Meta-study of carbon dioxide capture technologies

Finding the signal in the noise

Canadian J of Chemical Engineering Lectureship Award Lecture

Thomas A. Adams II

Leila Hosenzade

Pranav Madabhushi

Ikenna Okeke

McMaster University Department of Chemical Engineering McMaster Advanced Control Consortium

XXIX Interamerican Congress of Chemical Engineering Incorporating the 68th Canadian Chemical Engineering Conference October 31, 2018

LAPSE:2018.XXXX Download at PSEcommunity.org/LAPSE:2018.XXXX

This lecture supported by...

The Canadian Journal of Chemical Engineering

Can. J. Chem. Eng. Lectureship Award Thank you for your support!

Presenting results from the paper:

Nease J, Adams TA II. Life Cycle Analyses of Bulk-Scale Solid Oxide Fuel Cell Power Plants and Comparisons to the Natural Gas Combined Cycle. *Canadian J Chem Eng*, 93:1349-1363 (2015).

Canadian Society for Chemical Engineering | *For Our Future* Société canadienne de génie chimique | *Pour notre avenir*

www.cheminst.ca

This lecture supported by...

Processes Travel Grant

Two Travel Awards (800 CHF each) are waiting for your application!

Presenting results from the paper:

Adams TA II, Hoseinzade L, Madabhushi P, Okeke IJ. Comparison of CO₂ Capture Approaches for Fossil-Based Power Generation: Review and Meta-Study. *Processes* **2017**, *5*, 44.

Submit to Special Issue "**Process Systems Engineering à la Canada**" for this Conference.

2019 PROCESSES TRAVEL

FOR POSTDOCTORAL FELLOWS AND PhD STUDENTS

IMPACT FACTOR 1.279

an Open Access Journal

Process Systems Engineering à la Canada

Guest Editors

Prof. William R. Cluett, Prof. Michel Perrier, Prof. Ana Inés Torres, Prof. Simant Upreti

Deadline

30 April 2019

Thomas A. Adams II

Fundamental Problem of CO₂ Capture and Sequestration

- Fundamental problem: separation of CO₂ and N₂ in flue gases:
 - We need to go from dilute to high purity TYPICAL COAL POWER FLUE EXHAUST, 1 BAR
- We need to go from low pressure to high pressure
- And there's an awful lot of it (~7 million ton/yr per coal power plant).

Sources: NETL 2007 - Bituminous Baseline Report (see required reading). Adams & Barton, AIChE J (2010) deVisser E., et al. Dynamis CO2 quality recommendations. Int. J. Greenhouse Gas Cont. 2008, 2, 478–484 Molecule Images from chemistry.about.com. Sizes from Angew. Chem. Int. Ed. 2010, 49, 6058 – 6082.

Post-Combustion Solvent-Based Capture

Post-Combustion Membrane-Based Capture

⁴ Thomas A. Adams II

(2017).

Post-Combustion Solid-Based Capture

Pre-Combustion Solvent-Based Capture (IGCC)

Pre-Combustion Membrane-Based Capture

Membrane-enhanced WGS removes H₂ as produced Shifts equilibrium to toward higher conversion Increases CO2 concentration for later

Oxyfuel Combustion

Source: Adams TA II, Hoseinzade L, Madabhushi P, Okeke IJ. Processes 5:44 (2017).

Thomas A. Adams II

Chemical Looping Combustion

Download Slides at PSEcommunity.org/LAPSE:2018.XXXX

Solid Oxide Fuel Cell (SOFC) Process

Recap

Туре	Separation Problem	ASU Requirements	CO ₂ Capture Pressure	Example Applications
Solvent-based Post-Combustion	CO_2/N_2	—	1 bar	Pulverized Coal, NGCC
Membrane-Based Post-Combustion	CO ₂ /N ₂	—	Vacuum	Pulverized Coal, NGCC
Solid-Based Post-Combustion	CO_2/N_2	Low	1 bar	Pulverized Coal, NGCC
Solvent-Based Pre-Combustion	CO ₂ /H ₂	Medium	10-50 bar	IGCC, pre-reforming NGCC
Membrane-Based Pre-Combustion	CO ₂ /H ₂	Medium	Vacuum	IGCC, pre-reforming NGCC
Oxyfuels	CO ₂ /H ₂ O	High	1 bar	Gasified Coal/Nat Gas
Chemical Looping	CO_2/H_2O	—	10-50 bar	Gasified Coal/Nat Gas
Solid Oxide Fuel Cells	CO ₂ /H ₂ O	Low	1-20 bar	Gasified Coal/Nat Gas

Key Problems

- No systematic comparison between processes
- Everyone claims their own process is the best when compared against some other
- Wide variation in assumptions, strategies and ideas.
- Solution: Meta-Study of ~100 published data points on those 8 processes.
- Convert to a standard basis of comparison

Standards

• Size: 550 MW <u>net, plant gate</u>

- Nonfuel costs scaled with power law method p=0.9
- Time & Place: 1Q2016 USA
 - Time: North American Plant Cost Index
 - Place: Purchasing Power Parity Index

• Fuel

- US Bituminous Coal #6 2016 Avg Price
- US Conventional Average Gas Mix 2016 Avg Price

- Captured CO₂ at plant gate
 - Pressure: >115 bar
 - Purity: >95 mol%
 - Capture Rate: 90-100%
- LCA: Cradle to Gate GHG
 - Consistent NOx production where neglected in original
 - Standardize cradle-to-plantentrance life cycle impacts
- CCA: Cost of CO₂ Avoided
 - Same standard plant without CCS
 - SCPC and NGCC US baseline std's

Overall

- SOFC clear winner for coal and gas
- NGCC w/CCS excellent near term solution
- No point in using membranes!

 Oxyfuels / CLC good coal intermediate step

CMaster

Cost of CO₂ Avoided

Sweet Spot:

The best of post-combustion solvent systems are the only mature technology to be competitive. Rest requires CO2/H2O style power gen.

Negative CCA means:

Gas is so cheap in North America, there is no point to using coal at all.

Source: Adams TA II, Hoseinzade L, Madabhushi P, Okeke IJ. Processes 5:44 (2017).

Thomas A. Adams II

LCOE, Standard Conditions (\$US2016/MWh)

Conclusions

No point to building new coal

- (as long as gas prices stay low)
- IGCC cannot compete with SCPC
- Calcium Looping unlikely to either
- Membranes not so promising
 - Coal: Only fictional membranes could compete with solvents at the system level
 - Gas: At best competes with solvent directly, maturity / lifetime issues aside.

• SOFC is best way to use coal

• (Could be better than gas in Asian context. Asian study needed!)

FINAL RECOMMENDATIONS

- Near Term: Use NGCC with CCS
 - Closest thing we have to commercial
- Long Term: Use SOFCs with CCS
 - Needs research and investment now
 - Best fossil fuel approach possible
 - Translates well in foreign situations

