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Abstract: An intrusive spectral method of probabilistic load flow (PLF) is proposed in the paper,
which can handle the uncertainties arising from renewable energy integration. Generalized
polynomial chaos (gPC) expansions of dependent random variables are utilized to build a spectral
stochastic representation of PLF model. Instead of solving the coupled PLF model with a traditional,
cumbersome method, a modified stochastic Galerkin (SG) method is proposed based on the P-Q
decoupling properties of load flow in power system. By introducing two pre-calculated constant
sparse Jacobian matrices, the computational burden of the SG method is significantly reduced. Two
cases, IEEE 14-bus and IEEE 118-bus systems, are used to verify the computation speed and efficiency
of the proposed method.

Keywords: probabilistic load flow; uncertainty quantification; Nataf transformation; generalized
polynomial chaos; stochastic Galerkin method

1. Introduction

Load flow studies are essential for power system operators and planners, and accurate real-time
load flow analysis is the basis of advanced application of modern EMS, such as optimal power flow,
voltage control and so on. However, with the rapid increase in renewable energy (primarily wind and
solar energy) which has strong volatility and intermittency, deterministic load flow (DLF) analysis
cannot reflect the uncertainties of a power system properly. Therefore, the uncertainty of modern
power grid needs to be qualified to analyze its influence on the power system.

Uncertainty quantification (UQ) [1] is the science of quantitative characterization and reduction
of uncertainties in applications. It tries to determine how likely certain outcomes are if some aspects
of the system are not exactly known. Probabilistic load flow (PLF) evaluation is an efficacious UQ
tool to tackle the uncertainties in power systems and obtain the statistical quantities of random
output variables. Traditional PLF methods can be classified into four categories: simulation methods,
approximate techniques, analytical methods and heuristic procedures.

The Monte Carlo method (MCM) [2] is the most straightforward among simulation methods,
but it requires DLF calculations at numerous sampling nodes even though some improvements have
been proposed (such as Latin Hypercube [3] and Quasi-Monte Carlo [4] samplings). Approximate
techniques provide approximate description of the statistical quantities of random output variables,
and they include the point estimate method (PEM) [5], first-order second-moment method
(FOSM) [6], non-parametric density estimate method [7], state variable method (such as polynomial
transformation [3] and unscented transformation [8]). However, the accuracy of an approximate
technique worsens as the order of estimated statistical quantities becomes higher. Analytical methods
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include the FFT method [9], the cumulants method (based on Gram-Charlier [10,11] Cornish Fisher [12]
and Legendre [13] expansion) efc.; they have a high calculation speed but require some algorithm
simplifications which might introduce large errors. Heuristic methods mainly refer to the fuzzy logic
method [14]; it can handle the uncertain variables without statistical information (such as probability
distribution function (PDF) and cumulative distribution function (CDF)).

A spectral method based on generalized polynomial chaos (gPC) expansion [15-21] has become
one of the most widely adopted UQ methods nowadays, which is efficient at uncertainty reduction
and quantitative characterization for complex stochastic systems. The gPC-based methods represent
system uncertain variables by truncated gPC series expansions, and gPC coefficients are computed by
a stochastic collocation (SC) [18-21] or stochastic Galerkin (SG) approach [18,20]. The SC method is
non-intrusive, and it solves a set of decoupled equations by repeatedly calling an existing deterministic
solver at sampling nodes and obtaining gPC coefficients by post processing. It is easy to apply
but has inferior accuracy due to “aliasing errors” [16]. The intrusive SG method forms coupled
deterministic equations by Galerkin projection and computes gPC coefficients directly. By ensuring the
residue of the Galerkin system equations to be orthogonal to the linear space spanned by gPC basis
functions, SG method offers the optimal accuracy with the least number of equations among all the
gPC-based methods [16]. However, the derived Galerkin system equations are usually coupled and
high dimensioned, which makes them cumbersome to solve or even unsolvable.

In this paper, a spectral method based on the high-precision SG method was presented to solve
PLF, and the cumbersome SG method is modified by utilizing the P-Q decoupling properties of load
flow. Thus the proposed method can achieve high calculation speed and accuracy.

This paper is organized as follows: the basic ideas of gPC expansion and the PLF Galerkin
system equations constructed by Galerkin projection are introduced in Section 2. Section 3 presents
the modified SG method to solve the coupled equations of the PLF Galerkin system, while detailed
derivations are given in Appendix. Section 4 studies the performances of the proposed method. Finally,
Section 5 concludes this paper.

2. PLF Model Based on gPC Expansion

2.1. gPC Expansion of Stochastic Variables

Define {$;(¢)} as the univariate gPC polynomial of random variable ¢ € R, index i as the

polynomial order. Taking {d)—f(é,)} as the set of D-variate gPC basis functions of muti-dimensional
1

—

random variable § = [&,...,&p] € RP, the order of {—(&) equals | i | = iy + ...+ ip, b—(&) can be
1 1

defined as follows:

D
b (&) = [T ;,(@) )
d=1

The inner product of a random function is defined as:
f(&),8(&)) = L : f(&)g(&)p(&)dEy ---dip @)
1 D

where {:, -) denotes the inner product, and p(&) denotes the PDF of variable &. Set <d)i(C), ¢j(§)> =
8;jvij, where b;; is the Kronecker delta function. The orthogonal property of (&) is as follows:
1

i,j i,

(oo @ 0)) = [ @ @pee =5 v - .
i j i j
o

=3

i,j

X dipjp (4)

iljl X ...

Y_l-’ 7 =Yiyjp X *Yipjp ®)
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According to UQ theory [15-17], any R-valued random variable defined on a probability space
(©,%,P) can be well approximated by a truncated gPC series. Thus S(&)can be approximated by

an order-P gPC series. In Equation (7), which contains K gPC basis functions, § |—4»|( i| € [1,P]) denotes
1
the gPC coefficient.
[ P+D \ (P+D)!
K= ( P ) ~ PID! ©)
S ~ S5 85— 7
(8) Zo<| i \<PS i v i (&) @

Replacing the index vector 7 by a scalar k(k € [1,K]): §— — §, Y—» - — Vg, {wﬁ(i)} — {Pr(&)},
i i, i

Equation (7) can be rewritten as:

S(8) ~ D kafibi(E) (®)

With (&) = 1, the mean and variance of S(&) can be approximated by:
us = E[S(&)] ~ (¥1(&),5(&)) = 51 ©)
0% = E[(S(8) — us)’] ~ (XK p8b(8), 2 K asie(8) ) = Y K astvi (10)

Similarly, other statistical quantities of S(&) can also be approximated by applying their definitions
directly to the gPC approximation.

Generally in the modern power grid, the uncertain factors (such as fluctuations of wind speeds
and loads, etc.) are mutually dependent, and the impactions of their correlations are significant and
cannot be ignored. Setting the PDF of D-dimensioned random variable & = [&4,...,{p] as p(§), and
constructing the gPC basis function {1; (&)} according to p(&) can achieve the optimal approximation
convergence rate; the detailed procedure can be seen in [16,17]. The typical correspondence between
the type of gPC basis function and their underlying random variables & is shown in Table 1.

Table 1. Correspondence of gPC and their underlying random variables.

Variable Type gPC Basis Function
Gaussian Hermite-gPC
Conti Gamma Lauguerre-gPC
ontmuous Beta Jacobi-gPC
Uniform Legendre-gPC
Binomial Krawtchouk-gPC
Discret Poisson Charlier-gPC
1screte Negative binomial Meixner-gPC
Hypergeometric Hahn-gPC

There are two ways to choose the gPC model. First, if all the random variables are the same type,
we can directly choose the gPC basis, and Table 1 shows some common conditions. Second, if the types
of random variables are different or not common, we can directly construct the gPC basis. The two
methods have been studied deeply in [16,17] and will not be elaborated on here. In this paper, in
order to facilitate the following study and description, inverse transformation method and Cholescky
decomposition [22,23] are used to transform various correlated random inputs into independent
Gaussian random variables.

2.2. Construct Galerkin System of PLF Based on gPC

The original non-linear load flow equations for a power system can be expressed as:
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{ fPi(eIV/ Plfsp) = O Vl € SPV U SPQ (11)

fQ,'(e/V/ Q;QP) =0 Vie SPQ

The uncertainties of the power system can be depicted by random variables & = [;,...,Cp];
random inputs such as Gaussian distributed power loads and Weibull distributed wind speeds are
expressed as P (&), Q;;(&) and v(§). Wind power generation can be derived by applying the wind
speed in the power curve Py (v) of a wind turbine generator (see Equation (31)). Therefore, the P-order
gPC series of PZ.SIJ and Qisp can be pre-calculated, and their gPC coefficients 15,«/;(, Qi,k are treated as
known constants:

PP (&) = Y1 Pbi(€) (12)
Q¥ (&) = Yy Qipbi(8)

The unknown random outputs can also be expressed as:

0:(8) = Sk, éAi,klbk(E) (13)
Vi(E) = ey Vigx(E)

Therefore, the following main task is to calculate the gPC coefficients éi,kz 171',;{ by SG method.
Apply Equations (12) and (13) in load flow Equation (11) to obtain the PLF model, which is also called
the residual PLF equations in the SG method. Express the residual equations in a vector-matrix form:

Fp(0,
Fo (0,

where Ny = Npg + Npy, N = 2Npg + Npy, vector Fp = [fp,, ..., prl]T contains the active power
balance equations of PQ and PV buses, vector Fg = [fg,,..., fQNPQ]T contains the reactive power

‘;’, &) = (14)

£) =

balance equations of PQ buses. Define the matrices of coefficients 8, V as follows:

é1,1 T éNl,l ‘71,1 T VN1,1
6= : ;v : (15)
é1,1< T éNl,K Vl,K Tt VNl,K

Galerkin projection ensures residual Equation (14) to be orthogonal to the linear space spanned
by gPC basis functions {\;(£)}, forming a N,K dimensional PLF Galerkin system with Gp € RN *K,
Gg € RNPv XK 35 follows:

{ GP(l/k) = <fPi(é/v/ E)rwk(£)> =0,Vie Spy u SPQ/k € [1/K] (16)

K) = (fo,(8,9,8), () ) = 0,¥i € Spo, k€ [1,K|

The inner product in the right hand of Equation (16) is actually multivariate stochastic integration.
Numerical quadrature such as Gaussian quadrature can be used to effectively evaluate the integral by
a weighted sum of function values at specified grid points, that is:

f St f(E)p(E)dE, ---dEp ~ Zfz," YW, E" e Op, W' e W (17)
1 D n=1

where Op = [E,l, ... &N ] and W = [Wl, ..., WN | are the quadrature nodes and weights that
constructed by the cubature rule.

Among all the cubature rules, the tensor product rule is used to construct a full-grid point ®p
and its corresponding weights W [24], and the number of quadrature nodes equals N = (P + 1P
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which increases exponentially with the dimensionality D of the integral. Thus, improved methods
are proposed, such as a nested grid (with N = ZL 2{(D — 1 +i)!/(D — 1)!i!) [17], testing nodes (with
N = K) [20] and sparse grid [16,25]. The details of these cubature rules for constructing quadrature
nodes are out of the scope of this paper. This paper applies the widely used sparse-grid technique, and
software for generating sparse grids is available online [26]. The sparse-grid technique uses a subset of
the points from the tensor product rule and rescales the weight values appropriately; it can significantly
decrease the computation expense especially when the dimensionality D is much larger than 1:

N ~ 2PDP/p! (18)

Set Py = Py (&"), we can derive a constant matrix 1\ by calculating the value of gPC basis function
{ll)k(i,)}szl at N sets of quadrature nodes:

ok
b= : (19)
LSRN
Set Fj = Fp(é,\Af, E,"),Fa = FQ(é,\A/, &, f{,ll and f&: are the ith elements in the vectors F} and
Fg respectively. Approximating Equation (16) by Gaussian quadrature, the PLF Galerkin system can
be obtained:

Gp = [F},...,FY] - diag(W) -9 =0
Go = [F} FN] - diag(W)-¢p =0 0
o = [Fg,--- Fg iag P =
Reshape matrices Gp, Gq, 0 and V into vectors:
Gp = resh(GI?, NlK,l);(:?.Q = reshSGg,NpQK,l) o
0 = resh(0, N1K,1); V = resh(V, NpgK, 1)

where resh(A, m, n) reshape the m-by-n matrix whose elements are taken column-wise from matrix A.

3. Solve the PLF Galerkin System in a Decoupled Manner

Starting from an initial guess of 8’ and V0, 8,V are computed by using the Newton iteration
method to solve the Galerkin system Equation (20):

G (8,9 T
- [ & @) ] S A [ Joe ] (22)

0 v
Superscript r means the rth iteration, set X = [8,V], and Jacobian matrix J has the

following structure:

JiuX) - T (X0
JX) = : : (23)

I a1 (X) Ty (X7)

Set 0} = 0;(&"), Vj” = V;(£"),and if i, j € [1,Ny], the (k1 k»)th element in the submatrix J; j € R<*K
can be calculated as follows, and more detailed derivation of J is given in the Appendix.

0Ge(i k) _ < O,
T

Jij(k1, ko) = Vi, WhbE,
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At each iteration, fIC’] fél in J need to be evaluated at N quadrature nodes, and their sum needs to
be calculated for each element in J. Therefore, the Newton's iteration of SG is very expensive. Even if
the power system is small and J is sparse, it can still be unsolvable. For example, Figure 1 shows the
structure of J in the IEEE 14-bus test system; if D = 4, P = 3, K = 35, there will be 124 sub-blocks and
65,920 non-zeros in J, and (65920 x N x L) calculation times are needed to renew J if L iterations are
used.

b i
100 200 300 400 500 60D 700
nz = 65920

Figure 1. Structure of Jacobian matrix for an IEEE 14-bus test system with D = 4 before decoupling.

Utilizing the P-Q decoupled characteristic in power flow calculation, this paper forms constant
Jacobian matrices J' and J” to avoid the regeneration of Jacobian, the calculation speed will be
significantly improved. B’, B” are the constant Jacobian matrices in the traditional P-Q fast decoupled
load flow method [27], which only contains network admittances:

afPi _afPi %O,ani .ani ~0
26; Tov T, '759;

~B/(i,) ~B(i,j) (24)

Applying Equation (24) in the derivation of J above, J changed into two constant matrices
J' e RN2xN2 §7 ¢ RN1XN1 which only need to be calculated once (see the Appendix). Figure 2 shows
the structure of matrices ]’ and J” after the matrix J in Figure 1 is decoupled; there will be 6615 and

2565 nonzeros in J* and J”, and (9180 x N) calculation times are needed, which is far less than before.

s s s i i T s s s M
0 100 200 300 400 0 a0 100 150 200
nz =6615 nz = 2565

Figure 2. Structure of Jacobian matrix for IEEE 14-bus test system with D = 4 after decoupling.

For ease of expression, N constant matrices [®1, ..., @] are constructed at N quadrature nodes:

@, = W'p(n, ) Pp(n,:) e RK 5 e [1,N] (25)
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Thus J' and J” can be expressed as:

8, V can be computed directly by Newton iteration method:

Solve :

Update :

J =B @Y
]// - B ®Z£]:1 ®,

VQ _ J/l |:A\’:,:|
éH—l _ ér +Aér
\A’H_l _ ?1’ + A\?}’

7 of 18

(26)

(27)

(28)

The proposed PLF method (referred to as SG-PLF method) only needs to compute deterministic
PLF Galerkin system Equation (20) and construct constant Jacobian matrices Equation (26) at limited
quadrature nodes, then solve Equation (20) by the Newton iteration method only once to reach high
accuracy. The flow chart of the SG-PLF method is depicted by Figure 3, which consists of two parts.

Construct Galerkin system of PLF

Solve PLF Galerkin system by PQ decoupled manner

Read basic data

Approximate all random variables by gPC

expansion (12) (13), derive the PLF model (14)
v

‘ Construct PLF Galerkin system by Galerkin projection (16) ‘

Modify (16) by Gaussian quadrature and finally
obtain the PLF Galerkin system equations (20)

r=0

Do P iteration: calculate (27), update the
gPC coefficients of voltage angles (28)

‘Update voltage angles by (13), recalculate

Fqin (14) an+d G in (20)

Do Q iteration: calculate (27), update the gPC
coefficients of voltage amplitudes (20)

Update voltage amplitudes by (13),
recalculate Fp (14) and Gp in (20)

norm[Gp,inf] and
Norm[GQ,inf] < g2

Iteration ended

Compute statistical quantities by the obtained gPC
expansion of random outputs(V, 0 and Pj;,e)

End

Figure 3. Flow chart of the proposed SG-PLF method.
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Firstly, based on the system basic data and PDF of input random variables, we form the PLF
model Equation (14) based on gPC expansion of random variables and transform it into Equation (16)
by Galerkin projection, then further approximate Equation (16) by Gaussian quadrature, and finally
obtain the PLF Galerkin system Equation (20). Secondly, we solve the Galerkin system for coefficients
8,V directly by a Newton iteration method, and the gPC expansion of random output variables can be
derived easily.

4. Comparison with other PLF Methods

This section compares the calculation procedures of MCM, SC method (SCM) and the proposed
modified SG method (SGM); see Figure 4.

MCM and SCM are both non-intrusive methods, they both start from the original load flow
Equation (11) without using gPC approximation a priori, and compute the deterministic solutions at
a set of nodes. The main difference of MCM and SCM lies in how to select the nodes. MCM draws
sampling nodes randomly according to the PDF of & and is uncertainty-dimension independent;
the MCM may be the only choice when the number of random variables to be dealt with is
too high (in ultra-high-dimensional problem). However, SCM constructs collocation nodes with
a nodes generator which uses cubature rules such as tensor product, nested grid or sparse grid
techniques. After repeatedly simulating deterministic load flow equations, MCM provides the
statistical information by gathering and handling the resulting outputs, whereas SCM reconstructs the
gPC coefficients in a post-processing step such as numerical integration. For example, SCM constructs

N, collocation nodes [E,l, e E,NZ] and weights [W?, ..., WM2] of random output variable S(&) (in
Equation (8)), and then the gPC coefficients can be computed by:

S~ (S(E), 0k(E)) > 302 Wb (£)S(8")

quadrature nodes

W n()'de 2 i‘» modified model of PLF 4’0, \A/4>
node ! . !

o |generator L= node NE-_.

2 collocation nodes

'é SO ! node 1 —p >0,V

5 } noSIe 2 —h 92,V2 post-processing |—>B,\A7—>
& [eollocation; |

G| node | n OdeN2$ original 0. .V,

= | generator i d model of N2> TN2

2 sampling nodes >0V,

handle outputs

‘ Statistical properties of random output variables ‘

node 1 - load flow
r: node 2 - —»0,,V, gather and

ga
sl ie
B

sampling Lﬁﬂ@dﬁi N3-» >0, Vs

Figure 4. Calculation procedure of PLF by SGM, SCM and MCM.

The SGM is an intrusive method as it directly computes the gPC coefficients by simulating
a larger-size coupled PLF only once. With gPC approximation, it starts from the residual function
Equation (14). The proposed SG-PLF method constructs nodes by sparse grid technique and modified
the SGM by utilizing the P-Q decoupling properties of power system, which can avoid the heavy
computation burden of forming Jacobian matrix in each iteration. Figure 5 shows a detailed illustration
of the modified calculation model of the proposed SG-PLF method.
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modified model of PLF

constant J ' J "—\L

constant
™y > Newton iteration >

Figure 5. Modified calculation model of SG-PLF.

If the original load flow Equation (11) are solved by P-Q fast decouple method, and the time
cost of solving is t,. then the total time cost by MCM is (¢, x N3), where N3 is much larger than N
and Nj. If the node generators in SCM and SGM are both using the sparse grid technique, where
N1 = N2 = N, set the time for constructing nodes is t,, and the time cost of post-processing is .
Thus, the total time cost of SCM is (t;o + tor X N + tp,). In SGM, the times needed for constructing
constant Jacobian matrices are tej and for solving the modified model are £, so the total time required
for SGM is (tno + tmo + t¢j)-

The dimension of modified PLF model in SGM is K x N times the size of the original PLF model,
and the equations need to be solved in SCM is N times the size of the original PLF model. f.; can be
ignored, and ty, is slightly larger than t,, x N + 5, so there are no significant difference between the
total computational time of SCM and SGM , this can be verified in the following case study.

In conclusion, on the one hand, since N3 is much larger than Nj and N, MCM needs numerous
deterministic load flow calculations to obtain accurate results, the SG-PLF method has a distinct speed
advantage over MCM. On the other hand, SCM only requires no errors at each collocation node and
will introduce aliasing errors caused by the introduction of the nodal sets, whereas the SG-PLF method
ensures that the residue of the PLF Equation (14) is orthogonal to the linear space spanned by the gPC
basis functions, as in Equation (16). In this sense, the accuracy of SGM is optimal.

Therefore, the proposed SG-PLF method has accuracy advantage over the non-intrusive SCM and
speed advantage over the MCM.

5. Case study

5.1. Verification Index

In order to evaluate the computational accuracy and efficiency of SG-PLF method, a series of PLF
studies are carried out on the modified IEEE14-bus and IEEE 118-bus test systems. The base case data
of these two test systems are available in [28]. Two types of input random variables are considered in
this case study, load and wind power included. Relative error ¢ (RE) [5] and average root mean square
(ARMS) [12] error T are computed using the MCM results of 30,000 trials as reference. RE is defined as:

es = |(s§ —sy)/sml x 100% (29)

The ARMS is defined as:

T = \/2 thl(Xét - Xfcvlt)z/T (30)

where x refers to the type of random output variables (V, 0 and Pj;,, efc.), s may refer to the mean p
and standard deviation o. s}, denotes the result calculated by MCM and is taken as the reference value,
s¢. is the result obtained by SG-PLF method. €} ,can and €] ., are the average and maximum values
of ¢f. Choosing T sampling nodes of variable & arbitrarily: [E,l, ceey ET], Xgt and Xj; are the outputs
of the SG-PLF method and MCM at the tth node &/ (t € [1, T]).

5.2. IEEE 14-Bus Test System

The case considered in this section is the IEEE 14-bus test system which is modified to include
wind generation. The uncertainties of forecasted loads are modeled as normal distribution with o 5%
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to p, whose means equal the base case data. The load correlation matrix between bus 4 and bus 5 is p;.
Two wind farms are located at bus 13 and bus 14, and their wind speed correlation matrix is p,:

|1 05| | 1 06
7105 1 |7 06 1
The wind power is mainly affected by wind speed distribution, power curve and control strategy
of wind turbine generator. The wind speed is assumed to follow the Weibull distribution with scale
parameter as 10.7 and shape parameter as 3.97. The wind speed is transformed into wind power
according to the power curve of wind turbine generator Py (v) [3]: the cut-in, rated and cut-off speeds

are v,; =4 m/s, v, = 15m/s, v, = 25 m/s respectively, and the rated power Py; is 0.7 p.u. The wind
turbine generator is controlled by constant power factor strategy.

(31)

0, v < 0Orov> v

2_ .2
Py (v) = wa Vi KU (32)
r oy o Ve S T
r ci

Py, vr <0< U0

5.2.1. Impact of the gPC Expansion Order

Figure 6 shows the CDFs obtained by SG-PLF method under different gPC expansion order P
(defined in Equation (7)). The results shows that the order-3 SG-PLF method provides good fitting to
the CDF obtained by MCM, gives an intuitive confirmation that the order-3 SG-PLF method has the
ability to well handle over the PLF problem as almost the same accuracy as the MCM.

09 e 09f
08 e, 08}
07 v 07t
06 4 06F
Zos Zosf
4
04 ol 04t
03 [ 03}
"/
02 7 —MC 02t
o 16 2
04 o —+-256 01f G --4+-25G
L . . . --e-- 356 = . . ~-e- 356
032 03 028 02 024 02 02 018 0.965 0.97 0.975 0.98 0.985 0.9 0.995

(a)

(b)

Figure 6. CDFs of 64 and V; under 1-3 order in IEEE-14 system: (a) 84(rad); (b) V4(p.u.).

Furthermore, the resulted ¢{mean and e max under different order P are shown in Table 2, which

verified the good computing performance of the order-3 SG-PLF method.

Table 2. Mean and maximum of ER of SG-PLF under 1-3 order.

¥ OrderP £X 1ean/100% X 1ax/100%
s=u s=0 s=u s=0
1 8.38 x 102 6.34 9.16 x 1072 8.17
14 2 2.14 x 102 3.88 1.07 x 1072 8.06
3 8.69 x 104 0.332 1.13 x 1073 2.32
1 1.01 7.90 2.50 10.3
0 2 0.745 6.02 1.33 8.65
3 7.78 x 1072 0.582 0.139 0.920
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Therefore, the gPC expansion order P can affect the calculation performance of the proposed
method: when P is too low, the gPC expansion approximation Equation (8) will induce large truncation
error; when P is too high, the number of quadrature nodes N will increase significantly, so it will lead
to increasing of calculation but no progress in computation accuracy, because all the high order gPC
coefficients in gPC expansion approximation Equation (8) will be zeros. In this paper, the expansion
order is chosen by numerical experiments, but direct methods to determine the order are to be further
studied in our future work.

To further investigate the calculation efficiency of using the SGM to solve PLF, the calculation
time and nodes number N of SGM, SCM and MCM are compared in Table 3, in which, the gPC-based
SCM and SGM both construct the nodes according to the sparse grid technique, and the time cost with
different P are compared. Figure 7 shows the PDFs and CDFs of the buses whose power injection have
large fluctuations, and the results corresponding to the order-3 SG-PLF method are almost not visible
because they coincide with those of MCM.

Table 3. Computation time comparison.

Expansion Order P
Method 1 2 3 MCM
SCM SGM SCM SGM SCM SGM
Time/s 0.011 0.011 0.053 0.099 0.188 0298 13.326

Nodes (N) 9 41 145 30,000
4 100
— MCM
--—-SG
o 2 o 50+ g
o
0 0 . i . ) .
-0.6 0.95 0.96 0.97 0.98 0.99 1 1.01
1
& S 05
0.5 ——MCM —— MCM
—-—-8G 0 ) ) —--—-8G
_%_4 02 0 02 04 0.96 097 0.98 0.99 1
(a) (b)

Figure 7. PDFs and CDFs of 6, V at the bus which has large fluctuation: (a) 814(rad); (b) V4(p.u.).

From the results above, the order-3 SG-PLF method can maintain high accuracy with feasible
computation expense. This conclusion is further confirmed by comparing the ARMS results of the
order-3 SG-PLF method in Table 4. Thus in the following study, the order-3 SG-PLF method is used for
PLF investigation and verification.

Table 4. Mean and maximum of ARMS of order-3 SG-PLF method.

ARMS 79 /100% V/100%

Mean 1.60 x 107%  1.24 x 107°
Maximum  3.13 x 1074 214 x 10>

Take the frequency table of V; as an example, set the results of MCM as the reference, and further
compare the calculation accuracy of order-3 SCM and order-3 SGM, shown in Table 5:
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Table 5. The frequency table of different methods.

Distribution Interval of V, Probability/100%

MCM SGM SCM
[1.0122,1.0146) 0.96 0.96 0.95
[1.0146,1.0169) 3.76 3.64 3.36
[1.0169,1.0193) 7.68 7.79 8.17
[1.0193,1.0216) 12.08 11.88 11.35
[1.0216,1.0240) 15.12 15.54 15.69
[1.0240,1.0263) 16.64 16.43 16.16
[1.0263,1.0287) 15.28 15.31 15.52
[1.0287,1.0311) 15.12 15.10 15.03
[1.0311,1.0334) 8.56 8.69 8.97
[[1.0334,1.0358] 5.04 5.01 4.80

In this section, the results above show that:

(1) the MCM can achieve the highest accuracy, but it needs the longest calculation time; and

(2) although the computational speed of SGM is slightly slower than SCM, the intrusive SGM has
obvious precision advantage than SCM (which is also analyzed in Section 4).

Therefore, through comprehensive consideration of calculation speed and accuracy, the proposed
SG-PLF method is the optimal among three methods.

5.2.2. Impact of the Fluctuation of Power Injection

In order to appraise how the variation level of uncertain variable impacts on the calculation
performance of the proposed order-3 SG-PLF method, Table 6 shows the sgfmean and egfmax of proposed
method under different load fluctuations at bus 4 (set the ratio of o to p is from 10% to 40%).

Table 6. Mean and maximum of RE of order-3 SG-PLF with different load variance.

x  Ratioo/u £¥ 1ean/100% X nax/100%
s=u s=0 s=u s=0
10% 2.76 x 1073 0899  1.15x 102 4.44
v 20% 221 x 1073 0618 878 x 103 455
30% 2.65 x 1073 0.422 1.37 x 10~2 458
40% 2.83 x 103 0.369 1.12 x 102 423
10% 0.316 248 0.737 3.11
0 20% 0.182 213 0.265 3.19
30% 0.264 1.27 0.771 2.55
40% 0.498 1.75 0.653 1.41

From the results, it can be inferred that the variance level of power injection has no discernible
effect on the calculation accuracy of the proposed method.

5.2.3. Impact of Wind Speed Correlation

Choose the statistical moments of active line power (mean p-Pj;,,, and standard deviation o-Pj;,,)
as the research objects in this section. The uncertain wind powers of two wind farms are directly
injected into both the end of lines 13-14, while lines 1-2 have no direct connection to wind power.

Under different wind speed correlations (WSC) between two wind farms, Figures 8 and 9 present
the calculated mean and standard deviation (SD) values of the REs of all buses and illustrate how
the calculation accuracy of the proposed 3-order SG-PLF method will change with the WSC growing
from 0.1 to 0.9. The results show that WSC has a minor effect on the calculation accuracy of the
proposed method. Figures 10 and 11 present the values of p-Py;,,, and 0-Pj;;,, with WSC growing from
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0.1 to 0.9. Results show that, at different sites, the WSC has different impact on system condition.
u-Py3_14 remains basically unchanged but 0-Py3_14 is proportional to WSC, while p-P;_, 0-P;_; are

all proportional to WSC.

RE of mean (%)

0 L L L

L

01 02 03 04

05 06
WSC

07

08 09

Figure 8. sﬁ“’“, £0P=1 of 3-order SG-PLF method under different WSC.
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Figure 10. pi-13_14, 0-P13_14 of 3-order SG-PLF under different WSC.
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Figure 11. u-P;_5, 0-P; _; of 3-order SG-PLF under different WSC.
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5.3. IEEE 118-Bus Test System

In this section, PLF problem is solved for the IEEE 118-bus test system with the purpose of
assessing how an increase in the uncertainty level (dimension and variance of random variables)
would affect the performance of proposed method. From bus 24 to bus 27, each bus is connected to
a wind farm, the rated power of each wind turbine generator Py is 0.2 p.u. The random active loads
at bus 60, bus 78, bus 79 and bus 82 are assumed to follow Gaussian distribution. The variance of
the random loads are larger than the previous case, with o is 10% to p. The correlation matrices of
wind speeds and loads are in Equation (33). Other parameters of wind farms are consistent with the
previous case.

1 088 0.6 04 1 05 048 06
08 1 05 06 05 1 048 05

Po=1 06 05 1 08 |7 | 048 048 1 03 (33)
04 06 08 1 06 05 03 1

To solve this case, the calculation time of MCM is 16.436 s while the order-3 SG-PLF method
only takes 3.306 s. The RE and ARMS results of the proposed method are shown in Table 7, where
the maximum RE values of V and 6 appeared at bus 26 and bus 49. Figure 12 shows the resulting
CDFs and PDFs of Vo6 and 649, which proved the calculation accuracy of the proposed order-3 SG-PLF
method again. Therefore, when the variance and dimension of uncertain variables rise, the proposed
method can maintain high accuracy whilst providing significant computational savings.

Table 7. Mean and maximum ERs and ARMSs of 3-order SG-PLF.

X 0, X O,
. ¥ mean/100% ¥ max/100% T 100% T /100%
18 o 08 o
v 174 x 1073 091 801 x1073 156 2.09x10"% 340 x 107>
0 0.313 2.15 0.962 754 156 x 1075 611 x10°°
1 . . i CDF . . 1
—NMC
— — SG
E05¢ Zo0s
MC
0 i 1 1 1 1 1 0 & 1 1 1 — SG
0989 099 0991 0992 0993 0994 0995 099 048 05 0.52 054 0.56 0.58 06
80022 : PDF 40 2% : POF .
——MC = -
600 | — —sG 30+
Z400¢ 1 =20t
200} i 10l
0 . . 0
0.988 0.99 0.992 0.994 0.996 045

(a)
Figure 12. CDFs and PDFs of V,4 and 649 in IEEE-118 system: (a) V4(p.u.); (b) 849(rad).
Based on all of the previous simulation results, the details of some influencing factors on the

performance of the proposed SG-PLF method are summarized in Table 8, where 1 denotes increase, |
means decrease, — presents minor impact.
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Table 8. Summary on the factors influencing the performance of the proposed SG-PLF method.

Impacting Factor Accuracy Speed

Expansion order (P) 1 1 l
Efficiency of node generator 1
Dimension of random inputs 1

Dimension of random outputs 1
Variance of random inputs 1
WSC 1
Size of test system 1

1
!
l
!

Lilll-

6. Conclusions

An intrusive spectral method was proposed in this paper to solve the PLF problem, and
simulations in IEEE 14-bus and 118-bus test systems demonstrate its accuracy, efficiency and
practicability. The main characteristics of the proposed method are as follows:

1. High accuracy. The accuracy of proposed method mainly depends on the gPC expansion
approximation Equation (7); by properly choosing the type of gPC basis function and the
expansion order P, the proposed methods can offer the optimal accuracy with the least number of
equations among all the gPC-based methods.

2. Low computation burden. By fully utilizing the P-Q decoupling properties of load flow, the
proposed method formed two constant Jacobian matrices in Newton’s iterations, which reduces
the computation cost significantly.

3. Comprehensibility of the results. The gPC expansion can efficiently handle various random
variables and form a functional relationship between the system random inputs and outputs,
which is also known as the uncertainty propagation in UQ theory. Thus it can efficiently illustrate
the effect of the random inputs on the outputs in PLF problem.

Since the future operating conditions of power system involve more uncertainty due to the
growing penetration of distributed generation and renewable energy sources, the proposed method
may be increasingly desirable. We believe that it would encourage more interest in UQ research
for power systems, with more sophisticated uncertainties and less expenditures of calculation time
and resources.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China under
Grant 50907034, and in part by the National Key Basic Research Program of China (973 Program) under Grant
2012CB215203. The work of Y. Sun was supported by the China Scholarship Council for a one-year sabbatical
study in the Galvin Center at the Illinois Institute of Technology, Chicago, IL, USA.

Author Contributions: Yingyun Sun proposed the research topic, modified the calculation model and revised the
paper. Rui Mao designed the original model, performed the simulation, analyzed the data and wrote the draft
of the paper. Zuyi Li and Wei Tian polished the manuscript and corrected spelling and grammar mistakes. All
authors contributed to the writing of the manuscript, and have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2016, 9, 153

Nomenclature
B,, B//
fr.fq
Fp, Fg
Gp,Gg
i
J/ J//
Npg, Npy

Appendix

Jacobian matrices in PQ decoupled method
Nonlinear active, reactive load flow equations
Vector-matrix form of fp, fo

PLF Galerkin system derived from Fp, Fg
Index of bus

Constant Jacobian matrices in SG-PLF
Number of PQ and PV bus

Active and reactive powers injected to bus i
The gPC expansion coefficient of P57, Q5P
Active power line flow

Number of Newton’'s iterations

PQ and PV bus sets

Wind speed of wind farm

Bus voltage angle and amplitude
Vector-matrix form of 6, V

The gPC expansion coefficient of 6, V
Vector-matrix form of 6, V

Kronecker product operator

16 of 18

Applying the gPC expansion of 0 and V' (see Equation (13)) in the derivation of Jacobian matrix J:

Ifi e [1,Ny],j € [Ny + 1,No] : ik ko) = C;"V(;f“ - ni 2@}’ ;‘sz W = ni 2{}]’ LW
i€ [Ny 1Nl [Nyl k) = 0 = 3 a;;‘f (;’k Wl = 3 ];fwkwwk
e N+ 1N € N 1N k) = S = bl ;{,‘f ;‘:’k W, = 3 i’% A

From the above derivation, we can see that the elements in Jacobian J are complex and need to
be renewed during each iteration, B/, B” are the constant Jacobian matrices in a traditional P-Q fast
decoupled load flow method [18], and the partial derivatives in ] above can be rewritten as follows:

Fori # j: B/(i,j) = 8fp1/66] = —Bl‘]'ViV]',' B”(i,j) = (anl/aV])V] = _BijViVj

6fQ1/69] = O;afpi/avj' =0

Fori= j: B'(i,i) = 0fp,/00; = —V;V;B;;; B"(i,i) = (0f0,/0V;)V; = —V;ViBj;

0f0,/28; = 0;0fp/OV; = 0

Applying B/, B” in the derivation of J above, J changed into two constant Jacobian matrices ]’ and
J”, which is shown as follows:

V' = 0Gp(i,k1)/08jk, = B'(i, )Y 2Ly b, W'} ;T = 0Gqli, k1) /0Vik, = B" (i, 1)) nlabf, W'},
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