Engineering Conferences International ECI Digital Archives

Fluidization XV

Proceedings

5-24-2016

Measurement of penetration and cycle time of jets from an industrial fluid coking spray nozzle

Francisco Sanchez Careaga Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, Canada

Cedric Briens Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, Canada, cbriens@uwo.ca

Franco Berruti Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, Canada

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Francisco Sanchez Careaga, Cedric Briens, and Franco Berruti, "Measurement of penetration and cycle time of jets from an industrial fluid coking spray nozzle" in "Fluidization XV", Jamal Chaouki, Ecole Polytechnique de Montreal, Canada Franco Berruti, Wewstern University, Canada Xiaotao Bi, UBC, Canada Ray Cocco, PSRI Inc. USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/fluidization_xv/77

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

The University of Western Ontario

Measurement of penetration and cycle time of jets from an industrial Fluid Coking spray nozzle

Francisco Sanchez, Cedric Briens, and Franco Berruti

May 24th, 2016

Western S Engineering

Background

Background

Atomization Gas

Background

- From Ben Li's work → bed hydrodynamics in region where agglomerates are released is important.
- In Fluid Cokers → large radial and vertical variations in bed hydrodynamics
- Changes in jet penetration can improve the liquid distribution in the fluidized bed:
 - □ Less agglomerate formation
 - □ More free moisture

Objectives

Experimentally measure the Jet penetration of an industrial size spray nozzle.

 Compare it to values predicted from literature model.

Equipment – Pie Shape

Equipment – Industrial Size TEB Nozzles

- Fluidization bed conditions:
 - Injected Water: 18.28 liters.
 - Mass of fluidized sand: 7800 kg.

Conditions	Minimum	Maximum
Atomization Gas (N ₂)	3.45 MPa	4.83 MPa
Blow Tank (H ₂ O)	1.75 MPa	2.07 MPa
Liquid Flow (H ₂ O)	178 LPM	236 LPM
GLR	1.6 %	3.0 %

Base et al. (1999), Patent Number: 6,003,789

Equipment – Industrial Size TEB Nozzles – Open Air Blast

Jet Penetration Measurement Challenges

- Video cameras: Probes destroyed by bubbles/jet
- Thermocouples: Bent by jet and response times are too slow.
- Triboprobes above jet:
 - □ Thick rods: resisted jet/bubbles
 - □ But: detected changes in moisture more than voidage

Jet Penetration Measurement Challenges

Issues:

- Probes bent by jet or bubbles (e.g. camera probes in photograph)
- Can we use this in our favor?
- 2 methods:
 - 1. Bendable tubes in jet path
 - 2. Vibration of thick, unbendable rods in jet path

Jet Penetration Bendable tubes deformation

Jet Penetration Bendable tubes deformation

Jet Penetration Vibrating Rods

Vibrating Rods Movement in X and Y Coordinates From Video Analysis

Vibrating Rods Mean Sum of Errors

Vibrating Rods Results

Description	Run #1	Run #2	Run #3	Run #4	Run #5
LPM	187.08	176.25	197.18	236.17	236.13
GLR	1.8%	3.0%	1.9%	1.6%	1.6%
Atomization Gas (g/s)	63.04	88.95	63.04	62.95	63.11
Jet Penetration from Ariyapadi Correlation (m)	2.03	2.03	2.07	2.21	2.21
Jet Penetration from Rod Vibration Technique (m)	1.98	2.02	2.03	2.02	2.02
Error (m)	0.05	0.01	0.04	0.19	0.19

Conclusion

- At low liquid flowrates, measured jet penetrations agree with predictions from Ariyapadi's correlation.
- At higher liquid flowrates, measured jet penetrations are 10% lower than predictions from Ariyapadi's correlation.

Acknowledgements

Thank You!

Jet Penetration – Ariyapadi's Correlation

$$L_{Jet} = \frac{5.52}{g^{0.27}} \frac{1}{\left(\rho_p - \rho_g\right)^{0.27}} \left(\frac{G_L^2 (1 + GLR(S))}{\rho_L (1 - \epsilon')}\right)^{0.27} d^{0.73} C_g$$

- $g = Gravity (m/s^2)$
- ρ_p = Density of the particles (kg/m³)
- $\rho_g = \text{Density of the gas } (\text{kg/m}^3)$
- ρ_L = Density of the liquid (kg/m³)
- GL = Superficial liquid mas velocity (kg/m²·s)
- GLR = Gas to liquid mass ratio
- S = Mean slip velocity ratio
- $\varepsilon' =$ Mean void fraction at slip conditions
- d = Nozzle tip diameter (m)
- $C_g = Nozzle$ geometry parameter

Ariyapadi's model with empirical factor C_g for a scale-down nozzle. (2004)

Jet Penetration – Ariyapadi's Correlation

Although locally, there is no slip between the gas and liquid phases, there is an apparent slip factor S in the nozzle throat because:

- □ There is a radial velocity profile
- There is a radial distribution of the gas holdup

$$S = \frac{\int_0^1 U_{mix}(\eta)\epsilon(\eta)d\eta}{\int_0^1 U_{mix}(\eta)[1-\epsilon(\eta)]\eta d\eta} \frac{1-\epsilon'}{\epsilon'}$$

Jet Penetration – Ariyapadi's Correlation

$$S = \frac{\int_0^1 U_{mix}(\eta)\epsilon(\eta)d\eta}{\int_0^1 U_{mix}(\eta)[1-\epsilon(\eta)]\eta d\eta} \frac{1-\epsilon'}{\epsilon'}$$

- U_{mix} and ε' refers to the local gas-liquid mixture at sonic velocity and the local void fraction.
- η=Radial coordinate.
- 1st step: Assume a mean voidage ε'.
- 2nd step: Calculate a radial coordinate $\eta = \frac{1.015}{1.015 \epsilon'}$
- 3rd step: Calculate $U_{mix}(\eta) = \sqrt{\frac{\gamma RT}{m_w}} \left(\frac{\rho_g}{\epsilon(\eta)(\rho_g \epsilon(\eta) + \rho_l \epsilon(\eta))}\right)^{0.5}$
- 4th step: Obtain the mean slip velocity

5th step: Obtain a new mean voidage $\varepsilon = \frac{1}{\left(\frac{\rho_g}{\rho_l}(GLR)S + 1\right)}$