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Abstract: The Weibull probability distribution has been widely applied to characterize wind speeds
for wind energy resources. Wind power generation modeling is different, however, due in particular
to power curve limitations, wind turbine control methods, and transmission system operation
requirements. These differences are even greater for aggregated wind power generation in power
systems with high wind penetration. Consequently, models based on one-Weibull component can
provide poor characterizations for aggregated wind power generation. With this aim, the present
paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF)
for aggregated wind power generation. PDFs of wind power data are firstly classified attending
to hourly and seasonal patterns. The selection of the number of components in the mixture is
analyzed through two well-known different criteria: the Akaike information criterion (AIC) and
the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for
maximum likelihood is explored for the defined patterns, including the estimated weight, scale,
and shape parameters. Results show that multi-Weibull models are more suitable to characterize
aggregated wind power data due to the impact of distributed generation, variety of wind speed
values and wind power curtailment.

Keywords: wind power generation; Weibull distributions; Weibull mixtures; Akaike information
criterion (AIC); Bayesian information criterion (BIC)

1. Introduction

The growing integration of renewable resources into the electricity sector can be attributed to
different factors, including deregulation of the electricity market, environmental goals, economic
incentives, and technical maturity. The share of energy consumption produced from renewable
resources is currently considered a relevant short- and mid-term target in many countries. Among
the different renewable resources, wind and solar power currently receive the most attention, with
wind power the most prevalent in terms of installed capacity [1]. In fact, the amount of wind
power generation integrated into power systems, together with other time-variable, non-dispatchable
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electricity generation, has been increasing exponentially during the past decade [2]. This increase can
be easily identified in power systems with significant penetration of variable renewable generation,
such as in Spain, where the share of wind power can’t be neglected from the supply–side. Indeed,
Spain is the world’s fourth biggest producer of wind power, with a year-end installed capacity of
22.8 GW and a share of total electricity consumption of 20.4% in 2014 (21.2% in 2013).

In contrast to traditional power sources, wind power is highly variable and uncertain [3]. Under
the assumption that the share of renewable energy sources is expected to increase very significantly
in the next few years, wind and its impact on power systems have been widely studied. Actually,
multiple operational timescales have been considered in the literature as an attempt to assess the
impact on future systems that high penetration of renewable resources have on power systems [4].
Likewise, the impact of wind integration on reserve requirements is a current topic of interest
for integration studies and power system operators [5]. Some contributions have been focused
on evaluating how power systems with large shares of variable and uncertain renewables can be
efficiently designed and operated to maintain reliability and economic efficiency, maximizing the
penetration of these resources. A computationally efficient probabilistic wind energy production
simulation to determine the variable effects of systems for varying levels of wind power penetration
is presented in [6]. A technique to evaluate operational reliability and energy utilization efficiency
of power systems with high wind power penetration is discussed in [7]. As for wind power
production and forecasts of wind resources, [8] discusses different simulated scenarios based on
high-resolution numerical weather prediction models and wind speed measurements to forecast
wind power production. Gaussian processes combined with numerical weather prediction are
applied to wind power forecasting up to one day ahead [9]. Apart from deterministic prediction,
other contributions describe probabilistic wind power forecasting algorithms [10], incorporating
economic dispatch via a probability distribution model-versatile distribution [11]. Correlations of
wind speeds following different distributions and a literature review are presented in [12]. In [13],
three new mixture distributions (Weibull-lognormal, generalized extreme value (GEV)-lognormal
and Weibull-GEV) are introduced for wind speed forecasting purposes.

The characterization of wind power is usually carried out by using metrics that highlight two
principal properties: variability and uncertainty. In this context, probability density functions (PDFs)
are considered as a suitable solution to evaluate wind power conditions in time series, identifying
areas with high and low wind power occurrence. Under highly aggregated wind power generation
conditions, this characterization represents an important advantage for wind power plant owners and
transmission system operators (TSOs), since the wind power PDF is widely used in various system
functions, such as: determining required reserves, stochastic modeling or transmission planning
scenarios. However, there is a lack of works focused on characterizing and modeling wind power
production for large areas or whole power systems with high wind power penetration. In that
case, the target is to find a suitable but simple solution to characterize the large amount of data
corresponding to wind power production for a multi-year period, and including geographically
dispersed wind power generation. In this framework, this paper characterizes the PDF through
the estimation of the empirical density function for aggregated large-scale wind power production,
geographically distributed, and by using Weibull mixtures. Wind power data spanning several years
from Spain’s power system is used to evaluate the proposed characterization methodology.

The rest of the paper is organized as follows: in Section 2, relevant aspects of wind speed
and wind power are discussed, including the main wind power characteristics in power systems
with high wind power penetration. Section 3 describes the proposed model based on a mixture of
Weibull density functions, providing a suitable and reliable characterization for aggregated wind
power time-series. Real data corresponding to the Spanish power system are used to assess our
proposal. Results and comparisons between different criteria to select the number of components are
discussed in Section 4. Finally, conclusion is drawn and future work is given in Section 5.



Energies 2016, 9, 91 3 of 15

2. Characterization of Probability Density Function for Wind Power Generation

The Weibull distribution has been traditionally used to model wind speed distributions for
applications in wind energy studies [14–17]. This density function profile provides a suitable fit when
measured wind speed data are considered [18]. The wind speed Weibull distribution function can be
represented by:

f (v) =
β

λ

( v
λ

)β−1
e−(

v
λ )

β

(1)

where λ is the Weibull scale parameter, with units equal to the wind speed units, and β is the unitless
Weibull shape parameter.

Following the international electrotechnical commission (IEC) standard for power performance
measurements of the generation provided by wind turbines [19], estimations of the annual energy
production of wind turbines can be determined by using the Weibull density function profile.
According to this standard, the annual energy production can be estimated by assuming 100%
availability of the wind turbines and by using different reference wind speed frequency distributions,
such as the Weibull and the Rayleigh density functions, where the latter is a particular case of a
Weibull distribution with a shape factor of 2. Weibull distributions have been commonly proposed
in the literature to model wind resources, taking into account that 10 min or hourly averaged wind
speeds throughout a year are the result of a considerable degree of random variation [14–16,20,21].
Weibull distributions have been thus applied to characterize PDF for wind speeds, mainly when wind
speed data are restricted to a specific geographical location with a unique meteorological tower (also
known as a met mast). However, there are locations where the wind speed distributions are not
properly characterized by only one Weibull distribution, as depicted in [22]. Moreover, the variability
of wind distribution based on the wind direction can require a more complex representation based
on a double-peaked bi-Weibull distribution [23–26], with different scale factors and shape factors
according to the seasons [27]. Bi-Weibull distribution presents several advantages, such as flexibility,
the dependence on only two parameters, the simplicity of the parameter estimation process, as well
as its specific goodness of fit tests when its parameters are estimated from the sample [28]. Other
PDFs have been recently proposed in the specific literature for these purposes [29,30]. These previous
contributions and many other found in the literature discuss about the application of mixtures of
Weibull functions to estimate the wind energy potential for a given area [26,27,31,32]. However,
minor attention has been given to address the problem of characterizing large-aggregated wind
power generation, including the effect of geographical dispersion. Therefore, and considering the
wind power generation obtained from a geographical dispersion of wind power plants, a natural
and interesting issue is whether one Weibull distribution is suitable to characterize the wind power
production of a large area or a whole country. In this context, a first difference is due to the
natural smoothing effects as a consequence of the aggregation of wind power productions [33,34].
Additionally, other aspects should be considered to characterize in detail aggregated large-scale wind
power generation:

• The relationship between wind speed and wind power generation is derived from the wind
turbine power curve. Each wind turbine type has different power curves, depending their
characteristics on the wind turbine class. A wind power curve is a non-linear function defining
the relationship between wind speed and wind power production. The main characteristics
are the cut-in speed, rated power output and cut-out speed.

• The variability and uncertainty of the wind speed affect the wind power generation, resulting
in highly variable and only partially controllable power output. These wind power fluctuations
can lead to oscillations and occasionally intermittent features, directly related to weather
phenomena [35]. In fact, storms and other unstable weather events induce random variability
in wind power generation. On the contrary, and under stable weather conditions, wind
power is mainly driven by the diurnal cycle. This fact is highlighted in the daily aggregated
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wind power generation in Spain for years 2007–2012, Figure 1. For each hour, an annual
averaged wind power production is determined accounting for the wind power supplied by
the aggregated wind farms.

• In countries or areas with high integration of wind power generation, the power system
operation can have a significant influence on wind power production. For example,
fluctuations as a consequence of either technical or operational requirements can influence
on wind power generation even more than meteorological phenomena [37]. Economic or
reliability issues based on wind power curtailment is another relevant example of large
influence on the wind power production. Additionally, these operating system procedures
are influenced by most power system disturbances, mainly voltage dips. These events can
produce a sudden drop in wind power generation, particularly in wind turbines not-equipped
with fault ride-through capability [37].

• Wind power generation presents inter-annual oscillations as well [38]. Figure 2 shows the
influence of the month and season on the aggregated wind power generation in Spain from
2007 to 2012. February 2010 and March 2008 were the months with the highest wind
power generation (over 36% of installed capacity in those months, 19.1 GW and 15.1 GW,
respectively). On the other hand, April 2007, May 2008, August 2009 and September 2011
showed the lowest monthly production (near 15% of installed capacity), illustrating both strong
inter-annual and intra-annual variability.

• The time-aggregation unit selected for wind power also affects the characterization of the wind
power production for a large area or a power system: the longer time interval is selected, the
slighter smoothing effects are shown by the aggregated data [28].
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Figure 1. Daily mean aggregated wind power generation (Spanish power system, 2007–2012) [36].

Summarizing, wind speed PDF is usually well fit with unimodal models and its main
applications are resource assessment and wind farm design. In contrast, wind power PDF is
preferred for probabilistic forecast, reserves quantification and stochastic operation in power systems.
Furthermore, the ”natural” variability of the wind combined with the power curve and the artificial
or imposed variability (curtailments, voltage sags, maintenance, . . . ) produce important differences
with wind speed PDF. When wind power is aggregated, smoothing effect has also taken into account.
The novel contribution of this paper is the implementation of PDF model for aggregated wind power
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production including the effects of the previously described events. This issue is not considered in
previous works.
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Figure 2. Aggregated wind power generation (Spanish power system, 2007–2012) [36].

3. The Proposed Model: Weibull Mixture Characterization

In this section, we formulate the Weibull mixture characterization for aggregated wind power
production PDFs, describing the model selection criteria as well as the iterative algorithm to estimate
their parameters.

3.1. The Mixture Model Formulation

The candidate density function to represent the wind power generation PDF is expressed as:

f (x|c, w, Θ) =
c

∑
l=1

wl f (x|θl) (2)

where c is the number of components; wl (with l = 1, . . . , c) are the components’ weights required to
add 1; f (x|θl) is the Weibull density function with parameters θl = (λl ,βl), see Equation (1).

A particular and important case is obtained when c = 1, in which a single Weibull distribution
is fitted to the data. If c is set to 2, the model describes a double-peaked bi-Weibull distribution,
whereas if c is set to 3, it describes a tri-Weibull distribution. The weights w1, w2, . . . determine the
contribution of each individual Weibull component to the global PDF.

3.2. Estimation and Model Selection

We aim to fit a mixture of Weibull distributions from empirical density functions corresponding
to wind power data. To obtain a better fit, a relevant issue is whether to choose a single Weibull
distribution, a bi-Weibull, or tri-Weibull distribution. Additional components can also be included,
but over-fitting may become an issue. For this reason, parsimonious representations of the data
are preferred.

The choice of the number of components in Equation (2) is a model selection problem, and a wide
variety of information criteria have been proposed in the literature to compare a finite set of models.
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The most widely used are the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC). A general exposition of information theoretic criteria and model selection can be found
in [39].

For a given model, with parameters θ , the AIC is defined as:

AIC = −2L(θ̂|x) + 2k (3)

where θ̂ is the maximum likelihood estimator for the model based on the observed data x, L(θ̂|x) is
the log-likelihood function evaluated at θ̂, and k is the number of parameters involved in the model.

For a given dataset, we can determine the AIC for a single Weibull distribution (AIC1), a bi-
Weibull (AIC2), and a tri-Weibull (AIC3). The preferred model is the one that has the lowest AIC [39].
A corrected AIC (AICC) is used for small samples ( n

kj
< 40) given by:

AICCj = AICj +
2k j(k j + 1)
n− k j − 1

(4)

where n is the number of observed data.
The (BIC) is defined as:

BIC = −2L(θ̂|x) + k log n (5)

Given any two proposed models, the model that has the lower value of BIC is preferred. It is
generally considered that BIC penalizes the number of parameters in the model more strongly than
does AIC, since BIC takes into account the length of the dataset, as seen in the log(n) value in Equation
(5). Figure 3 shows an example of Weibull estimation where, for the same data source, BIC and AIC
suggest a different number of components: BIC selects a single Weibull distribution, and AIC gives a
tri-Weibull solution to characterize the empirical density distribution function.

Figure 3. Example of Weibull mixture estimation for aggregated wind power generation (Bayesian
information criterion (BIC) and Akaike information criterion (AIC) approaches).

To estimate a finite number of Weibull components through both AIC and BIC, an iterative
algorithm such as expectation-maximization and its variants are typically used for estimation
[40]. In this paper, the rough-enhanced-bayesian finite mixture modeling (REBMIX) algorithm was
chosen [41]. It is an iterative algorithm introduced to estimate the component weights and
component parameters for finite mixture models [42], particularly tailored to mixtures of Weibull
distributions [43]. This algorithm has been implemented in the rebmix package (Version 2.7.1) for R
language and environment for statistical computing.
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4. Results

4.1. General Overview: Optimal Weibull-Mixture Component Analysis

The Spanish power system is a suitable example of a power system with high wind power
penetration, accounting for over 800 wind farms and 20,000 wind turbines. The installed capacity
has been increased from 15,071 MW (2007) to 22,784 MW (2012). Real data corresponding to 10-min
samples of the Spain’s aggregated wind power generation from 2007 to 2012, including events and
operations related to wind power generation, have been used to evaluate the proposed model.
The considered 10-min time unit thus provides 6 points per hour. The aggregated data have been
normalized by the installed power capacity for each month of the year. Each year is divided into
four quarters, from Q1 (January, February and March) to Q4 (October, November and December),
according to similarities between monthly wind power generation due to seasonal effects. As a
consequence, each bin (year, quarter and hour of the day) includes approximately 540 data points,
which is a significant number of samples for a density estimation problem.

With the aim of providing a preliminary example of the proposed methodology, three hours
within the fourth quarter (Q4) of year 2010 are analyzed. Figure 4 depicts the empirical density
functions and their corresponding Weibull–mixture estimations. Additionally, AIC and BIC values
are displayed in Table 1. As can be seen, different numbers of components are selected for each hour,
as a consequence of the empirical density profile diversity. In this case, both AIC and BIC lead to
the same number of components. These three examples offer an overview of the heterogeneity of
aggregated wind power distribution for different hours of an arbitrary day. The results point out the
Weibull mixture suitability rather than a unique Weibull probability function to characterize in detail
PDFs for certain hours of the daily aggregated wind power generation, particularly when a large-scale
aggregated wind power is considered. The number of components can be highly dependent on the
high density bins at medium and large wind power values. This is the case study shown in Figure 4b,
where two local maximum values can be identified. As described in Section 2, the aggregation of the
wind power over large geographic areas and wind power variability can be identified as important
causes of the distribution features.

Table 1. For year 2010, 4th quarter and three different hours of the day, values of the information
criteria for the estimated mixture models with c = 1, 2 and 3 components and the estimated weights
for the optimum mixture model of aggregated wind power generation.

Hour Estimated mixture model

Criterion Mono Weibull (c = 1) Bi-Weibull (c = 2) Tri-Weibull (c = 3)

03 AIC 4456.16 4421.96 4404.54
03 BIC 4464.78 4443.53 4439.05

Optimal estimated weights, c = 3 - ŵ1 = 0.44 ŵ2 = 0.37 ŵ3 = 0.19

06 AIC 4467.07 4409.71 4427.02
06 BIC 4475.69 4431.28 4461.53

Optimal estimated weights, c = 2 - ŵ1 = 0.63 ŵ2 = 0.37

13 AIC 4581.82 4587.43 4615.99
13 BIC 4590.45 4609.00 4650.50

Optimal estimated weights, c = 1 - ŵ1 = 1 - -
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(a)

(b)

(c)

Figure 4. Empirical density functions and fitted Weibull mixture models of aggregated wind power
generation from the observed data at three selected hours of the day for year 2010 and Q4. AIC
and BIC approaches lead to the same solution. (a) Year 2010, Q4, hour 03. The fitted distribution
is a mixture of three Weibull densities with weights and scale and shape parameters (0.44, 0.37,
0.19), (35.22, 17.47, 52.19), and (6.86, 2.95, 9.73), respectively; (b) year 2010, Q4, hour 06. The fitted
distribution is a mixture of two Weibull densities with weights and scale and shape parameters (0.63,
0.37), (41.73, 15.54) and (4.55, 3.18), respectively; and (c) year 2010, Q4, hour 13. The fitted distribution
is a mixture of one Weibull density with scale and shape parameters 33.86 and 1.95, respectively.
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4.2. Discussion of Seasonal Weibull–Parameters

An extension of the previous analysis is based on discussing the hourly pattern evolution of
the estimated parameters (shape, scale, and weights), comparing the AIC and BIC model selection.
Therefore, and as an example of a quarter for a given year, hourly wind power distribution for the
entire fourth-quarter (Q4) of the year 2010 is discussed. Figure 5 shows the estimated weights, scale,
and shape parameters for AIC and BIC approaches to estimate the optimal number of components.
The number of Weibull mixture components is associated with the number of relative maximum
values (peaks in the distribution), which are identified based on the empirical density function
profiles. In addition, the scale parameter gives information about the position of each Weibull
component, being the shape parameter associated with the slope of the peaks.

Regarding the shape parameter, it is smaller and then closer to 1 when a dominating component
—in terms of weight in the mixture—can be identified. This fact is particularly relevant for the
one-component cases. This smaller value of the shape parameter is associated with a positive skew
distribution (probability mass closer to 0), which can be observed when the data can be fitted more
accurately with a single-Weibull, see Figure 4c. When more components are estimated, the mixture
itself allows for more flexibility of the skewness characteristic of the resulting distribution and each
component usually present a larger shape parameter (almost symmetric distribution).

Considering first the AIC-based solution, see Figure 5a,b, it is pointed out that the density bins
are fitted with tri-Weibull mixtures during the night time hours (from Hour 0 to Hour 5). Furthermore,
Figure 5a,b shows that the winter-spring demand peak hour, around 8 p.m., is also fitted with a tri–
Weibull mixture. This is in line with the wind power curtailment influence on the overall distribution
shape, since these hours correspond to relatively high levels of wind power curtailment and have
noticeably different distribution shapes.

The weight of the third component is not available for other periods of the day. Consequently, the
wind power generation distribution is characterized through a single Weibull density function. The
scale parameter is increasing during the afternoon and evening time hours, giving rise to a second and
third well–separated Weibull-component. For the rest of the hours, this parameter remains in similar
values for the main component of the mixture, independently from the other Weibull component.
For hours with medium power demand, bi-Weibull components are suggested to characterize the
aggregated wind power generation histogram.

As an example of the imposed varibility influence in the PDF, the hours with highly variable
power and curtailments, i.e., those times that usually contain large and sudden wind generation
changes, normally present large additional peaks in their probability functions and are thus better
characterized by bi- and tri-Weibull mixtures. The number of additional components can be then
associated with the characteristics and the quantity of the curtailment periods. For the rest of the
hours, no wind curtailments or wind curtailment actions that are applied in a less drastic manner
are usually applied and the generated wind power distribution is properly modeled by a single
Weibull density.

When BIC is selected as model selection criterion, see Figure 5c,d, more conservative results in
terms of the number of components are obtained. This is to be expected due to the BIC penalizes
significantly the number of components, as detailed in Section 3. Nevertheless, in hours with
high wind power curtailments, the distribution profiles are more accurately characterized with
three– Weibull components, presenting scale and shape parameters similar to the previous approach.
This result confirms the relevance and necessity of a mixture of distributions to characterize and
estimate aggregated wind power generation density function for real power system data. Spite a
more conservative criterion is used, the shape of the density function and the existence of peaks calls
for several Weibull components.
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Figure 5. Number of components (according to rough-enhanced-bayesian finite mixture modeling
(REBMIX) algorithm), estimated weights, scale and shape parameters for Q4 of year 2010 using wind
power generation data. The size of the plotted points is proportional to the estimated weights of the
corresponding fitted mixture of Weibull distribution. (a) Scale parameter λ. AIC approach; (b) shape
parameter β. AIC approach; (c) scale parameter λ. BIC approach; and (d) shape parameter β. BIC
approach.
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4.3. Comparison of Optimal Number of Components in the Fitted Weibull-Mixture

This Section is focused on estimating the number of optimal components for the Weibull mixture,
considering both AIC and BIC approaches, for all years and quarters. Subsequently, all years from
2007 to 2012 are considered and the hourly pattern of the selected number of components for the fitted
Weibull–mixture model is discussed for each quarter. Both AIC and BIC are thus considered and the
corresponding results are summarized in Figure 6, where a color code is proposed to identify the
optimal number of Weibull-mixture components for each hour of the day. From this analysis, Weibull
mixtures with two and three components are relatively common, as discussed in Section 4.2. The
number of Weibull components depends on the analyzed year and quarter, as well as on the season
of the year. As shown in the previous section, curtailment actions clearly affect the aggregated wind
power generation evolution and consequently the corresponding optimal Weibull-mixture, though
they are not the only parameters with influence on the aggregated wind power PDF multi-modality.
For the context of the Spanish power system, until 2009, larger wind power curtailments were
applied due to important grid limitations at the distribution level. Since the end of 2009, wind
power curtailments have been programmed in real time based on the scheduled mix of generation
and according to the ”Non-integrable wind power excess” as defined by the Spanish transmission
system operations within the operational procedure 3.7 [44]. Curtailments typically start between
9 p.m. and 1 a.m. and finish between 5 a.m. and 8 a.m., depending on the season and the operating
conditions. This fact contributes strongly to the need for additional Weibull components aiming to
characterize properly the distributions during high wind periods, especially in spring and autumn.
Tables 2 and 3 summarize the relative frequencies for each year of the optimal number of Weibull
components according to BIC and AIC, respectively.

(a)

(b)

Figure 6. AIC and BIC approaches: optimal number of components for the Weibull mixture model
according to the hour of the day for Q1 through Q4 for the years 2007–2012 using wind power
generation data. (a) AIC approach; and (b) BIC approach.
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Table 2. Relative frequencies of the optimal number of Weibull components (AIC approach) using
aggregated wind power generation data.

Weibull components Percentage of components by years Total
2007 2008 2009 2010 2011 2012

1 10% 6% 9% 26% 7% 10% 12%
2 46% 55% 43% 45% 39% 43% 45%
3 44% 39% 48% 29% 54% 47% 43%

Table 3. Relative frequencies of the optimal number of Weibull components (BIC approach) using
aggregated wind power generation data.

Weibull components Percentage of components by years Total
2007 2008 2009 2010 2011 2012

1 34% 32% 23% 56% 27% 29% 34%
2 32% 57% 50% 34% 44% 49% 44%
3 33% 10% 27% 9% 29% 22% 22%

As previously discussed, the BIC tends to favor a smaller number of Weibull components
compared to AIC. Nevertheless, when using the BIC approach, around 66% of the aggregated
hourly wind power generation distributions should be characterized by using more than one Weibull
component. To complete this analysis, a comparison between the number of Weibull components
selected by AIC and BIC is illustrated in Figure 7. In most cases, there is no difference between
the optimal number of components when comparing between the criteria. In fact, around 70% of
the estimations give the same number of components by both approaches. Therefore, the proposed
solution provide a suitable and accurate estimation for aggregated wind power PDF by using a
mixture of a simple and reliable distribution: Weibull. The use of this alternative approach with
historical data provides a tool based on probabilistic methodology for the applications previously
described: reserve estimation, forecast, etc. In addition, this solution can be also applied on other
aggregated wind power dataset, obtaining more accurate mixtures to fit the corresponding PDF.
The percentage of each mixture would vary according to the wind speed variability, curtailments
or smoothing effects due to the aggregated power output from geographically dispersed wind farms.

Figure 7. Weibull mixture model divided into quarters from aggregated wind power generation data
(2007–2012). Hours with similar optimal number of components for AIC and BIC.

5. Conclusions

This paper proposed and evaluated a Weibull mixture as a solution to estimate PDFs for
aggregated wind power generation. The smoothing effects of geographical dispersion, wind power
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aggregation and operational actions carried out by the TSO affect the estimation of the PDFs for
different hours of the day, and then, different Weibull mixture components should be estimated. To
determine this optimal number of Weibull components, two different well-known information-based
criteria have been proposed: the BIC and AIC approaches. A comparison between both criteria is
carried out for different hours of the day and seasons. The estimated Weibull mixtures by using both
criteria mostly yields similar results, providing the same number of components for around 70% of
the hours and quarters analyzed. Consequently, the selection of AIC or BIC is not critical in this case.

Specific Weibull mixture parameters —estimated weight, scale, and shape parameters— are also
discussed in detail for different periods and operational considerations. Aggregated wind power
production along several years from the Spanish power system is used to provide extensive analysis
of the proposed Weibull–mixture approach. The results show that over 66% of the aggregated
hourly wind power generation PDF require more than one–Weibull component to be accurately
characterized. More specifically, 44% are modeled by bi-Weibull distributions and 22% corresponds to
tri-Weibull distributions. This is a clear contrast with the single Weibull component, which is typically
proposed for the characterization of wind speed distributions and, according to the results, it should
be not extended to the aggregated wind power generation characterization.
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