Introduction

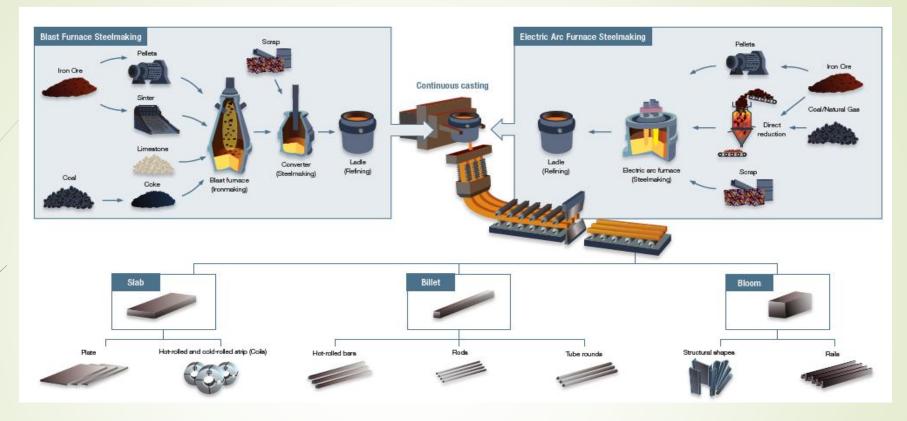


Figure 1. Overview of the two main methods of steelmaking process (Resource: worldsteel)

- Steel industry emits tremendous CO₂ each year. Around 1.9 ton of CO₂ per ton of pig iron produced.
- By-product off-gas (mainly: COG, BFG, and BOFG) are not efficiently used yet. They are to provide heat in the refining process. Hence carbon are released as CO₂.
- Off-gas utilization is aimed to reduce CO₂ emission and lower down energy cost.

@McMaster University

Coke Oven Gas (COG) Composition & Utilization

2

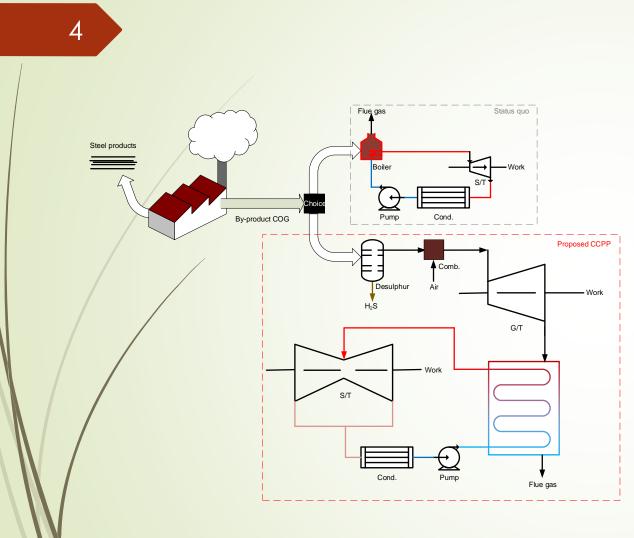
Component	<u> </u>
	COG
Temperature (°C)	35.0
Pressure (bar)	1.4
HHV (Btu/ft³)	400-570
HHV (MJ/kg)	22.6-32.4
Chemical Composition (v	volume fraction)
%C ₂ H ₂	1.5-3
%CH ₄	22-28
%CO	5-9
%CO ₂	1-3.5
%H ₂	45-60
%N ₂	3-6
%O ₂	0.1-1
H ₂ S (ppmv)	3420-4140
CS ₂ (ppmv)	82-92
Thiophene (C ₄ H ₄ S) (ppmv)	26-34

Options of Off-gas valorization

- 1. Produce more electricity by upgrade to combined cycle power plant (CCPP)
- 2. Synthesize it into methanol (MeOH)
- 3. Synthesize it into methane
- 4. Extract H₂ out of it

Nonnegligible amount of sulfur content

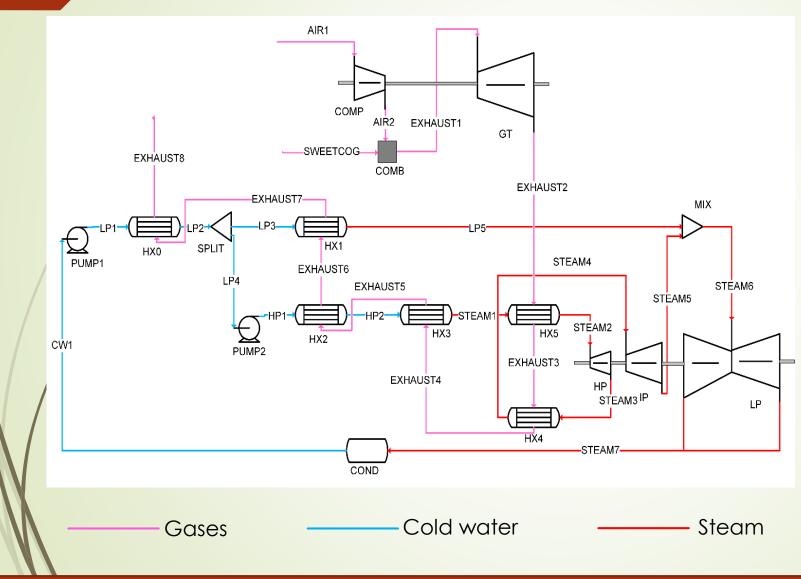
@McMaster University


H₂S Removal Process Chosen

3

	Solvent	Rectisol	MDEA	MEA	DGA
	Solvent type	Physical	Aqueous	Amine	Aqueous amine
	Typical Application Coal to MeOH		IGCC	Commercialized for post- combustion	Commercialized for NG sweeting
		Relative v	olatility (Chemical /	Solvent) at 16 bar	
	Temperature range (°C)	-60.0 to 150	-70.0 to 410	-80.0 to 300	-70.0 to 370
	H ₂ S	127—5000	458—3.60×10 ⁸	369—6.90×10 ⁷	42.5—7.27×10 ⁴
	CS ₂	1.93	8.62—33.0	28.9—199	7.87—19.4
	C₄H₄S		5.58—9.56	20.0—25.5	4.97—6.20
Pressure (bar)					
	Absorber	17.0	16.2	1.00	1.00
	Stripper	3.40—17.0	2.00	-	1.00

- MEA and MDEA have high relative volatility
- MEA is recommended when CO₂ is not present due to it low selectivity difference for CO₂ and H₂S
- DGA select CO_2 over H_2S . And prefer low pressure


Off-gas Utilization Status-quo and Proposed CCPP

	Status Quo	Proposed CCPP
Pressure	Low	High
Turbine	LP S/T	G/T, HP, IP, LP S/T
Desulphurization	Without Additional	With Additional
System optimization	Not sure	Yes

Proposed Combined Cycle Power Plant

5

Objective: maximize NPV

Variables:

HX areas Process Water flow rate Split factors

Method: Aspen Plus give rigorous mode. GAMS surrogate model used to do system optimization

CCPP Optimized by GAMS

6

	Component	Description	GAMS	Marginal	Aspen Plus	Error (%)
	T_g^1	Temperature of EXHAUST1 (°C)	1240	-	1240	0.00
	T_g^2	Temperature of EXHAUST2 (°C)	692	-	692	0.00
	T_g^3	Temperature of EXHAUST3 (°C)	634	-	634	-0.01
	T_g^4	Temperature of EXHAUST4 (°C)	599	-	599	-0.02
	T_g^5	Temperature of EXHAUST5 (°C)	510	-	511	-0.04
	T_g^6	Temperature of EXHAUST6 (°C)	445	-	446	-0.15
	T_g^7	Temperature of EXHAUST7 (°C)	191	-	190	0.41
	Т _{Н2} 0,vap.	Temperature of STEAM6 (°C)	206	-	205	0.32
	Total Power Generated	MJ/kg COG	25.9	-	25.9	0
	Total Net Work	MJ/kg COG	13.3	-	13.3	0
	Total HX. Area	Total HX. Area (m²)	2150	0.005	2180	-1.15
	Topping Net Work	MJ/kg COG	7.93	-	7.93	0
	Bottoming Net Work	MJ/kg COG	5.40	-	5.38	0.37

@McMaster University

It is a Nonlinear Program

Constrants: Mass balance Energy balance

- 1. Initial guess from Aspen Plus
- 2. IPOPT used to find all variables initial guess
- 3. CONOPT used to find local optimum
- 4. BARON used to find the global optimum
- 5. Global optimum condition put back into Aspen Plus

Laps: http://psecommunity.org/LAPSE:2018.0806

6. Compare GAMS with Aspen Plus

Economic Analysis

 Purchase cost equations are used to estimate the equipment purchasing cost [1]

- Operation cost, production cost are estimated according to Seider's book [1]
- The cost are converted to 2016 via CEPCI
- A lifetime of 30 year, and 15% internal rate of return are assumed

1. Seider, W. D.; Seader, J. D.; Lewin, D. R.; Widagdo, S. Product and Process Design Principles: Synthesis, Analysis and Evaluation; John Wiley & Sons, Inc., 2009.

@McMaster University

Results and Discussion

8

	Proposed COG CCPP	Status Quo
Total Capital Investment (million \$)	68.5	0
Total Operation Cost (\$/kW)	31.4	0
Total Production Cost (\$/kW)	288	0
Total Revenue (\$/kW)	512	0
Payback period (yr)	5.77	0
Net Present Value (million \$)	9.51	0
Installation cost (\$/kW)	1107	0

- NPV: \$9.51 million with \$68.5 million in capital investment
- Net lifecycle CO₂ emissions reduced is 84.1 gCO₂e/kg COG

@McMaster University

Location Effects

9

Ontario, Canada USA Finland Mexico China Units Purchasing 1.27 LCU/USD 0.905 8.57 3.47 power parity Electricity carbon 40 588 285 856 1064 g/kWh intensity 0 Carbon tax 18.1 0 29.3 3.70 \$/tonne Electricity price^a 0.112 0.108 0.175 3.65 0.660 LCU/kwh NPV 9.51 19.5 164 286 115 million USD Payback period 1.63 1.30 5.77 4.82 0.53 yr ^a: LCU = local currency unit (Canada in CAD, USA in USD, Finland in Euro, Mexico in MXN, and China in RMB).

@McMaster University

Conclusions

10

- A combined cycle power plant is proposed and optimized for coke oven gas utilization
- Additional NPV is about 9.5 million \$.
- Net lifecycle CO₂ emissions reduced is 84.1 gCO₂e/kg COG
- It might not be a good idea to do it in Ontario, Canada
- But It a good idea to upgrade it in Finland, Mexico, and China

Acknowledgement

11

This invited contribution is part of the I&EC Research special issue for the 2018 Class of Influential Researchers. Helpful collaborations and data from Ian Shaw and David Meredith (AMD) are gratefully acknowledged. This research was funded by the McMaster Advanced Control Consortium, of which AMD is a member.

Thank you for your attention!

@McMaster University

For More Details About This Topic

13

Please Refer to the full paper:

Optimization of Coke Oven Gas Desulfurization and Combined Cycle Power Plant Electricity Generation

Lingyan Deng and Thomas A. Adams II

Industrial & Engineering Chemistry Research 2018 57 (38), 12816-12828

DOI: 10.1021/acs.iecr.8b00246