
Reliability Analysis and Overload Capability Assessment of Oil-Immersed
Power Transformers

Authors: 

Chen Wang, Jie Wu, Jianzhou Wang, Weigang Zhao

Date Submitted: 2018-10-23

Keywords: transformer windings, reliability estimation, power transformers, losses, current measurement

Abstract: 

Smart grids have been constructed so as to guarantee the security and stability of the power grid in recent years. Power transformers
are a most vital component in the complicated smart grid network. Any transformer failure can cause damage of the whole power
system, within which the failures caused by overloading cannot be ignored. This research gives a new insight into overload capability
assessment of transformers. The hot-spot temperature of the winding is the most critical factor in measuring the overload capacity of
power transformers. Thus, the hot-spot temperature is calculated to obtain the duration running time of the power transformers under
overloading conditions. Then the overloading probability is fitted with the mature and widely accepted Weibull probability density
function. To guarantee the accuracy of this fitting, a new objective function is proposed to obtain the desired parameters in the Weibull
distributions. In addition, ten different mutation scenarios are adopted in the differential evolutionary algorithm to optimize the
parameter in the Weibull distribution. The final comprehensive overload capability of the power transformer is assessed by the duration
running time as well as the overloading probability. Compared with the previous studies that take no account of the overloading
probability, the assessment results obtained in this research are much more reliable.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2018.0786
Citation (this specific file, latest version): LAPSE:2018.0786-1
Citation (this specific file, this version): LAPSE:2018.0786-1v1

DOI of Published Version:  https://doi.org/10.3390/en9010043

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



energies

Article

Reliability Analysis and Overload Capability
Assessment of Oil-Immersed Power Transformers
Chen Wang 1, Jie Wu 2,*, Jianzhou Wang 3 and Weigang Zhao 4,5

Received: 4 November 2015; Accepted: 5 January 2016; Published: 14 January 2016
Academic Editor: Issouf Fofana

1 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China; chenwang15@lzu.edu.cn
2 School of Mathematics and Computer Science, Northwest University for Nationalities,

Lanzhou 730030, China
3 School of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China; wjz@lzu.edu.cn
4 Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100081, China;

zwgstd@gmail.com
5 School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
* Correspondence: wuj19870903@gmail.com; Tel./Fax: +86-931-451-2202

Abstract: Smart grids have been constructed so as to guarantee the security and stability of the power
grid in recent years. Power transformers are a most vital component in the complicated smart grid
network. Any transformer failure can cause damage of the whole power system, within which the
failures caused by overloading cannot be ignored. This research gives a new insight into overload
capability assessment of transformers. The hot-spot temperature of the winding is the most critical
factor in measuring the overload capacity of power transformers. Thus, the hot-spot temperature
is calculated to obtain the duration running time of the power transformers under overloading
conditions. Then the overloading probability is fitted with the mature and widely accepted Weibull
probability density function. To guarantee the accuracy of this fitting, a new objective function is
proposed to obtain the desired parameters in the Weibull distributions. In addition, ten different
mutation scenarios are adopted in the differential evolutionary algorithm to optimize the parameter
in the Weibull distribution. The final comprehensive overload capability of the power transformer is
assessed by the duration running time as well as the overloading probability. Compared with the
previous studies that take no account of the overloading probability, the assessment results obtained
in this research are much more reliable.

Keywords: current measurement; losses; power transformers; reliability estimation; transformer
windings

1. Introduction

The power grid is an important infrastructure for a nation’s economic and social development,
however, in recent years, the objective environment to guarantee the security and stability of the power
grid is undergoing tremendous changes. Factors such as the rapid growth of the loads, the initial
formation of the large area grid interconnection, as well as the influence of the global climate change
all impact the electricity market and the effects on the power grid have become increasingly apparent,
thus, guaranteeing the security and stability of the power grid represents a new challenge. To solve
this problem, in recent years, smart grids have been constructed by comprehensively considering
the market, safety, power quality and environmental factors. The term smart grid refers to a fully
automated complicated power supply network, where each user and each node are monitored in
real-time, to ensure a two-way flow of the current and information between the power plant and
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clients’ appliances. The features of the smart grid can be summarized as: self-healing, compatibility,
interaction, coordination, efficiency, quality, and integration.

Power transformers is one of the most vital pieces of equipment in the smart grid. In addition,
it is a network equipment whose structure is the most complex and sophisticated. Any failure in
transformers can cause damage to the power system, among which failures caused by overloading
cannot be ignored. The consequences of overloaded operation of power transformers can be serious.
As indicated, when the current flow in the windings exceeds the rated current stated on the nameplate,
i.e., the transformer operates under overload conditions, the load loss of transformers is proportional
to the square of the current, conductor heating rises sharply, and the temperature of the windings
and insulating oil surge accordingly. In this case, the transformer loss will increase due to the reason
that power transformers are designed according to their rated capacity, so when the load of the
transformer exceeds the rated capacity, the losses will increase. This will greatly affect the lifetime of
the power transformer. In addition, transformers may fail due to the following two reasons: on the one
hand, the transformer may be damaged since the overload operation would accelerate the cracking
of insulating oil, generate bubbles, reduce the dielectric strength of the transformer, and cause an
electrical breakdown. On the other hand, the excessive heat will reduce the mechanical strength of the
windings, and when a short circuit occurs, coil deformation or mechanical instability will occur due to
the external strong electric power. Therefore, overload capacity assessment is of particular importance
in avoiding the catastrophic failure of power transformers and guaranteeing the normal operation of
power grids.

Adequate and accurate assessment of power system reliability is a very challenging task
that has been and still is under investigation. Previously developed power system reliability
and security assessment models include the super components contingency model [1], the hybrid
conditions-dependent outage model [2], and probability distribution based models such as the
log-normal distribution [3] and the Weibull distribution [4]. As one of vital aspects in the power
system reliability assessment, the overload capability of power transformers, has also been specifically
surveyed by many researchers. For example, to make up the limitation of the American National
Standards Instituteloading guide, which is only applicable to ambient temperatures above 0 ˝C,
Aubin et al. [5] proposed a calculation method to assess the overload capacity of transformers for
ambient temperatures below 0 ˝C. Tenbohlen et al. [6] developed on-line monitoring systems to
assess the overload capacity of power transformers. Bosworth et al. [7] reported the development
of electrochemical sensors for the measurement of phenol in transformer overloading evaluation.
A stochastic differential equation was used by Edstrom et al. [8] to estimate the probability of
transformer overloading. Estrada et al. [9] adopted magnetic flux entropy as a tool to predict
transformer failures, and the overloading is just one aspect among the failures. Liu et al. [10]
assessed the overload capacity of transformers through an online monitoring and overload factor
calculated by a temperature reverse extrapolation approach. As known, when assessing network load
capability, the hot-spot temperature is one the most significant factors. Thus, there are many studies
devoted to hot-spot temperature forecasting such as the radial basis function network [11], a genetic
algorithm based technique [12], and a local memory-based algorithm [13] provided by Galdi et al.,
the Takagi-Sugeno-Kang fuzzy model presented by Siano [14], the optimal linear combination of
artificial neural network approach used by Pradhan and Ramu [15], the grey-box model introduced by
Domenico et al. [16], etc. Though these researches make tremendous contributions, efforts on overload
capability assessments should not be stopped, and new overload capability measurement techniques
with respect to power transformers still need to be developed and exploited to improve the accuracy of
overload capability assessment and provide more techniques to prevent failure of transformers caused
by emergency overloads.

This research gives a new insight into how to measure the overload probability of oil-immersed
power transformers. As known, the hot-spot temperature is the most critical factor in measuring
the overload capability of power transformers. Thus, the hot-spot temperature is first calculated to
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measure the duration of running time under overload conditions. Then, the overloading probability is
fitted by a mature and attractive Weibull distribution. Finally, the comprehensive overload capability
of the power transformer is assessed from both the duration of running time under the overload
conditions and the overloading probability aspects. This research is innovative in the following aspects:
(a) apart from the duration of running time under the overload conditions, the overload capability is
also assessed according to the overloading probability of the power transformer, which is measured
by the Weibull distribution in this paper; (b) though the Weibull distribution is a quite mature and
attractive method for fitting the distribution of data series, this paper improves the fitting performance
of the Weibull distribution by proposing a new objective function to obtain the parameters in the
Weibull distribution; (c) different from other researches, the shape parameter in the Weibull distribution
in this paper is determined according to the mean of the shape parameter values obtained under ten
different mutation scenarios in the differential evolutionary (DE) algorithms, i.e., the shape parameter
is determined by taking results under different situations into account, this operation improves the
accuracy of overload capability assessment further. The remainder of this paper is organized as follows:
Section 2 introduces related techniques. Simulation results and discussions are presented in Section 3,
while Section 4 concludes the whole research.

2. Related Techniques

2.1. Duration Running Time Calculation under Overloading Conditions

2.1.1. Steady-State Temperature Measurement

The final hot-spot temperature (θh) of the winding for power transformer is calculated by [17]:

θh “ θa ` ∆θbr

„

1` RK2

1` R

x

` 2 r∆θimr ´ ∆θbrsKy ` HgrKy (1)

where θa is the air temperature (˝C), ∆θbr is the temperature rise in bottom (K), ∆θimr is the average
winding temperature rise (K), R is the ratio between the load losses at the rated load and no-load
losses, K is the load current per unit and y is the index of the winding.

For a forced-directed oil circulation and forced air circulation (ODAF) transformer, the oil flow
in the windings is affected by the oil pump as well as the guide channel, the viscosity of the oil has
little effect on the temperature change of the transformer, however, at this time, the temperature effect
of the conductor resistance must be considered. Therefore, based on Equation (1), the final hot-spot
temperature (θ1h) of the winding for power transformer is corrected using [17]:

θ1h “ θh ` 0.15pθh ´ θhrq (2)

where θh is the final hot-spot temperature of the windings by not taking the effect of the conductor
resistance into account and obtained by Equation (1), θhr is the hot-spot temperature under the rated
operating conditions.

2.1.2. Transient Temperature Measurement

With the changes of the transformer load, the temperature of the transformer will change as well.
It is found that the temperature rise stabilization time of the electric insulating oil, which is 1.5 h, is
much longer than that of the conductor (usually 5–10 min). Thus the transient temperature is measured
as follows:

∆θbt “ ∆θbi ` p∆θbu ´ ∆θbiqp1´ e´t{τ0q (3)

where ∆θbi is the initial bottom oil temperature rise, ∆θbu is the bottom oil temperature rise of the
applied load at the in the steady state, and τ0 is the winding time constant.
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Therefore, once the limit hot-spot temperature of the winding is determined, with the assistance
of the thermal characterization parameters obtained in the factory test, and taking no account of the
life lost, the overload capacity of the transformer can be calculated by Equations (1)–(3).

2.2. Overloading Probability Measurement

It is indicated that the relationship between the active power of the three-phase transformer and
the current is as follows:

P “
?

3UIcosϕ (4)

where P is the active power, U and I are the voltage and current respectively, and cosϕ is called the
power factor. Therefore, the probability value of the current located in the interval [I1, I2) is as equal as
that of the active power located in the interval r

?
3UI1cosϕ,

?
3UI2cosϕq. This inspires us to carry out

the overloading probability measurement by means of the active power probability fitting results, in
the situation that the current values are unknown whereas the active power values are observed.

The Weibull distribution is one of the most commonly used the loss of life distributions in the
reliability research of single samples. Its main feature is that the difference of shape parameters
can reflect various failure mechanisms. Numerous experimental results demonstrate that the life
of components, equipment, and systems that cause the global function to stop running owing to
the failure or breakdown in certain parts obey the Weibull distribution [18]. Moreover, according to
Reference [19], the life of liquid insulation obeys a Gumbel distribution, while the lifetime of solid
insulation follows a two-parameter distribution or lognormal distribution. Therefore, this paper applies
a two-parameter Weibull distribution to research the life distribution features of hot-spot absolute
temperature insulation samples. The statistical analysis of Weibull life data is based on the following
three assumptions [20]:

A1: In each different stress level, the loss of life of hot-spot absolute temperature insulation samples
all obeys the Weibull distribution. That is to say, the distribution type of life will not change
with increasing stress level.

A2: In each different stress level, the failure mechanism of hot-spot absolute temperature insulation
samples mush keep consistent. However, owing to the randomness of experimental data, the
shape parameters of Weibull distribution can be only approximately equal.

A3: The life of hot-spot absolute temperature insulation samples that obeys the Weibull distribution
should the function of trial voltage and temperature. If A1 and A2 are satisfied, the hot-spot
absolute temperature insulation samples obey the Weibull distribution. Assume that the main
aim of A3 is to realize the data extrapolation.

The three assumptions are built based on certain physics, and we can use professional knowledge
and engineering experience to judge whether they are true. In the statistical analysis, both hypothesis
testing and correlation coefficient test can be applied to confirm their existence.

The active power distribution of the transformer is surveyed with the assistance of the Weibull
distribution in this paper. The probability density function of the Weibull distribution can be
described by:

f paq “ p
k
c
qp

a
c
q

k´1
exp

„

´p
a
c
q

k


(5)

where a is the active power with the unit of kW, k is the dimensionless shape parameter and c is the
scale parameter with the same unit of the active power.

2.3. Objective Function

To obtain the unknown shape and scale parameters, in this research, a new objective function is
constructed and the results obtained by this new objective function are compared with those obtained
by two other frequently used objective functions.
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2.3.1. The New Proposed Objective Function

According to the Probability Density Function (PDF) of the Weibull distribution, the expected
value (E(a)) and the variance (Var(a)) of the active power can be obtained by:

Epaq “ cΓp1`
1
k
q (6)

and:
Varpaq “ c2Γp1`

2
k
q ´ c2Γ2p1`

1
k
q (7)

The new objective function constructed in this paper benefits from the following idea. As known,
the mean square error (MSE) defined as follows is always been used as the objective function:

MSE “
1
n

n
ÿ

i“1

pxi ´ x̂iq
2 (8)

where xi and x̂i are the observed and forecasted values, respectively. Let Y be a random variable and
the possible values for Y are y1, y2, . . . , yn, where yi “ xi ´ x̂i. Then Equation (8) can be written as:

MSE “
1
n

n
ÿ

i“1

y2
i (9)

which can be seen as:
MSE “ EpY2q (10)

where E(Y2) represents the expected value of the variable Y2. According to the following formula:

VarpYq “ EpY2q ´ rEpYqs2 (11)

Equation (10) is equivalent to:

MSE “ rEpYqs2 `VarpYq (12)

where E(Y) and Var(Y) denote the expected value and variance of the variable Y, respectively. Based on
the calculation results obtained by Equations (6) and (7):

rEpaqs2 `Varpaq “ c2Γp1`
2
k
q (13)

However, there is always some error between the left side and the right side of the Equation (13).
Thus, the residual value ε defined as below is used as the objective function:

ε1 “ rEpaqs
2
`Varpaq ´ c2Γp1`

2
k
q (14)

where E(a) represents the mean value of the active power and Var(a) denotes the variance of the active
power. Then according to Equation (6), the scale parameter c can be obtained by:

c “
Epaq

Γp1` 1{kq
(15)

So by substituting Equation (15) into Equation (14), the final objection function used to optimize
the shape parameter k can be expressed as:

ε1 “ rEpaqs
2
`Varpaq ´

rEpaqs2 Γp1` 2{kq
Γ2p1` 1{kq

(16)
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2.3.2. The First Comparison Objective Function

To verify the performance of the DE algorithm under different objective functions, the first
objective function used to compare with the new one proposed in this paper is expressed as:

ε2 “
Varpaq
rEpaqs2

´
Γp1` 2{kq ´ Γ2p1` 1{kq

Γ2p1` 1{kq
(17)

where E(a) represents the mean value of the active power and Var(a) denotes the variance of the active
power. Similarly, Equation (17) is only used to optimize the shape parameter. The scale parameter
in this comparison strategy is obtained by Equation (15) just as it did in the new proposed objective
function. The construction of this objective function can be found in Appendix A.

2.3.3. The Second Comparison Objective Function

The second objective function, which used to compare with the new proposed one in this paper
and is derived from the maximum likelihood estimation, can be expressed as:

ε3 “ k´

«

řn
i“1 ak

i lnai
řn

i“1 ak
i
´

řn
i“1 lnai

n

ff1{k

(18)

where n is the active power sample number and taiu
n
i“1 is the active power series of the transformer.

The construction of this objective function can be found in Appendix B. Once the value of the shape
parameter k has been obtained, the scale parameter c is determined according to:

c “ p
1
n

n
ÿ

i“1

ak
i q

1{k

(19)

2.4. Intelligent Optimization Algorithms

To obtain the optimum shape and scale parameters, the differential evolution (DE) algorithm is
used in this research. The usage of the DE algorithm is built on the basis of the three previous described
objective functions. In general, the DE algorithm contains three procedures: mutation, crossover and
selection [21].

Procedure 1 (mutation): In this step, ten different mutation scenarios are employed in this research
to survey the performance of the three objective functions. Given a population with N parameter
vectors XG

i , (i = 1, 2, 3, . . . , N for each generation G), these ten scenarios are expressed as follows:

Scenario 1 : vG`1
i “ xG

r1 ` Fˆ pxG
r2 ´ xG

r3q, r1 ‰ r2 ‰ r3 ‰ i; (20)

Scenario 2 : vG`1
i “ xG

i ` F1 ˆ pxG
best ´ xG

i q ` F2 ˆ pxG
r2 ´ xG

r3q; (21)

Scenario 3 : vG`1
i “ xG

best ` px
G
r1 ´ xG

r2q ˆ pp1´ 0.9999q ˆ rand` Fq; (22)

Scenario 4 : vG`1
i “ xG

r1 ` F1 ˆ pxG
r2 ´ xG

r3q,F1 “ p1´ Fq ˆ rand` F; (23)

where the values of F1 are the same for all of the parameters need to be estimated.

Scenario 5 : vG`1
i “ xG

r1 ` F1 ˆ pxG
r2 ´ xG

r3q, F1 “ p1´ Fq ˆ rand` F; (24)

Scenario 6 : vG`1
i “ xG

i ` Fˆ pxG
r2 ´ xG

r3q; (25)

Scenario 7 : vG`1
i “ xG

r1 ` Fˆ pxG
r2 ´ xG

r3 ` xG
r4 ´ xG

r5q; (26)

Scenario 8 : vG`1
i “ xG

i ` Fˆ pxG
r2 ´ xG

r3 ` xG
r4 ´ xG

r5q; (27)

Scenario 9 : vG`1
i “ xG

i ` Fˆ pxG
best ´ xG

i q ` 0.5ˆ pxG
r2 ´ xG

r3q; (28)
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Scenario 10 : vG`1
i “

#

xG
r1 ` Fˆ pxG

r2 ´ xG
r3q, if rand ă 0.5

xG
r1 ` 0.5ˆ pF` 1q ˆ pxG

r1 ` xG
r2 ´ 2ˆ xG

r3q, if rand ě 0.5
(29)

where r1, r2, r3, r4, r5 are integer numbers randomly selected from {1, 2, . . . , N}, F is the mutation
factor chosen from the range [0, 1], and xG

i and xG
best are the ith and the best individuals in generation

G, respectively.
Procedure 2 (Crossover): The exponential crossover approach is employed in this step.

Component update in the trial vector UG`1
i “ puG`1

1i , uG`1
2i , . . . , uG`1

Di q is described as:

uG`1
ji “

#

vG`1
ji

, if j P tk, xk` 1yn , . . . , xk+L-1ynu

xG
ji , otherwise

, j=1,2, . . . D (30)

where k and L are random values selected from the set {1, 2, . . . , n}, and xjyn is set to j in the case of
j ď n while j ´ n in the case of j > n.

Procedure 3 (Selection): This step is operated according to the following law:

XG`1
i “

#

UG`1
i , if f pUG`1

i q ď f pXG
i q

XG
i , otherwise

(31)

The DE algorithm is terminated in the case of the value of ε or the iteration number reaches the
expected level.

2.5. New Proposed Overloading Probability Measurement Algorithm

Based on the above related techniques, a new proposed overloading probability measurement
algorithm is proposed, the outline of this algorithm is shown in Algorithm 1.

Algorithm 1 New proposed overloading probability measurement algorithm

Input: Active power a—a sequence of sample data
Output: The probability density function of the active power
1. Initialize the shape parameter k
2. WHILE ( ε > predefined error level) DO
3. Update the shape parameter k with the DE algorithm
4. Calculate ε “ rEpaqs2 `Varpaq ´ rEpaqs2 Γp1` 2{kq{Γ2p1` 1{kq by using the new obtained k
5. END WHILE
6. Calculate c “ Epaq{Γp1` 1{kq by using the final value of k
7. f paq “ pk/cqpa/cqk´1exp

”

´pa/cqk
ı

8. RETURN f

2.6. Fitting Performance Evaluation Criteria

In this paper, two error evaluation criteria named the Kolmogorov-Smirnov test error (KSE) [22]
and the root mean square error (RMSE) [23], are applied to the further comparison among the new
proposed and the comparison objective functions. The related definitions are as follows:

KSE=max |Spaq ´Opaq| (32)

RMSE=

«

1
n

n
ÿ

i“1

paoi ´ aciq
2

ff1{2

(33)

where S(a) and O(a) are the Cumulative Distribution Function (CDF)values of the active power not
exceeding a obtained by the selected function and by the actual data, respectively, taoiu

n
i“1 and taciu

n
i“1
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are the probability data series obtained by the observed data and the selected probability density
function respectively, n represents the number of the data.

3. Results and Discussion

In this paper, the overload capability of oil-immersed power transformers is assessed by the data
sampled from three residential areas named Lake Neighborhood, North Neighborhood and Sunshine
Mediterranean Neighborhood. The three-phase transformer used in the first residential area is a model
S11-M-200/10 (HengAnYuan, Beijing, China), and those in the other two residential areas are both
S11-M-400/10 units (HengAnYuan, Beijing, China), i.e., the rated capacity values of the transformers
used in these three neighborhoods are 200, 400 and 400 kVA, respectively.

3.1. Overloading Probability Fitting Results

The DE algorithm is carried out and terminated when the objective function is no larger than
1 ˆ 10´5 in this paper. Table 1 presents performance of the three objective functions by using different
DE mutation scenarios in terms of the iteration number and the actual obtained objective function
values when the termination condition is reached. For convenience, the new proposed objective
function, the first comparison objective function and the second objective function are named the
objective function 1, the objective function 2 and the objective function 3 in Table 1, respectively.

As seen from Table 1, when the new proposed objective function is applied to the shape parameter
optimization, the iteration numbers of the DE algorithm needed to reach the objective function level
are smaller than those obtained by the other two comparison objective functions under most of the
mutation scenarios. For the Lake Neighborhood, the percentages by which the new proposed objective
function outperforms the first comparison and the second comparison objective functions from the
iteration numbers are 30% and 100%, respectively. For the North Neighborhood, these corresponding
two values are 70% and 90%, respectively, while for the Sunshine Mediterranean Neighborhood, the
values are both 100%. Note that in the case where the two objective functions have the same iteration
numbers, the superior one is further selected by the actual obtained objective function values.

Furthermore, the shape parameter values obtained by the new proposed objective function is
much closer to those obtained by the first comparison objective function. Since the iteration numbers
need to reach the objective function level of the first comparison objective function are smaller than
those obtained by the second comparison objective function, the first comparison objective function
can be regarded as a better one as compared to the second comparison objective function from the
iteration speed perspective. According to this, it can be concluded that the new proposed objective
function is the best one among the three objective functions from the iteration speed perspective.

It can also be observed from Table 1 that the new proposed objective function is more sensitive to
the change of the mutation scenarios as compared to the other two objective functions. This can be
indicated by the ten shape parameter values under ten different mutation scenarios in the Sunshine
Mediterranean Neighborhood, where those obtained by the new proposed objective function varied
(though the variation is small) with the change of the mutation scenarios, while there are almost no
change to the shape parameters obtained by the other two objective functions under different mutation
scenarios). Thus, the new proposed objective function is better for its sensitivity.

As shown in Table 1, there is little difference among the shape parameter values obtained by the
first objective function under the ten different mutation scenarios. Thus, to avoid the one-sidedness, the
final shape parameter in this paper is determined by calculating the mean of the ten shape parameter
values. As also seen from Table 1, the shape parameter values obtained by the new proposed and
the first comparison objective functions are nearly equal. However, results obtained by the second
comparison objective functions have larger difference as those gained by the new proposed objective
functions. In the next section, this conclusion will be convinced by some statistics analysis and a test
named the Moses Extreme Reactions (MER).
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Table 1. Parameters obtained by three different objective functions.

Lake Neighborhood North Neighborhood Sunshine Mediterranean Neighborhood

Objective
Function

Type

Mutation
Scenario

Iteration
Number

Objective
Function Value k

Objective
Function

Type

Mutation
Scenario

Iteration
Number

Objective
Function Value k

Objective
Function

Type

Mutation
Scenario

Iteration
Number

Objective
Function Value k

1

1 18 6.9259 ˆ 10´6 1.7718

1

1 18 2.4220 ˆ 10´6 1.4420

1

1 13 3.8005 ˆ 10´6 1.5006
2 13 9.2435 ˆ 10´6 1.7718 2 11 8.9312 ˆ 10´6 1.4420 2 4 6.9169 ˆ 10´6 1.5001
3 10 7.4746 ˆ 10´6 1.7718 3 11 3.8947 ˆ 10´6 1.4420 3 6 5.8058 ˆ 10´6 1.5002
4 16 6.9762 ˆ 10´6 1.7718 4 20 3.9435 ˆ 10´6 1.4420 4 11 6.5550 ˆ 10´7 1.5004
5 20 5.6428 ˆ 10´6 1.7718 5 19 3.2357 ˆ 10´6 1.4420 5 14 9.6016 ˆ 10´6 1.5008
6 19 9.4087 ˆ 10´6 1.7718 6 25 9.9202 ˆ 10´6 1.4420 6 23 4.2009 ˆ 10´7 1.5004
7 17 4.6030 ˆ 10´6 1.7718 7 19 6.2421 ˆ 10´6 1.4420 7 9 4.0648 ˆ 10´6 1.5006
8 34 4.9812 ˆ 10´6 1.7718 8 39 7.1700 ˆ 10´6 1.4420 8 7 2.6037 ˆ 10´6 1.5005
9 13 7.4412 ˆ 10´6 1.7718 9 12 2.0244 ˆ 10´6 1.4420 9 7 6.3303 ˆ 10´6 1.5007
10 13 9.7352 ˆ 10´6 1.7718 10 16 7.5910 ˆ 10´7 1.4420 10 12 5.6289 ˆ 10´6 1.5002

2

1 16 8.3027 ˆ 10´7 1.7718

2

1 18 8.4671 ˆ 10´6 1.4420

2

1 16 8.7020 ˆ 10´8 1.5004
2 13 5.9090 ˆ 10´6 1.7718 2 14 7.8769 ˆ 10´7 1.4420 2 13 4.4437 ˆ 10´6 1.5004
3 12 1.6624 ˆ 10´6 1.7718 3 12 8.9997 ˆ 10´7 1.4420 3 10 8.0433 ˆ 10´6 1.5004
4 14 1.8828 ˆ 10´6 1.7718 4 19 3.1183 ˆ 10´6 1.4420 4 24 1.1569 ˆ 10´6 1.5004
5 12 8.6969 ˆ 10´6 1.7718 5 18 5.0858 ˆ 10´6 1.4420 5 19 1.5519 ˆ 10´6 1.5004
6 23 7.7303 ˆ 10´6 1.7718 6 38 6.8227 ˆ 10´6 1.4420 6 37 8.6291 ˆ 10´6 1.5004
7 14 5.2478 ˆ 10´6 1.7718 7 19 5.2558 ˆ 10´6 1.4420 7 12 7.9567 ˆ 10´6 1.5004
8 36 7.3341 ˆ 10´6 1.7718 8 40 3.7643 ˆ 10´6 1.4420 8 26 8.7335 ˆ 10´6 1.5004
9 6 2.7901 ˆ 10´6 1.7718 9 17 5.2971 ˆ 10´6 1.4420 9 12 3.3013 ˆ 10´6 1.5004
10 13 3.3655 ˆ 10´6 1.7718 10 18 1.6249 ˆ 10´6 1.4420 10 15 3.0078 ˆ 10´6 1.5004

3

1 21 5.5706 ˆ 10´6 1.8322

3

1 21 3.4492 ˆ 10´6 1.5010

3

1 21 9.1215 ˆ 10´6 1.5743
2 16 6.0681 ˆ 10´6 1.8322 2 13 8.2479 ˆ 10´6 1.5010 2 13 9.8864 ˆ 10´7 1.5743
3 15 2.6695 ˆ 10´6 1.8322 3 10 5.9725 ˆ 10´6 1.5010 3 13 7.4311 ˆ 10´6 1.5743
4 19 8.4953 ˆ 10´6 1.8322 4 23 6.4584 ˆ 10´6 1.5010 4 23 5.0605 ˆ 10´8 1.5743
5 23 2.9226 ˆ 10´6 1.8322 5 22 1.7365 ˆ 10´6 1.5010 5 19 1.0723 ˆ 10´6 1.5743
6 50 2.9237 ˆ 10´6 1.8322 6 39 7.8088 ˆ 10´6 1.5010 6 42 4.8807 ˆ 10´6 1.5743
7 26 1.4879 ˆ 10´6 1.8322 7 24 7.5942 ˆ 10´6 1.5010 7 18 3.6736 ˆ 10´6 1.5743
8 43 4.7320 ˆ 10´6 1.8322 8 44 2.3022 ˆ 10´6 1.5010 8 50 8.4293 ˆ 10´6 1.5743
9 16 9.1194 ˆ 10´6 1.8322 9 16 4.8699 ˆ 10´7 1.5010 9 15 9.2910 ˆ 10´6 1.5743
10 18 8.8692 ˆ 10´6 1.8322 10 16 4.7118 ˆ 10´6 1.5010 10 24 3.0137 ˆ 10´6 1.5743
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3.2. Three Objective Functions Comparison

In this section, the three objective functions are compared from the iteration number and the
objective function value aspects. These three objective functions are firstly analyzed by comparing the
corresponding results with regard to the three groups and two group pairs shown in Figure 1.
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3.2.1. Analysis and Comparison Over the Three Groups

Boxplot Results Analysis

Figure 2(a1–c1) show the boxplots of the iteration number over the above defined three groups,
where on each box, the central mark is the median, and the edges of the box are the lower quantile and
the upper quantile, respectively. The lower quantile, the median and the upper quantile means the
0.25, 0.5 and 0.75 quantiles, respectively, where the f quantile corresponding to a datum q(f ) means
that below this datum, approximately a decimal fraction f of the data can be found. It is calculated in
this way: Sorting the data in a sequence

 

xj
(

j“1,2,...,n in an ascending order. By this, the sorted data
!

xxiy
)

i“1,2,...,n
have rank i = 1, 2, . . . , n. Then the quantile value fi for the datum xxiy (equal to q(fi)) is

computed as:

fi “
i´ 0.5

n
, i “ 1, 2, . . . , n (34)

While in the case of the desired quantile value f is equal to none of the fi values shown in
Equation (34), the f quantile q(f ) is found by linear interpolation, i.e.,:

qp f q “ qp f1q `
f ´ f1

f2 ´ f1
rqp f2q ´ qp f1qs (35)

where f 1 and f 2 are two unequal values selected from {0.5/n, 1.5/n, . . . , (n ´ 0.5)/n}. Note that in the
case of the probability value f is less than 0.5)/n, the value q(f ) is assigned to the first value xx1y, while
the value q(f ) is assigned to the last value xxny, when the probability value f is greater than (n ´ 0.5)/n.

In addition, Figure 2(a1–c1) also show the outliers beyond the whiskers which are displayed
using +. The whiskers in this paper are specified as 1.0 times the interquartile range, i.e., points larger
than q(0.75) + w[q(0.75) ´ q(0.25)] or smaller than q(0.25) ´ w[q(0.75) ´ q(0.25)] are defined as outliers,
where w is set to 1.0 in this paper.



Energies 2016, 9, 43 11 of 19

Energies 2016, 9, 43  11 of 19 

 

       1
1 2 1

2 1

= +
f f

q f q f q f q f
f f


  

  (35) 

where f1 and f2 are two unequal values selected from {0.5/n, 1.5/n, …, (n − 0.5)/n}. Note that in the case 

of the probability value f is less than 0.5)/n, the value q(f) is assigned to the first value x1, while the 

value q(f) is assigned to the last value xn, when the probability value f is greater than (n − 0.5)/n. 

 

Figure 2. Boxplot and ANOVA comparison results of the three objective functions. 

In addition, Figure 2(a1–c1) also show  the outliers beyond  the whiskers which are displayed 

using +. The whiskers in this paper are specified as 1.0 times the interquartile range, i.e., points larger 

than q(0.75) + w[q(0.75) − q(0.25)] or smaller than q(0.25) − w[q(0.75) − q(0.25)] are defined as outliers, 

where w is set to 1.0 in this paper. 

As seen from Figure 2(a1–c1), for the Lake Neighborhood, the number of outliers in the three 

groups are 1, 3, 2, respectively, while for the other two Neighborhoods, the number of outliers  in 

Groups  1  and  3remains  the  same,  while  values  in  Group  2  turns  to  4  and  1  for  the  North 

Neighborhood and the Sunshine Mediterranean Neighborhood, respectively. 

Analysis of Variance 

Next one‐way analysis of variance (ANOVA) was conducted to compare the objective function 

results of the three groups. Figure 2(a2–c2) provide the ANOVA results of the three neighborhoods, 

respectively, where SS, df, MS represent the sum of squares, degree of freedom and mean square, 

respectively,  and  Columns,  Error mean  the  feature  between  groups  and  feature within  groups, 

respectively, and Total  indicates  the  sum of  the Columns  and  the Error. Specifically, we have  the 

following definitions: 

 2

1

of the
k

i i
i

SS Columns n x x


    (36) 

 2

1 1

of the
ink

ij i
i j

SS Error x x
 

    (37) 

Figure 2. Boxplot and ANOVA comparison results of the three objective functions.

As seen from Figure 2(a1–c1), for the Lake Neighborhood, the number of outliers in the three
groups are 1, 3, 2, respectively, while for the other two Neighborhoods, the number of outliers in
Groups 1 and 3remains the same, while values in Group 2 turns to 4 and 1 for the North Neighborhood
and the Sunshine Mediterranean Neighborhood, respectively.

Analysis of Variance

Next one-way analysis of variance (ANOVA) was conducted to compare the objective function
results of the three groups. Figure 2(a2–c2) provide the ANOVA results of the three neighborhoods,
respectively, where SS, df, MS represent the sum of squares, degree of freedom and mean square,
respectively, and Columns, Error mean the feature between groups and feature within groups,
respectively, and Total indicates the sum of the Columns and the Error. Specifically, we have the
following definitions:

SS of the Columns “
k
ÿ

i“1

nipxi ´ xq2 (36)

SS of the Error “
k
ÿ

i“1

ni
ÿ

j“1

pxij ´ xiq
2 (37)

and

SS of the Total “
k
ÿ

i“1

ni
ÿ

j“1

pxij ´ xq2 (38)
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where k is the number of the groups, xij denotes the jth sample in the ith group, ni represents the
number of the samples in the i th group, and xi and x indicates the mean of the samples in the ith
group and the mean of the samples in all of the groups, respectively. The one-way ANOVA can be
conducted according to the following four steps:

Step 1: Determine the null hypothesis. The null hypothesis of the one-way ANOVA is that
samples in all of the groups are drawn from populations with the same mean.

Step 2: Select the test statistic. The test statistic of the one-way ANOVA used is the F statistic,
which is defined as:

F “
SS of the Columns{pk´ 1q

SS of the Error{pn´ kq
(39)

where n is the total number of the samples, and k–1 and n–k are the degree of freedom of the SS of the
Columns and SS of the Error, respectively.

Step 3: Calculate the value of the test statistic as well as the corresponding probability value p.
Step 4: Make decisions according to the significance levelα. In the case of p <α, the null hypothesis

should be rejected, and the decision that samples in all of the groups are not drawn from populations
with the same mean is made; Otherwise, the null hypothesis should be accepted to demonstrate that
samples in all of the groups are drawn from populations with the same mean.

As shown in Figure 2(a2–c2), all of the p values in the three neighborhoods are larger than the
significance level α, which is set to 0.05 in this paper, this phenomenon indicates that for all of the
three neighborhoods, the objective function samples in Groups 1–3 are drawn from populations with
the same mean, Figure 2(a3–c3) display the mean comparison results of the three groups.

3.2.2. Test Over the Two Group Pairs

In this section, the three objective functions are analyzed by conducting the MER test over the
two group pairs. The basic idea of the MER is that one group of the samples is regarded as the
control group, while the other group of the samples is treated as the experimental group, then it is
tested whether there are extreme reactions in the experimental group as compared to the control one.
The conclusion of the MER is obtained by testing which one of the following hypothesis is accepted:

Null hypothesis: there is no significant difference between the distributions of samples in the
control group and the experimental group; vs. Alternative hypothesis: there is significant difference
between the distributions of samples in the control group and the experimental group.

If the experimental group has extreme reactions, it is assumed that there is no significant difference
between the distributions of the control group and the experimental group; instead, there is significant
difference between the distributions of these two groups. The detailed analysis process is as follows:

1. First of all, samples in the two groups are mixed and ordered by ascending;
2. Calculate the minimum rank Rmin and the maximum rank Rmax of the control group, and obtain

the span by:
S “ Rmax ´ Rmin ` 1

3. To eliminate the effect of the extreme values of the sample data on the analysis results, a
proportional (usually this value is set to 5%) of the samples close to the left and the right
ends are removed from the control group, and the span of the remaining samples which is named
the trimmed span is calculated.

The MERs focus on the analysis of the span and the trimmed span. Obviously, if the values of the
span or the trimmed span are small, the two sample groups cannot be mixed fully, and sample values
in one group are greater than those in the other group, therefore, it can be regarded that as compared to
the control group, the experimental group contains the extreme reactions, and thus the conclusion that
there is significant difference between the distributions of these two groups can be obtained; otherwise,
if the values of the span or the trimmed span are great, the two sample groups are mixed fully, and the
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phenomenon that sample values in one group are greater than those in the other group does not exist,
therefore, it can be regarded that as compared to the control group, the experimental group does not
contain extreme reactions, and thus the conclusion that there is no significant difference between the
distributions of these two groups is reached. In general, the H statistics defined as below is used to
evaluate the span or the trimmed span:

H “

m
ÿ

i“1

pRi ´ Rq2

where m is the number of the samples in the control group, Ri is the rank of the ith control sample
in the mixed samples, R is the average rank of the control samples. It can be proved that for small
samples, the H statistics obey the Hollander distribution, while for large samples, the H statistics
approximately obey a normal distribution.

If the value of p is smaller than the given confidence level α, then the null hypothesis should be
rejected, and it is regarded that there is significant difference between the distributions of samples
in the control group and the experimental group; otherwise, the null hypothesis should be accepted,
and the conclusion that there is no significant difference between the distributions of samples in the
control group and the experimental group can be obtained. In this paper, the MER technique is used to
compare the difference of the three objective functions furthermore. Section 3.2.1 analyzed the three
objective function mainly from the shape parameter aspect, in this section, the three objective functions
will be analyzed through the iteration number as well as the objective function value.

Table 2 lists the descriptive statistics of Pair 1 and Pair 2, where N denotes the number of the
samples in the pair and the hth percentile is equivalent to the h/100 quantile. As seen from Table 2,
apart from the objective function value of the Lake Neighborhood, the standard deviation of which in
Pair 2 is smaller than the one in Pair 1, for other items, the standard deviation values in Pair 2 are all
larger than the corresponding values in Pair 1, i.e., when Groups 1 and 3 are mixed, their deviation
is larger than the one obtained by mixing Groups 1 and 2. In addition, the difference between the
maximum and the minimum present similar phenomenon: apart from the objective function value of
the Lake Neighborhood, the difference values for other items in Pair 2 are all larger than those in Pair 1.
Based on the descriptive statistics results in Table 2, Table 3 presents the MER test results. Note that
in Table 3, the term Outliers trimmed means outliers trimmed from each end. It can be observed
from Table 3 that there is only one probability value which is smaller than the predefined confidence
level α = 0.05, which appears in the iteration number of the Sunshine Mediterranean Neighborhood
in Pair 2. This indicates that there is significant difference between the distributions of the iteration
number in Groups 1 and 3, while no significant difference can be observed between the corresponding
distributions in Groups 1 and 2.

In summary, it can be concluded from these analysis results that the iteration number and the
objective function value of the new proposed objective function and the first comparison objective
function can be regarded to have nearly no difference between each other. In addition, the shape
parameter values obtained by the new proposed and the first comparison objective functions are nearly
equal, however, the same conclusion cannot be concluded with regard to the new proposed objective
function and the second comparison objective function. Therefore, in the following sections, only the
error values obtained by the new proposed and the second objective functions will be compared.
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Table 2. Descriptive statistics of the two pairs.

Neighborhood Item

Pair 1 Pair 2

N Mean Standard
Deviation

Minimum Maximum
Percentiles

N Mean Standard
Deviation

Minimum Maximum
Percentiles

25th 50th 75th 25th 50th 75th

Lake
Neighborhood

Iteration
number 20 16.6000 7.3155 6.0000 36.0000 13.0000 14.0000 18.7500 20 21.0000 10.2341 10.0000 50.0000 15.2500 18.0000 22.5000

Objective
function 20 5.8941 2.6892 0.8303 9.7352 3.6749 6.4175 7.6664 20 6.2645 2.5157 1.4879 9.7352 4.6353 6.4970 8.7757

North
Neighborhood

Iteration
number 20 20.1500 8.8274 11.0000 40.0000 14.5000 18.0000 19.7500 20 20.9000 9.6404 10.0000 44.0000 13.7500 19.0000 23.7500

Objective
function 20 4.4833 2.7723 0.7591 9.9202 2.1238 3.9191 6.6776 20 4.8656 2.8425 0.4870 9.9202 2.3322 4.3277 7.4882

Sunshine
Mediterranean
Neighborhood

Iteration
number 20 14.5000 7.9637 4.0000 37.0000 9.2500 12.5000 18.2500 20 17.2000 11.5421 4.0000 50.0000 9.5000 13.5000 22.5000

Objective
function 20 4.6370 3.0436 0.0870 9.6016 1.8149 4.2543 7.6968 20 4.6890 3.1493 0.0506 9.6016 1.4552 4.4728 7.3026

Table 3. The Moses Extreme Reactions (MER) test results of the two pairs.

Neighborhood Item

Pair 1 Pair 2

Frequencies Untrimmed Trimmed
Outliers
Trimmed

Frequencies Untrimmed Trimmed
Outliers
TrimmedControl

Sample
Experimental

Sample Total Span p Trimmed
Span p Control

Sample
Experimental

Sample Total Span p Trimmed
Span p

Lake
Neighborhood

Iteration
number 10 10 20 18 0.500 11 0.089 1 10 10 20 18 0.500 12 0.185 1

Objective
function 10 10 20 15 0.070 13 0.325 1 10 10 20 16 0.152 13 0.325 1

North
Neighborhood

Iteration
number 10 10 20 19 0.763 17 0.957 1 10 10 20 17 0.291 16 0.848 1

Objective
function 10 10 20 20 1.000 15 0.686 1 10 10 20 19 0.763 16 0.848 1

Sunshine
Mediterranean
Neighborhood

Iteration
number 10 10 20 17 0.291 12 0.185 1 10 10 20 17 0.291 10 0.035 1

Objective
function 10 10 20 19 0.763 13 0.325 1 10 10 20 19 0.763 13 0.325 1
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3.2.3. Fitting Error Comparison

The error comparison analysis in this section is built on final shape parameter, which is determined
by the mean of the ten shape parameter values. Since the shape parameter obtained by the new
proposed and the first comparison objective functions are quite the same, this section only present the
error results of the new proposed and the second comparison objective functions, for which the shape
parameters are different.

Let the minimum and the maximum active power values of the transformer are MI and MA,
respectively. Then each interval [k, k + 1] can be divided into several subintervals with the same length,
where k are the integers from Floor(MI) to Ceil(MA), and Ceil(MA) denotes the integer larger than MA
which has the minimum distance with MA, similarly, Floor(MI) represents the integer smaller than or
equal to MI which has the minimum distance with MI.

Figure 3 shows the PDF and CDF figures obtained by the new proposed and the second
comparison objective functions where each unit interval [k, k + 1] is divided into different subintervals:
Figure 3(a–c, a1–c1, a2–c2) show the figures of the three neighborhoods where each unit interval is
divided into five subintervals, respectively, Figure 3(a1–c1) are the corresponding figures where each
unit interval is divided into two subintervals, respectively, and Figure 3(a2–c2) provide the results
with no division to the unit interval. The corresponding error values are listed in Table 4.
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Table 4. Error values under different subinterval numbers. Kolmogorov-Smirnov test error (KSE); root
mean square error (RMSE).

Neighborhood
Name

Subinterval
Numbers

The New Proposed
Objective Function

The Second Comparison
Objective Function

KSE RMSE KSE RMSE

Lake
Neighborhood

5 subintervals 0.05379 0.02199 0.04775 0.02236
2 subintervals 0.02378 0.01916 0.03190 0.02414
1 subinterval 0.02378 0.02190 0.02765 0.02646

North
Neighborhood

5 subintervals 0.03878 0.02840 0.03896 0.02774
2 subintervals 0.03739 0.03926 0.04639 0.04695
1 subinterval 0.02687 0.02839 0.03079 0.03186

Sunshine
Mediterranean
Neighborhood

5 subintervals 0.00757 0.00518 0.01287 0.01247
2 subintervals 0.01076 0.01082 0.01568 0.01571
1 subinterval 0.00012 0.00012 0.00005 0.00005

3.3. Comprehensive Overload Capability Assessment Results

The comprehensive overload capability of power transformers is obtained based on the running
time duration of the power transformers under overload conditions and the overloading probability
calculation results: the running time duration of the power transformer is obtained according to the
given ambient temperature and the rated load first, then the overloading probability is obtained from
the probability of the current, which is derived from the probability of the corresponding active power.
Overload capability measurement of power transformers based on the knowledge of overloading
probability provides a more reliable assessment result.

The Weibull distribution can be used to evaluate transformer reliability. The scientific and
reasonable assessment of reliability development trends is based on the research and mastery of
a large amount of historical materials and accurate methods. On the basis of foregoing research, the
reliability assessment of transformers can be performed by using the model of transportation load
and test quantity. Therefore, the reliability assessment of transformers can be carried out in these
two aspects. The valid assessment means the situation of transportation load and test quantity that
can have an influence on the reliability of transformer so that we can obtain the future reliability
assessment of the transformer.

The reliability model based on transportation overload is mainly based on the use of the hot-spot
temperature of the transformer to evaluate the degree of thermal aging so that the fault probability of
transformer can be obtained by analyzing the insulation aging damage. The hot-spot temperature is
related to the operation load of the transformer and the environmental temperature; therefore, the key
of the assessment is to evaluate the future load level and the environmental temperature. What largely
affects the reliability change curve of a transformer is the increase of load level. Without great changes
of the network structure, the assessment of future load increases can be conducted by evaluating the
local load increases. If the load increass level in the assessment is fast, and the current transformer is
burnt-in, one should consider adding new transformers in the future to reduce the load level of the
current transformers and decrease the risk of accidents according to specific situations.

4. Conclusions

This paper measures the overload capability of oil-immersed power transformers, which is of
particular importance in avoiding their catastrophic failure and guaranteeing the normal operation
of power grids. The running time duration of the power transformers under overload conditions is
calculated with the help of the hot-spot temperature. Then the overloading probability is fitted by
the Weibull distribution, in which the desired parameters are computed according to a new proposed
objective function. Compared with the previous two objective functions, the new proposed one
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acheived much better performance in terms of the convergence speed and the final objective function
values. The integration of the running time duration and the overload probability provides a more
comprehensive and reliable assessment results to the overload capability of power transformers.
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Appendix A

According to the PDF of the Weibull distribution, the mean (a) and the standard deviation (σ) of
the active power can be obtained by:
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So:
σ2

a2 “
Γp1` 2{kq ´ Γ2p1` 1{kq

Γ2p1` 1{kq
(A3)

However, there is always some error between the left side and the right side of the Equation (A3).
Thus, the residual value ε defined as below is used as the first objective function in this paper just as
Liu et al. did in [16]:
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σ2

a2 ´
Γp1` 2{kq ´ Γ2p1` 1{kq

Γ2p1` 1{kq
(A4)

Appendix B

Given the active power series taiu
n
i“1, the joint PDF of the Weibull distribution can be expressed as:
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Thus, according to the maximum likelihood approach, the parameters k and c can be calculated
according to
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That is:
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and
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Generally, there will be an error between the right and the left side of Equation (B4). Therefore, the
following equation has been set as the second objective function in this paper:
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