermore, EVs that
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depart earlier than expected can get acceptable charging results. The PAC control does not require
classical iterative procedures or heavy computations.

2. Scenario Description

As EVs vary in type, capacity and usage, their charging demands are closely related to human
behavior. There are two types of EVs in a charging station: business EVs and private EVs. For business
EVs, such as electric buses and electric taxis, their charging schedules are mainly determined by
their transportation demands, and they mostly demand fast charging or a battery swap service. Fast
charging of business EVs is considered as uncontrolled charging in this paper, while battery swapping
in an EV swap station is not considered in this paper. As private vehicles play an important role in
commuting (89.4% in 2009 by the National Household Travel Survey [26]), they have a relatively short
travel time (the average travel time is 43 min in Beijing [27]) and a relatively long parking time (the
average parking time is 8.7 h at the workplace for an 8+ h work day [27]). For private EVs, the charging
after working hours can be arranged in a load valley, such as midnight, to prevent peak boost on the
regular load peak during the evening hours [7]. On weekends, EVs usually demand to charge as soon
as they are plugged in and as fast as possible, which makes them uncontrollable.

In our approach, we manage the scenario of EVs in a charging station during working hours.
During working hours, EV charging is mostly clustered in a site such as the campus, factory field or
parking lot. For these EVs, some are considered as uncontrolled EVs, such as business EVs, temporary
parked EVs (like a visitor’s EV) and EVs that decline the management of the aggregator. Others
are considered as controlled EVs, such as private EVs. For controlled EVs, the expected departure
time, expected SOC on departure, and cycles of charging are the first level of concern in the charging
management for single EVs. Charging demands of all EVs and load-control demands of the power
grid are coordinated in the aggregator.

3. Charging Management System

The framework of the charging management system is shown in Figure 1. On arriving, EV owners
are permitted to choose controlled or uncontrolled charging. Controlled charged EVs will report
their current SOC, the expected departure SOC, and the expected departure time to the aggregator
at the station (manually or via smart phone apps). The aggregator controller interacts with the EV
Management Center (EVMC) at every interval by reporting the minimum and maximum charging
load for the next time interval. The EVMC in the power distribution control center is an advanced
application of the distribution management system (DMS). Based on the information from each
aggregator controller, the EVMC coordinates with the distribution automation system to get the
charging dispatching commands and send them to aggregators for the next time interval.

3.1. Interaction Process of the Charging Power of the Station

During the charging process, the EV aggregator in the station will interact with the EVMC at every
time interval by reporting its minimum and maximum charging power value for the next time interval.
The EVMC will grant a charging power value in this range according to its dispatching arrangement.

The minimum charging power of a charging station is the total rated power of the controlled EVs
that are full-power charging and uncontrolled EVs. Consequently, the minimum charging power of
station h at time t, Pforce_t_h, is the forced charging power as in Equation (1):

Pforce_t_h “

Mt_h
ÿ

j“1

PM
rate_j `

Kt_h
ÿ

k“1

PUn
rate_k (1)

where M_t_h is the number of controlled EVs that is are full-power charging in station h at time t,
PM

rate_j is the rated charging power of controlled EV j that is full-power charging, K_t_h is the number of

uncontrolled EVs in station h at time t, and PUn
rate_k is the rated charging power of uncontrolled EV k.
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Figure 1. Framework of the electric vehicles (EVs) charging management system. 
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Figure 1. Framework of the electric vehicles (EVs) charging management system.

The maximum charging power of a charging station is the power needed for charging when all
the EVs plugged in are charging at full power; therefore, the maximum charging power of station h at
time t, Pc_max_t_h, is as in Equation (2):

Pc_max_t_h “

Nt_h
ÿ

i“1

Prate_i (2)

where, Nt_h is the number of EVs plugged in station h at time t and Prate_i is the rated charging power
of EV i.

In a distribution grid, there are numbers of charging stations. The EVMC should grant a charging
power value between the minimum and maximum charging value of each station according to its
dispatching arrangement. There are many dispatching strategies for power distribution such as
optimal power strategy, and minimizing peak load strategy. We use a simplified minimizing peak-load
dispatching strategy as follows:

Step 1. Obtaining the load curve of the day by load prediction or the load curve of the day before,
we can obtain the average value Pav of the load in a period such as from 8 a.m. to 5 p.m. As for the
interaction of charging stations with the grid, Pgrid_t is the total load power that the grid expected for
the next time interval, which can be obtained based on Pav and the dispatching strategy. Therefore, we
obtain the total expected charging power of the grid at time t, Pcharge_grid_t, as in Equation (3):

Pcharge_grid_t “ Pgrid_t ´ PL_pre_t (3)

where PL_pre_t is the load prediction value of the next time interval excluding charging loads.
Step 2. The minimum and maximum charging power of all charging stations at time t sum up to

Pc_min_grid_t and Pc_max_grid_t as in Equation (4):

$

’

’

’

&

’

’

’

%

Pc_min_grid_t “
H
ř

h“1
Pforce_t_h

Pc_max_grid_t “
H
ř

h“1
Pc_max_t_h

(4)

where H is the number of charging stations, Pforce_t_h is the minimum power, and Pc_max_t_h is the
maximum power that station h reported at time t.
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Step 3. The charging power of station h that the grid granted, Pc_grant_t_h, is as in Equation (5):

Pc_grant_t_h “

$

’

&

’

%

Pforce_t_h, if Pcharge_grid_t ď Pc_min_grid_t;
Pforce_t_h ` pPcharge_grid_t ´ Pc_min_grid_tq ˆ Pc_max_t_h{Pc_max_grid_t if Pc_min_grid_t ă Pcharge_grid_t ă Pc_max_grid_t;
Pc_max_t_h, if Pcharge_grid_t ě Pc_max_grid_t

(5)

3.2. Charging Dispatching Formulation in an Aggregator

As for each time interval, the aggregator will get a granted charging power and dispatch it among
the EVs in the station. Different goals will result in different dispatching schemes in the station. In
our approach, as in Equation (6), we aim to maximize the number of EVs charging and minimize the
maximal differences between the current SOC and the expected departure SOC of EVs in the station
for fair charging.

‚ Objective Function: For EVs from 1 to Nt in time interval t, the objective functions are as in
Equation (6):

$

’

&

’

%

max A “
Nt
ř

i“1
Ii_t

min maxp∆SOCtq

(6)

where Ii_t is the binary variable of charging status of EV i at time t, Ii_t = 1 means EV i is charging,
and Ii_t = 0 means not charging. Nt is the number of EVs plugged in at time t. Function “min
max(∆SOCt)” means minimizing the maximal ∆SOCt, ∆SOCt = {∆SOC1_t, ∆SOC2_t, . . . . . . ,
∆SOCN_t}. ∆SOCi_t = SOCdep_i ´ SOCi_t is the difference between the expected departure SOC
value of EV i ( SOCdep_i) and the current SOC value of EV i (SOCi_t) at time t.

‚ Control Variables: For EVs at time t, the charging status vector It = {I1_t, I2_t, . . . . . . , IN_t} and
the charging power vector Pt = {P1_t, P2_t, . . . . . . , PN_t} are control variables, where Pi_t is the
charging power of EV i at time t.

‚ Constraints: The constraints are as in Equations (7)–(11).

Charging status constraint.
IUn
k_t “ 1 (7)

where, IUn
k_t is the charging status variable of uncontrolled EV k at time t. This constraint implies that

uncontrolled EVs must be charging until they reach their expected SOC.
Charging time constraint.

tdep_i ´ t ą dchar_i (8)

where tdep_i is the expected departure time of EV i, t is the current time, and dchar_i is the duration
needed for the EV i to be charged at full power to its expected SOC.

Charging power constraint.
N
ÿ

i“1

Ii_tPc_i_t “ Pc_grant_t (9)

0 ă Pc_i_t ď Prate_i (10)

PUn
c_k_t “ PUn

rate_k (11)

where, for time interval t, Pc_i_t is the charging power of EV i, Pc_grant_t is the total charging power of
the station, Prate_i is the rated charging power of EV i, and PUn

c_k_t is the charging power of uncontrolled
EV k.

3.3. Power-Altering Charging Control

The EV aggregator interacts with the EVMC at every interval and gets the charging power
command Pc_grant_t. This power (Pc_grant_t) is usually between the minimal charging power as in
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Equation (1) and the maximal charging power of the station as in Equation (2). The dispatching of
Pc_grant_t in an aggregator in each time interval t requires a fast solution, whereas with the objective
functions in Equation (6) and constraints in Equations (7)–(11), it is a mixed-integer and minmax
problem, to which there still is not a common global optimal solution [28,29]. Artificial intelligence (AI)
algorithms such as particle swarm optimization (PSO) and simulated annealing (SA) can be used in
aggregator inner coordination [30,31], while, in practice, AI algorithms will take numerous iterations
and require large calculation resources for a fast solution. This will make it complicated to implement
an aggregator which is usually deployed in a charging station. In this paper, we propose a fair charging
control called PAC control as a sub-optimal solution. The PAC control charges an EV according to its
departure time and SOC, and needs few iterations. The dispatching process is as follows:

1. For Equation (6), to maximize the amount of EVs charging, control variable It is as Equation (12):

It “ t1, 1, . . . , 1u (12)

means all EVs plugged in the charging station will be charged. This will satisfy constraint (7).
2. For constraint (8), in each time interval, those EVs whose departure time is approaching, as in

Equation (13), are treated as controlled EVs that are full-power charging:

tdep_i ´ t ď dchar_i ` ∆T (13)

where ∆T is a time constant, and other symbols are the same as in Equation (8).
3. For control variable Pt, Pt is categorized to charging power of uncontrolled EVs, EVs that are

full-power charging, and normal charging EVs as in Equation (14).

Pt “ tPUn
c_1_t, ..., PUn

c_Kt_t, PM
c_1_t, ..., PM

c_Mt_t, PL
c_1_t, ..., PL

c_Lt_tu (14)

where tPUn
c_1_t, ..., PUn

c_Kt_tu is the charging power series of uncontrolled EVs, Kt is the number of
uncontrolled EVs at time t, tPM

c_1_t, ..., PM
c_Mt_tu is the charging power series of controlled EVs that

are full-power charging, Mt is the number of controlled EVs that are full-power charging at time
t, tPL

c_1_t, ..., PL
c_Lt_tu is the charging power series of normal controlled EVs, Lt is the number of

normal controlled EVs at time t.

i) Charging power of uncontrolled EV k is as in Equation (15). This will satisfy constraint
(11).

PUn
c_k_t “ PUn

rate_k, k “ 1, ..., Kt (15)

ii) Charging power of controlled EV j that is full-power charging is as in Equation (16):

PM
c_j_t “ PM

rate_j, j “ 1, ..., Mt (16)

iii) The power that can be dispatched for normal charging EVs, Pdispatch_t, is as in
Equation (17):

Pdispatch_t “ Pc_grant_t ´

Kt
ÿ

k“1

PUn
c_k_t ´

Mt
ÿ

j“1

PM
c_j_t (17)

For normal charging EVs, to minimize the maximal ∆SOC with constraints Equation (9) and (10),
we dispatch their charging power according to their SOC for fair charging as in Figure 2. We first get
the Pdispatch_t based on Equation (17), then sort the normal controlled EVs in descending order based
on their ∆SOC. For the sorted EVs, from 1 to Lt, we calculate their charging power as in Equation (18);
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if the value is bigger than its rated charging power, this EV will be moved to the full-power catalog,
and the whole process will starts from the beginning.

PL
c_l_t “ Pdispatch_t ˆ p

∆SOCL
l_t

∆SOCL
max

PL
rate_lq{

Lt
ÿ

l“1

p
∆SOCL

l_t

∆SOCL
max

PL
rate_lq, l “ 1, ..., Lt (18)

where, PL
c_l_t is the charging power of normal controlled EV l at time t, ∆SOCL

l_t “ SOCL
dep_l ´ SOCL

l_t,

SOCL
dep_l is the expected departure SOC value and SOCL

l_t is the current SOC value of normal controlled

EV l, ∆SOCL
max is the maximum value of

!

∆SOCL
l_t

ˇ

ˇ

ˇ
l “ 1, ..., Lt

)

, and PL
rate_l is the rated charging power

of normal controlled EV l.
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Figure 2. Charging power calculation flow for normal EV charging.

4. Results

4.1. Introduction of the Experiments

As part of the “EV Beijing: Fellow Project,” a campus EV experimental platform was established
with the support of the “Beijing Municipal Science Technology commission.” It has been in operation
for over 700 days since December 2013. The platform is made up of 100 chargers in Beijing Jiaotong
University (BJTU), including 30 AC chargers located at building No. 8, 30 AC chargers located at the
E.E. building, 30 AC chargers located at the staff residential area near the hospital and 10 DC chargers
located near the west gate. The geographical placement of the chargers is shown in Figure 3.
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Figure 3. Geographical placement of EV chargers.

The electric wiring diagram of the devices is shown in Figure 4. The AC 10 kV framework is
formed by two “hand-in-hand” cables connecting the EVs and other loads. Thirty AC chargers near
the hospital were connected with the hospital load in a micro-grid. Other normal loads in BJTU are not
shown in Figure 4. The rated power of an AC charger is 3 kW and the rated power of a DC charger is
15 kW. One hundred E150 EVs manufactured by BAIC Motor Corporation China were involved in the
project, and individuals could rent them for daily usage. An E150 can be charged via two methods:
DC 330V/50A, 1–2 h for full charge, and AC 220V/12A, 4–6 h for full charge.

Energies 2016, 9, 159 

8 

30 AC 

chargers at 

8#

30 AC 

chargers

30 AC 

charges

10 DC 

chargers

 

Figure 3. Geographical placement of EV chargers. 

The electric wiring diagram of the devices is shown in Figure 4. The AC 10 kV framework is 

formed by two “hand-in-hand” cables connecting the EVs and other loads. Thirty AC chargers near 

the hospital were connected with the hospital load in a micro-grid. Other normal loads in BJTU are 

not shown in Figure 4. The rated power of an AC charger is 3 kW and the rated power of a DC 

charger is 15 kW. One hundred E150 EVs manufactured by BAIC Motor Corporation China were 

involved in the project, and individuals could rent them for daily usage. An E150 can be charged 

via two methods: DC 330V/50A, 1–2 h for full charge, and AC 220V/12A, 4–6 h for full charge. 

DC BUS
AC/DC

30 AC chargers 

at E.E. Building

1# 

10kV/300A

Main station 

2# 

10kV/300A

10 DC chargers

30 AC chargers 

at building 8#
30 AC chargers at 

staff residential area

Load of 

hospital

AC 380V AC 380V

AC 380V AC 380V

AC 10kV

busbar 1#

busbar 2#

Station at west 

of building 8#

Station at 

southeast

busbar 1#

busbar 2#

busbar 1#

busbar 2#

busbar 1#

busbar 2#

Station at 

southwest

Hos

micro-grid

 

Figure 4. Electric wiring diagram of the “EV Beijing” project in BJTU. 

The proposed charging management strategies were implemented in the EV control centre on 

the campus. The raw data of the daily load curve is derived from the daily SCADA data. For the 

charging management strategies proposed, ΔT in (13) is 30 min (0.5 h). The electricity price that 

utility grid charged for the station is 0.08 $/kWh, 80% of the commercial electricity price in Beijing. 

The charging price for an uncontrolled EV is 0.15 $/kWh, and the charging price for a controlled EV 

is 0.11 $/kWh. We compared the uncontrolled charging, well-known time-altering charging, and 

proposed PAC in three similar work days. The uncontrolled charging signifies that EVs will be 

charging as they are plugged in. The time-altering charging signifies that EVs are charging at full 

Figure 4. Electric wiring diagram of the “EV Beijing” project in BJTU.

The proposed charging management strategies were implemented in the EV control centre on the
campus. The raw data of the daily load curve is derived from the daily SCADA data. For the charging
management strategies proposed, ∆T in (13) is 30 min (0.5 h). The electricity price that utility grid
charged for the station is 0.08 $/kWh, 80% of the commercial electricity price in Beijing. The charging
price for an uncontrolled EV is 0.15 $/kWh, and the charging price for a controlled EV is 0.11 $/kWh.
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We compared the uncontrolled charging, well-known time-altering charging, and proposed PAC in
three similar work days. The uncontrolled charging signifies that EVs will be charging as they are
plugged in. The time-altering charging signifies that EVs are charging at full power; while not all
EVs are charged simultaneously, the charging start and end time of EVs will change to meet the total
charging power command of the station.

4.2. Results Analysis

4.2.1. Effects of Charging Control on the Load Curve

Figure 5 shows the typical load curves during working hours, the original load curve without
the EV charging load, the load curve with uncontrolled EV charging, the load curve with proposed
EV PAC and the load curve with EV time-altering charging. Table 1 shows the peak loads, valley
loads and the variances of the four curves. It can be seen that uncontrolled EV charging will greatly
increase the peak load and load variance of load curve. When compared with uncontrolled charging,
interactive charging makes the charging power of a station relatively controllable, so that both the
proposed charging control and the time-altering charging control can restrain the fluctuation of the
load curve. The effect of restraint depends on the load control command of the distribution dispatching.
On comparing the proposed method and the time-altering method in detail, we note that the proposed
method has relatively better performance than the time-altering method. This was caused by the total
charging power where time-altering control is ladder-shaped, and when the expected charging power
Pc_grant_t is between two ladder steps, the actual charging power will be the upper ladder, making it
bigger than the expected one.
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Table 1. Peak and valley values and variance of load curves.

Load Peak (kW) Valley (kW) Variance

Original load 518.27 280.33 1988.8
Uncontrolled 754.37 411.93 7453.2
Time-altering 631.97 414.29 5047.7

Proposed method 617.91 414.29 4514.3

4.2.2. Effects of Charging Control Methods on EVs

Figure 6 shows the EV arrival and departure time distribution in the PAC case and time-altering
case. It can be seen that EVs arrived mostly at about 7–10 a.m., and departed mostly at about
5–6:30 p.m., although some arrived later or departed earlier. Table 2 shows the SOC distribution
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statistics of the arrival SOC and the departure SOC in the two cases. All EVs’ expected departure SOCs
are set to 0.95. It can be seen that most of the EVs’ SOC are guaranteed to their expected value when
they depart. Detailed information can be obtained from the additional Excel files. The four exception
EVs are EV number 22, 31, 33, and 71.

Table 3 shows the charging details of EV number 22, 31, 33, and 71. EV 22 and 33 arrived in the
afternoon and there was not enough charging time to charge them to the expected SOC. For EV 31
and 71, both departed earlier than expected, and PAC had a better charging result. This is because
the power-altering method can charge all the EVs plugged in continually and fairly. Although the
time-altering method can charge EVs at full power, the charging durations of EVs in this method may
vary greatly.Energies 2016, 9, 159 
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Table 2. State of charge (SOC) distribution statistics.

SOC Range (%) Arrival SOC of
Power-Altering

Arrival SOC of
Time-Altering

Departure SOC of
Power-Altering

Departure SOC of
Time-Altering

25 0 0 0 0
30 0 0 0 0
35 1 1 0 0
40 0 0 0 0
45 2 2 0 0
50 3 3 0 0
55 0 0 0 0
60 1 1 0 0
65 12 11 0 0
70 24 23 0 1
75 17 20 0 0
80 11 16 1 1
85 21 13 1 0
90 8 8 2 2
95 0 2 92 90

100 0 0 4 6
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Table 3. Charging details of sample EVs.

EV No.
Power-Altering Charging (PAC)

Arrival SOC (%) Departure SOC
(%) Arrival Time Departure Time

22 62 92 13:58 17:00
31 48 85 09:14 11:25
33 76 89 15:40 17:00
71 68 77 09:42 10:34

EV No.
Time-Altering Charging

Arrival SOC (%) Departure SOC
(%) Arrival time Departure time

22 63 92 14:03 17:04
31 50 80 09:15 11:30
33 76 89 15:44 17:03
71 70 70 09:47 10:33

5. Conclusions

The coordination of the grid, charging station and single EVs are considered in this paper. This
paper proposes an interactive charging management strategy for the relationship between charging
stations and the grid by means of an aggregator. A PAC control method is proposed for the distribution
of charging power in an aggregator. The proposed strategy has been implemented and tested in a
work day scenario as part of an “EV Beijing” project at BJTU involving 100 commuting private EVs
since late 2013.

The main conclusions of this paper are as follows:

‚ The interactive charging strategy provides a way for EV charging loads clustered in an aggregator
to respond to the load-control command of the grid. This will make the EV charging loads
predictable and controllable to some extent, and improve the flexibility and reliability of the
grid operation.

‚ The proposed PAC control method can dispatch charging power fairly in an aggregator and
guarantee the EV owner’s preferences. Furthermore, the PAC method has good charging results
for EVs departing earlier than expected.

The proposed strategy in this paper was implemented in the work day scenario. It can also
be implemented in other scenarios with EVs’ charging clustered. The current research supports
a promising method for facilitating large-scale EVs accessing the power grid by coordinating the
interaction between the charging station and the power grid. Proper management of EVs in the station
can be beneficial for both the grid and EVs.
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EV Electric vehicle
IL Interruptible load
SOC State of charge
EVMC Electric vehicle management centre
DMS Distribution management system
SCADA Supervisory control and data acquisition
AI Artificial intelligence
PAC Power-altering charging

Nomenclatures

dchar_i Duration needed for EV i to be charged in full power to its expected SOC
Ii_t Charging status of EV i at time t
IUn
k_t Charging status of uncontrolled EV k at time t

Kt_h Number of uncontrolled EVs in station h at time t
Lt Number of normal controlled EVs at time t
Mt_h Number of controlled EVs that are full-power charging in station h at time t
Nt_h Number of EVs connected in station h at time t
Pforce_t Forced charging power of aggregator at time t
Pc_max_t Maximum charging power of aggregator at time t
Pcharge_grid_t Total expected charging power of the grid at time t
PL_pre_t Load prediction value of the next time interval t excluding charging loads
Pc_i_t Charging power of EV i at time t
Pc_grant_t Total charging power of the station at time t
Prate_i Rated charging power of EV i
PM

rate_j Rated charging power of controlled EV j that is full-power charging
PUn

rate_k Rated charging power of uncontrolled EV k
PUn

c_k_t Charging power of uncontrolled EV k at time t
PL

c_l_t Charging power of normal controlled EV l at time t
SOCdep_i Expected departure SOC value of EV i
SOCi_t Current SOC value of EV i at time t
t Current time
tdep_i Expected departure time of EV i
∆SOCt Serial of ∆SOCi_t

∆SOCi_t Difference of expected departure SOC and current SOC of EV i at time t
∆T Time constant
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