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Abstract: Medium-and-long-term load forecasting plays an important role in energy policy
implementation and electric department investment decision. Aiming to improve the robustness and
accuracy of annual electric load forecasting, a robust weighted combination load forecasting method
based on forecast model filtering and adaptive variable weight determination is proposed. Similar
years of selection is carried out based on the similarity between the history year and the forecast year.
The forecast models are filtered to select the better ones according to their comprehensive validity
degrees. To determine the adaptive variable weight of the selected forecast models, the disturbance
variable is introduced into Immune Algorithm-Particle Swarm Optimization (IA-PSO) and the
adaptive adjustable strategy of particle search speed is established. Based on the forecast model
weight determined by improved IA-PSO, the weighted combination forecast of annual electric load is
obtained. The given case study illustrates the correctness and feasibility of the proposed method.

Keywords: load forecasting; robustness; combination forecast; Markov chain; normal cloud model;
immune algorithm; particle swarm optimization

1. Introduction

Nowadays, the strong smart grid (SSG) is vigorously being constructed and the renewable
distributed electricity generation capacity is steadily increasing. As an important basis to ensure the
security and stable operation of the electric system, electric load forecasting is playing a more and more
important role in the implementations of energy policies and the investment decision-making of the
electric department under this background [1–10]. However, medium-and-long-term load forecasting
has non-linear characteristics caused by the influence of various factors (e.g., national policy, economic
and social factors) [7–9]. It makes the medium-and-long-term load forecasting much complex and
uncertain. Thus, how to improve the robustness and accuracy of annual electric load forecasting is
very worthy of study.
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On the one hand, the forecast accuracy has reached a high level under the given sample and
condition in the existing research [1–13], but the forecast method’s robustness currently becomes the
bottleneck. The main reason lies in the status that the existing methods are mostly based on the error
theory. By the error theory, the fact of the unknown amount of the forecast year’s true load is neglected
and the accurate forecast error is difficult to obtain. Chen [14,15] pointed out that the validity degree
of the forecast model can be expressed by its full and average precision. In the mathematical sense, any
forecast model has its inherent attributes which can be measured by its validity rather than the result
error reported by Sun et al. [16], Chen et al. [17] and Jin et al. [18]. At the same time, the single forecast
models should be filtered so that the better ones will be selected and the worse ones will be eliminated.
Therefore, filtering the forecast models to select the better ones based on their comprehensive validity
degrees can improve the robustness of the forecast method.

On the other hand, the general load forecast method mainly includes artificial neural network
reported by Hernandez et al. [19] and Gofman et al. [20], regression analysis reported by Li et al. [21] and
time series analysis reported by Paparoditis et al. [22]. The exponential smoothing method reported by
Weron et al. [23], the gray forecast method reported by Li et al. [24] based on time trend extrapolation
reported by Ismail et al. [25], the clustering forecast method reported by Kodogiannis et al. [26] and
multiple regression analysis method reported by Hong et al. [27] based on the load related factor
analysis cannot ensure the satisfactory result in any case. In order to make full use of the advantages
and the contained information of each single forecast model, combination forecast [28–33] is an
effective method. The question of how to determine the weight assignment of single forecast method
is a difficult point in combination forecasting. The constant weight and the variable weight are two
common weight determination ways, and the variable weight has a better adaptability. Focusing on
this point, a large number of research has been carried out such as mathematical programming
method reported by Ma et al. [34], genetic algorithm reported by Chaturvedi et al. [2], Bayesian
method reported by Niu et al. [35] and neural network method reported by Hernandez et al. [19]
and Gofman et al. [20]. These methods mostly have the stabile performance and the accuracy meeting
the application requirements, but there are still several problems such as much complexity, slow
convergence or strong status dependence.

In this paper, we propose a robust weighted combination forecasting method based on forecast
model filtering and adaptive variable weight determination. Firstly, the similar years are selected
from the sample history years according to the similarity between the history year and the forecast
year. Secondly, the forecast models are filtered based on the comprehensive validity degree which
is composed of the fitted validity degree in the history year interval and the estimated forecast
validity degree in the forecast year interval. Thirdly, the improved Immune Algorithm-Particle Swarm
Optimization (IA-PSO), in which the disturbance variable is introduced and the adaptive adjustable
strategy of particle search speed is established, is used to determine the adaptive variable weight of
the selected forecast models. Lastly, the weighted combination forecast is carried out. The flowchart of
the proposed method is shown in Figure 1.

2. Similar Years Selection

There are a series of factors influencing the annual load. For example, in order to reflect the
influence of each factor on the load forecasting result, Zhu et al. [36] have investigated an Artificial
Neural Network-based approach for medium-and-long-term load forecasting. In the proposed
three-layer back propagation network, seven factors are selected as inputs which include Gross
Domestic Product (GDP), heavy industry production, light industry production, agriculture production,
primary industry, secondary industry and tertiary industry; Wang et al. [37] have pointed out that
there are mainly eight factors affecting the annual load: area GDP, primary industry GDP ratio,
secondary industry GDP ratio, tertiary-industry GDP ratio, power consumption per unit of GDP,
electricity price, urban per-capita income and rural per-capita income; Lei et al. [38] have analyzed
the variation characteristics of the annual maximum load, annual minimum load and typical daily
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load based on the recent historical load data and meteorological data of Chongqing region. Then,
they have studied the interrelationship between load characteristics and major influencing factors.
The results show that the temperature, rainfall, holidays and festivals have a significant influence on
the region power load; Liao et al. [39] have researched the current load characteristics of Changde
region and main factors influencing load variation. Influencing extents of main influencing factors
on regional load, respective proportions of these factors in the influences and the time periods
influenced by these factors are analyzed, and the quantization analysis on the relation between
load and influencing factors is performed. In conclusion, the factors considered by Wang et al. [37] are
more than Zhu et al. [36], and the factors considered by Lei et al. [38] and Liao et al. [39] relate to the
characteristics in short-term load forecasting. After comparison and summary, we choose the eight
factors pointed out by Wang et al. [37] which are more comprehensive and reasonable than others to
select the similar years in medium-and-long-term load forecasting.
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Figure 1. The flowchart of the proposed robust weighted combination forecasting method.

It is assumed that there are nhis history years {1, 2, . . . , nhis} and n f o forecast years {nhis + 1, nhis + 2,
. . . , nhis + n f o}. The year characteristic is defined as the factor affecting the annual load and the year
characteristic quantity is defined as the value of year characteristic in a history year.

If the year characteristic CHa is efficiency type, the year characteristic quantity CHQa ,b which
means the value of the year characteristic CHa of the history year HYb is standardized as follows:

CHQa,b “
CHQa,b

max
 

CHQa,1, CHQa,2, ¨ ¨ ¨ , CHQa,nhis

( (1)

where a = 1, 2, . . . , nch, b = 1, 2, . . . , nhis.
If the year characteristic CHa is cost type, the year characteristic quantity CHQa ,b which means

the value of the year characteristic CHa of the history year HYb is standardized as follows:

CHQa,b “
min

 

CHQa,1, CHQa,2, ¨ ¨ ¨ , CHQa,nhis

(

CHQa,b
(2)

where a = 1, 2, . . . , nch, b = 1, 2, . . . , nhis.
For two individuals whose characteristics have the same dimension number, distance and

similarity are usually used to measure the difference between them. The distance measures the
absolute distance between two individuals in space which is directly related to the position coordinates
of each individual (i.e., the numerical value of each characteristic dimension), but the similarity
measures the angle between two individual vectors and reflects more difference in direction that in
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difference in position [40–42]. Therefore, similarity is more suitable to measure the difference between
a history year and a forecast year.

Here, the most common cosine similarity is chosen [41,42]. The cosine similarity between the
history year HYb and the forecast year FYc is as follows:

CSIb,c “

nch
ř

a“1
CHQa,b ¨ CHQa,c

d

ˆ nch
ř

a“1
CHQa,b

2
˙

¨

ˆ nch
ř

a“1
CHQa,c

2
˙

(3)

where b = 1, 2, . . . , nhis, c = nhis + 1, nhis + 2, . . . , nhis + n f o.
Lastly, nshis (nshis < nhis) history years with the highest similarity are selected as the similar years

of the forecast year FYc.

3. Forecast Model Filtering

3.1. Forecast Model Validity Degree

As shown in Figure 2, the load sequence of similar years is
!

y11, y12, ¨ ¨ ¨ , y1nshis

)

, and the load

sequence of forecast years is
!

ynhis`1, ynhis`2, ..., ynhis`n f o

)

. We assume that there are n f m forecast

models. By the forecast model FMd (d = 1, 2, . . . , n f m), y1e,d is the fitted value of the similar year
e (e = 1, 2, . . . , nshis), and yc ,d is the forecast value of the forecast year c (c = nhis + 1, nhis + 2, . . . , nhis + n f o).
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The fitted value relative error of FMd for the similar year e is as follows:

RE1e,d “
y1e ´ y1e,d

y1e
(4)

The forecast value relative error of FMd for the forecast year c is as follows:

REc,d “
yc ´ yc,d

yc
(5)

Then, the fitted precision of FMd for the similar year e is as follows:

P1e,d “

$

&

%

1´
ˇ

ˇ

ˇ
RE1e,d

ˇ

ˇ

ˇ
, 0 ď

ˇ

ˇ

ˇ
RE1e,d

ˇ

ˇ

ˇ
ď 1

0 ,
ˇ

ˇ

ˇ
RE1e,d

ˇ

ˇ

ˇ
ě 1

(6)
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The forecast precision of FMd for the forecast year c is as follows:

Pc,d “

#

1´
ˇ

ˇREc,d
ˇ

ˇ, 0 ď
ˇ

ˇREc,d
ˇ

ˇď 1
0 ,

ˇ

ˇREc,d
ˇ

ˇě 1
(7)

Lastly, the fitted validity degree of FMd is as follows:

FIVd “ EXPpP1e,dq ¨ p1´ σpP
1
e,dqq (8)

where EXPpP1e,dq “
1

nshis

nshis
ř

e“1
P1e,d and σpP1e,dq “

d

1
nshis

nshis
ř

e“1
pP1e,d ´ EXPpP1e,dqq

2 are the expectation and

the standard deviation of the fitted precision of FMd for the similar year e, respectively.
The forecast validity degree of FMd is as follows:

FOVd “ EXPpPc,dq ¨ p1´ σpPc,dqq (9)

where EXPpPc,dq “
1

n f o

nhis`n f o
ř

c“nhis`1
Pc,d, σpPc,dq “

g

f

f

e

1
n f o

nhis`n f o
ř

c“nhis`1
pPc,d ´ EXPpPc,dqq

2 are the expectation and

the standard deviation of the forecast precision of FMd for the forecast year c, respectively.

3.2. Forecast Model Precision Estimation

The validity degree of a forecast model is defined in Equation (9) which can depict its credibility
and is a reflection of its inherent property [16–18]. Obviously, true value has not yet occurred and the
forecast error cannot be obtained in the future forecast interval. We can only estimate the precision
and the validity of a forecast model based on its inherent property. Then, the suitable forecast models
are selected and the combination forecast model is put forward.

3.2.1. Markov Chain-Based Precision Range Estimation

As an inherent property, the forecast model precision is shown in the form of the fitted precision
which is obtained through the virtual forecast for the multi-time load. Using the forecast model
FMd to forecast the load of the similar year e (e = 1, 2, . . . , nshis), we can obtain the fitted precision
sequence

!

P11,d, P12,d, ¨ ¨ ¨ , P1nshis ,d

)

. In this sequence, the expectation and the standard deviation of the
fitted precision of each similar year show the property of the forecast model. As is known, randomness
and discreteness appear in the fitted precision sequence. Therefore, we can use the Markov chain
transition matrix [43,44] to represent the transition rule as follows:

(1) The fitted precision distribution interval of FMd for the similar year e is divided into
nsi (nsi ď nshis) sub-intervals with equal distance as S1

d, S2
d, ..., Snsi

d , where

Sg
d “

”

Sg
d , Sg

d

ı

, S1
d “ min

!

P11,d, P12,d, ¨ ¨ ¨ , P1nshis ,d

)

, Snsi
d “ max

!

P11,d, P12,d, ¨ ¨ ¨ , P1nshis ,d

)

,

Sg
d ´ Sg

d “ Sh
d ´ Sh

d s.t. g ‰ h, g, h “ 1, 2, ..., nsi
(10)

Each fitted precision sub-interval can be considered as a fitted precision state.
(2) According to the fitted precision of FMd for the similar year e, the occurrence number of the

fitted precision state Sg
d is OCg (OCg < nshis). That means there are OCg times which belong to the fitted

precision state Sd
g. The transition number from the fitted precision state Sh

d to Sg
d is TRNh ,g. Thus, the

transition probability of FMd from the fitted precision state Sh
d to Sg

d can be obtained as follows:

TPh,g
d “

!

Sg
d “ cg

ˇ

ˇ

ˇ
Sh

d “ ck

)

“
TRNh,g

OCg (11)
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According to Equation (11), the one-step state transition matrix of FMd is as follows:

TMp1q
d “

»

—

—

—

—

–

TP1,1
d TP1,2

d ¨ ¨ ¨ TP1,nsi
d

TP2,1
d TP2,2

d ¨ ¨ ¨ TP2,nsi
d

...
...

...
TPnsi ,1

d TPnsi ,2
d ¨ ¨ ¨ TPnsi ,nsi

d

fi

ffi

ffi

ffi

ffi

fl

(12)

The q-step state transition matrix is as follows:

TMpqq
d “ pTMp1q

d q
q

(13)

(3) We construct an initial vector IVd whose elements are the occurrence numbers of each fitted
precision state of FMd. Though multiplying the initial vector IVd with the q-step state transition matrix

TMpqq
d , the new state matrix of FMd is obtained as follows:

SMd “ IVd ¨ TMpqq
d (14)

(4) We calculate the sum of each column vector of SMd. If the column vector CVEi (i = 1, 2, . . . , nsi)
has the maximum sum, the forecast precision will belong to the precision state Si

d.

3.2.2. Cloud Model-Based Precision Estimation

Due to the various factors, the fitted precision sequence P1d “
!

P11,d, P12,d, ..., P1nshis ,d

)

of the forecast
model FMd in nshis similar history years clearly has the property of random variables. As a result, the
forecast precision is uncertain in its precision range. Therefore, we can describe this uncertainty by the
expectation, entropy and hyper-entropy in the precision range and make the quantitative precision
estimation based on the normal cloud model [45,46] as follows:

(1) Firstly, we construct a backward cloud generator. We can map the fitted precision sequence
P1d “

!

P11,d, P12,d, ..., P1nshis ,d

)

into the normal cloud model. In this normal cloud model, the input is P1d
and the output is the expectation Exd, the entropy End and the hyper-entropy Hed. The algorithm of
this backward cloud generator is as follows:

Exd “ EXP
`

P1d
˘

(15)

End “

c

π

2
¨

1
nshis

nshis
ÿ

e“1

ˇ

ˇ

ˇ
P1e,d ´ Exd

ˇ

ˇ

ˇ
(16)

Hed “

g

f

f

e

1
nshis ´ 1

nshis
ÿ

e“1

pP1e,d ´ Exdq
2
´ pEndq

2 (17)

(2) Secondly, we construct a forward cloud generator. The input is Exd, End, Hed and the constraint
is the precision range Sd

g. The algorithm using the forward cloud generator for precision estimation is
as follows:

Pc,d “ NORMpExd, En1dq (18)

where En1d “ NORMpEnd, Hedq is a normal random number with the expectation End and the variance
Hed, Pc,d is the estimated forecast precision with the expectation Exd and the variance En1d in the
precision range Sd

g.
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3.3. Forecast Model Filtering Based on Comprehensive Validity Degree

The comprehensive validity degree of the forecast model FMd in the whole interval [1, nshis] Y
[nhis + 1, nhis + n f o] is as follows:

CVd “ α ¨ FIVd ` p1´αq ¨ FOVd (19)

where FIVd is the fitted validity degree of FMd in the similar history years interval [1, nshis], FOVd is
the estimated forecast validity degree of FMd in the forecast years interval [nhis + 1, nhis + n f o].

The empirical coefficient α (0 ď α ď 1) is determined by the forecast staff based on their
experiences. The bigger α is, the more important FIVd is. Here α = 0.5, which means that FIVd and
FOVd are equally important.

We use the mean comprehensive validity degree of n f m forecast models as the forecast model
filtering threshold:

CV “

n f m
ÿ

d“1

CVd (20)

If CVd ě CV, the forecast model FMd will be selected for the combination forecast, else it will be
eliminated. In the applications, the filtering threshold can be adjusted according to the actual situation
and forecast decision-makers’ experiences.

4. Forecast Model Weight Determination and Combination Forecast

4.1. Mathematical Description

After the forecast models filtering, ns f m (ns f m < n f m) better forecast models are selected from n f m
forecast models for combination forecast.

We assume that the weight of the selected forecast model SFMj (j = 1, 2, . . . , ns f m) is ωj

(
ns f m
ř

j“1
ωj “ 1, 0 ď ωj ď 1). For the similar history year e (e = 1, 2, . . . , nshis), the actual load is y1e

and the forecast load by SFMj is y3

e,j, so the combination forecast load of ns f m selected forecast models
is as follows:

y3

e “

ns f m
ÿ

j“1

ωjy
3

e,j (21)

The target is to achieve the minimum square sum of the combination forecast error, so the
mathematical description is described as follows:

min
nshis
ÿ

e“1

¨

˝

ns f m
ÿ

j“1

ωjy
3

e,j ´ y1e

˛

‚

2

, s.t.
ns f m
ÿ

j“1

ωj “ 1, 0 ď ωj ď 1 (22)

4.2. Improved Immune Algorithm-Particle Swarm Optimization (Improved IA-PSO)

4.2.1. Particle Swarm Optimization (PSO)

As a kind of stochastic optimization algorithm, particle swarm optimization (PSO) [47] is
developed based on the simulation of bird-group foraging behavior. To search for the optimal solution,
the individuals have to cooperate and compete with each other in PSO.

There is an m-dimensional space and an initial swarm PO composed of npa particles as follows:

PO “

!

PA1, PA2, . . . , PAnpa

)

(23)
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For the particle PAl (l = 1, 2, . . . , npa), its position xl and its speed vl are expressed by two
m-dimensional vectors as follows:

xl “ pxl ,1, xl ,1, . . . , xl ,mq
T (24)

vl “ pvl ,1, vl ,1, . . . , vl ,mq
T (25)

Each particle is moving in the solution space, and its direction is determined by its speed. The
speed and position of the particle is continuously updated as follows:

vpk`1q
l “ w ¨ vpkql ` LF1 ¨ randpkq1 ¨ ppbestpkql ´ xpkql q ` LF2 ¨ randpkq2 ¨ pGbestpkql ´ xpkql q (26)

xpk`1q
l “ xpkql ` vpk`1q

l (27)

where vpkql and xpkql are the speed and position of the particle PAl in the iteration iterk, LF1 and LF2 are

the learning factors, and 0 ď randpkq1 , randpkq2 ď 1 are two random numbers.

‚ The momentum part w ¨ vpkql represents the trust in its current motion state where w is the inertia

coefficient used to control the influence of the speed vpkql on the speed vpk`1q
l . This part provides a

necessary momentum which enables the particle to carry on the inertia motion based on its speed.

‚ The individual cognitive part LF1 ¨ randpkq1 ¨ ppbestpkql ´ xpkql q represents the particle self-thinking
behavior. This part encourages the particle to fly to the best position found by itself.

‚ The social cognitive part LF2 ¨ randpkq2 ¨ pGbestpkql ´ xpkql q represents the information sharing and
cooperation of different particles. This part guides the particle to fly to the best position of
the group.

Therefore, the momentum part w ¨ vpkql represents the particles’ diversification; the individual

cognitive part LF1 ¨ randpkq1 ¨ ppbestpkql ´ xpkql q and the social cognitive part LF2 ¨ randpkq2 ¨ pGbestpkql ´ xpkql q

represent the particles’ centralization. The main performance of PSO is determined by the balance of
the three parts.

In early evolution, PSO has the advantage of fast convergence speed and simple operation, so
it can be used for solving the nonlinear, non-differentiable and multi-peak complex optimization
problems. But in late evolution, PSO has a significantly slower convergence speed and reaches a poor
accuracy, so it is easy to fall into the local optimum.

4.2.2. Immune Algorithm-Particle Swarm Optimization (IA-PSO)

To solve this problem, IA-PSO introduces biological immune system’s specific information
processing mechanism (e.g., immune memory, immune regulation and immune selection) into PSO’s
basic framework [48,49].

‚ Immune memory: The immune system keeps the antibodies opposing against the invading
antigen as memory cells. If the same antigen invades again, the memory cells will be activated
and produce a large number of antibodies. In IA-PSO, this idea is used to preserve the excellent
particle. The best position pbestpkql searched by each particle up to now is considered as a memory
cell. If the new born particles are detected not to meet the requirements, they will be replaced by
the memory cells.

‚ Immune regulation: In IA-PSO, immune regulation is used for particle selection. If a particle
has a strong affinity or a low concentration, it will be promoted. Otherwise, it will be demoted.
Therefore, the particle diversification can be always kept. The selected probability [48,49] of the
particle PAl is as follows:

PROl “ χ ¨ PROl1 ` p1´ χq ¨ PROl2 (28)
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In Equation (28), PROl1 “ AFl{
all
ř

u“1
AFu represents the selected probability determined by the

affinity where AFl is the affinity of the particle PAl , PROl2 “ CON´1
l {

all
ř

u“1
CON´1

u represents

the selected probability determined by the concentration where CONl is the concentration
of the particle PAl . χ represents the weight of PROl1 and 1 ´ χ represents the weight of
PROl2 (0 ď χ ď 1).

‚ Immune selection: In the immune system, vaccinating means to change several components of
the antibody according to the vaccination. In IA-PSO, the group best position Gbestpkqi up to the
iteration iterk can be considered as the closest one to the optimal solution. Thus, we use several
components of Gbestpkqi as the vaccination to vaccinate the particles and calculate the particle
fitness value for immune selection. If the particle fitness value after the vaccination is lower than
its parent, the vaccination will be abolished. Otherwise, the particle will be retained.

IA-PSO, which inherits the global optimization ability of PSO and the immune information
processing mechanism of IA, can improve the algorithm accuracy. But at the same time, the algorithm
complexity is increased because of the introduction of the immune system.

4.2.3. Improved IA-PSO Based on Disturbance Variable

By introducing a disturbance variable and establishing the searching speed adaptive mechanism,
we improve IA-PSO in this paper. Through this improvement, not only the diversity of particles can
be ensured to avoid the local optimum, but also the accuracy and convergence speed can be increased.

To solve the mathematical problem described in Equation (22), the search space is set as
ns f m-dimensional, the particles number is npa, and the maximum iteration number is iterMax. The
position of each particle is an ns f m-dimensional vector in which each dimensional represents the
weight of a selected forecast model. After the iteration iterk (iterk = 1, 2, . . . , iterMax), the position and
speed of the particle PAl (l = 1, 2, . . . , npa) are as follows:

xpkql “ pxpkql,1 , xpkql,2 , . . . , xpkql,ns f m
q

T
(29)

vpkql “ pvpkql,1 , vpkql,2 , . . . , vpkql,ns f m
q

T
(30)

pbestpkql , gbestpkq, Gbestpkq are used to represent the best position searched by the particle PAl in the
iteration iterk, the best position searched by the particle swarm in the iteration iterk, the best position
searched by the particle swarm up to the iteration iterk, respectively.

Introducing Disturbance Variable into IA-PSO

In the production process of a new particle swarm, the particle position is updated according to
Equation (27), and the step length is represented by Equation (26). The coefficients of the three parts in
Equation (26) are randomly changed, but only the rules of the particle to follow the order are changed.
It means that the step length only reflects the rules of the search behavior and the diversification is
lacking. Group optimization should be a balance between the order following and random irrational
behaving, so we introduce the disturbance term [50,51] to Equation (26). In each iteration, the particle
position is updated as follows:

xpkql “ xpk´1q
l ` vpkql ` prandpkq3 ´ 0.5q ¨βpkql (31)

where 0 ď randpkq3 ď 1 is a random number subject to uniform distribution, βpkql > 0 is the disturbance

variable of the particle PAl in the iteration iterk. The disturbance term prandpkq3 ´ 0.5q ¨βpkql reflects an
unpredictable random behavior.
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The disturbance variable βpkql controls the random decision-making behavior strength of the

particle PAl in the iteration iterk. If βpkql is too big, the awareness of order following will be submerged.

If βpkql is too small, the population diversity and global search ability will be reduced. Therefore, the
disturbance variable of each particle should be adjusted in the algorithm operation according to its
evolution speed. The adjustment can make the particle swarm with a good generalization ability and
convergence speed in the evolution process. Thus βpkql is defined as follows:

β
pkq
l “ βmin ¨

F
´

pbestpk´1´θq
l

¯

´ F
´

pbestpk´1´ρq
l

¯

F
´

pbestpk´1q
l

¯

´ F
´

pbestpk´1´θq
l

¯

s.t. pbestpk´1q
l ‰ pbestpk´1´θq

l ‰ pbestpk´1´ρq
l

θ ă ρ, θ “ min t1, 2, . . . , ku , ρ “ min t1, 2, . . . , ku

(32)

where βmin is the minimum value of the disturbance variable, F p¨q is the fitness function,
pbestpk´1q

l , pbestpk´1´θq
l , pbestpk´1´ρq

l is the best position found by the particle PAl in the iteration
iterk´1, iterk´1´θ, iterk´1´ρ. When the evolution begins, βl is bigger which means that the particle PAl
has a step length with strong randomness. After several iterations, βl tend to βmin which means that
the step length randomness of the particle PAl becomes weak.

Through the introduction of the disturbance term, Equation (31) reflects the positive and negative
sides of the particle updating decision. In Equation (31), the first part xpk´1q

l is the original position,

the second part vpkql reflects the step length of order following, and the third part prandpkq3 ´ 0.5q ¨βpkql
reflects the step length of random irrational behaving. Due to the disturbance variable, the particle
position updating can be ensured and a strong search desire can be kept even if the local optimum
appears when compared with Equation (26). As a result, the premature convergence problem can be
overcome, the local best solution can be prevented and the algorithm accuracy can be improved.

Establishing the Adaptive Adjustable Strategy of Particle Searching Speed

In the particle searching process, the searching speed should be adaptively adjusted to accelerate
the convergence based on the diversity of particles. For the excellent particles, their searching speeds
should be decreased to make them quickly be close to the global best solution, and then the convergence
can be accelerated. For the poor particles, their searching speed should be adjusted according to the
convergence degree of the particle swarm: if the swarm individuals tend to be dispersed, the searching
speed should be reduced and the swarm development ability should be enhanced to strengthen
the local optimization; if the swarm individuals tend to be converged (the algorithm falls into local
optimum), the searching speed should be increased and the swarm detection ability should be enhanced
to effectively jump out of the local optimum and achieve the accelerated convergence [42,43].

In iteration iterk, the fitness of the particle PAl is PFpkql , the fitness of the best particle is PFpkq0 ,

the average fitness of the swarm is PFpkqavg, and the average fitness of the particles whose fitness are

bigger than PFpkqavg is PFpkqAVG. We use ∆pkq “
ˇ

ˇ

ˇ
PFpkq0 ´ PFpkqAVG

ˇ

ˇ

ˇ
to evaluate the swarm convergence degree

in the iteration L. According to the particle fitness, the swarm is divided into three sub-swarms:
PFpkql ą PFpkqAVG, PFpkqavg ă PFpkql ă PFpkqAVG, PFpkql ă PFpkqavg. For the different sub-swarms, we take
different adjustment operations to their searching speeds as follows:

(1) PFpkql ą PFpkqAVG
As the excellent individuals in the swarm, these particles have been relatively close to the global

optimum. Their searching speeds should be reduced to prevent from jumping out of the global
optimum. So the searching speed is adjusted as follows:
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vpkqnew,l “

¨

˝1´ 0.5
PFpkql ´ PFpkqAVG

ˇ

ˇ

ˇ
∆pkq

ˇ

ˇ

ˇ

˛

‚¨ vpkql (33)

If the particle is more excellent, it will have a lower searching speed. As a result, the local optimum
ability is strengthened and the convergence is accelerated.

(2) PFpkqavg ă PFpkql ă PFpkqAVG
As the general individuals of the swarm, both the local optimum ability and the global optimum

ability of these particles are good. Therefore, we don’t adjust their searching speeds.
(3) PFpkql ă PFpkqavg

These particles are the relatively poor individuals in the swarm. The searching speed is adjusted
as follows:

vpkqnew,l “

˜

1.5´
1

1` η1 ¨ expp´η2 ¨ ∆
pkqq

¸

¨ vpkql (34)

where η1,η2 > η1,η2 > 0 and η1 is used to control the upper limit of vpkqnew,l . If η1 is bigger, the upper

limit of vpkqnew,l will be bigger. Here we choose η1 = η2 = 4. ∆pkq ě 0, so vpkqnew,l P r0.5 ¨ vpLqi , 1.3 ¨ vpLqi s.

In the searching process, vpkqnew,l of these particles is dynamically and adaptively adjusted according

to the value of ∆pkq: if the individuals tend to be dispersed (∆pkq becomes bigger), vpkqnew,l will be reduced
and the swarm development ability will be enhanced to strengthen the local optimization; if the
individuals tend to be converged (∆pkq becomes smaller), vpkqnew,l will be increased and the swarm
detection ability will be enhanced to effectively jump out of the local optimum.

4.3. Implementation Steps of Forecast Model Weight Determination Based on Improved IA-PSO

The flowchart of forecast model weight determination (FMWD) based on improved IA-PSO is
shown in Figure 3.
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The implementation steps are as follows:
Step 1: Initialization. It is assumed that the elements of the particle position vector x all belong to

the interval [0, 1], the elements of the particle speed vector v all belong to the interval [´vmax, vmax],
the maximum iteration number is itermax and the initial value of the iteration number k is k = 0. npa

particles are randomly generated. The particle PAl (l = 1, 2, . . . , npa) has the position xp0ql and the flying

speed vp0ql .

Step 2: Calculate pbestpkql , gbestpkql , Gbestpkql and the fitness of the particle PAl . Here, the fitness of
the particle PAl can be represented by the target function in Equation (22) as follows:

Fpkql “

nshis
ÿ

e“1

¨

˝

ns f m
ÿ

j“1

xpkql,j ¨ y
2

e,j ´ y1e

˛

‚

2

(35)

Step 3: Obtain the new generation of particles. The particle speed is adjusted based on the
adaptive adjustable mechanism and the new position xpk`1q

l and new speed vpk`1q
l can be obtained

according to Equations (26) and (31). The elements of the new speed vpk`1q
l must belong to the interval

[´vmax, vmax].
Step 4: Check the new generation of particles. If the position of a new particle is an infeasible

solution (one or more elements of the new position xpk`1q
l don’t belong to the interval [0, 1]), this

particle will be replaced with the memory particle pbestpkql .
In addition, another napa particles meeting the requirements will be randomly added. According

to Equation (28), npa particles are selected from the npa + napa particles based on the affinity and
concentration of antibody and antigen.

Step 5: Vaccinate. One particle is randomly selected from npa new particles. Then, one element is

randomly selected from the front t ´ 1 elements of Gbestpkql to exchange with the selected particle at
the corresponding element. The tth element of the selected particle is calculated as follows:

xpk`1q
l,t “ 1´

t´1
ÿ

j“1

xpk`1q
l,j (36)

Hence the vaccination is finished.
Step 6: Immune selection. The particle fitness after the vaccination is calculated. If the particle

fitness value after the vaccination is lower than its parent, the vaccination will be abolished. Else, the
particle will be retained.

Step 7: Looping execution of Steps 4 and 5 for r times (r times vaccination). A new generation of
npa particles is obtained.

Step 8: Judge whether the algorithm should be stopped. The stopping of algorithm is usually
determined by the maximum iteration number or the precision. If the algorithm meets its stopping
condition, the optimization will be stopped. Else, k = k + 1 and go back to Step 2 to continue.

4.3.1. Weighted Combination Forecast

Based on the improved IA-PSO, the weightωj of the selected forecast model SFMj (j = 1, 2, . . . , ns f m) is

obtained where
ns f m
ř

j“1
ωj “ 1, 0 ďωj ď 1. For the selected forecast model SFMj, y2

c,j is the forecast value

of the forecast year c (c = nhis + 1, nhis + 2, . . . , nhis + n f o). So the weighted combination forecast (WCF)
value of the forecast year c is as follows:

y2

c “

ns f m
ÿ

j“1

ωj ¨ y
2

c,j (37)
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5. Case Study

We use the proposed method to forecast a Chinese province’s load of 2005 based on its loads of
the history years from 1998 to 2004. The year characteristic quantity data from 1998 to 2005 is shown in
Table 1.

The cosine similarity between the history years 1998–2004 and the forecast year 2005 is shown in
Table 2.

Table 1. The year characteristic quantity data from 1998 to 2005 [37,52].

Year Area GDP
(108 Yuan)

Primary
Industry

GDP
Ratio (%)

Secondary
Industry

GDP
Ratio (%)

Tertiary
Industry

GDP
Ratio (%)

Power
Consumption per

Unit of GDP
(kWh/Yuan)

Electricity
Price

(Yuan/kWh)

Urban
per-Capita

Income
(Yuan)

Rural
per-Capita

Income
(Yuan)

1998 9686.6 12.95 50.22 36.83 0.156 0.408 3005.21 1896.56
1999 9802.8 12.90 49.90 37.20 0.152 0.408 3859.86 2003.63
2000 9912.3 12.88 50.07 37.05 0.150 0.410 4663.23 2150.36
2001 10,626.6 12.83 50.06 37.11 0.148 0.412 5551.91 2340.14
2002 11,586.5 12.80 49.69 37.51 0.142 0.412 6599.24 2485.86
2003 12,955.2 12.38 50.75 36.87 0.139 0.412 7370.65 2657.93
2004 15,133.9 12.68 51.63 35.69 0.132 0.419 8245.55 3103.98
2005 17,140.8 12.79 49.62 37.59 0.125 0.444 9227.55 3391.82

Table 2. The cosine similarity between the history years 1998–2004 and the forecast year 2005.

Year Cosine Similarity (%)

1998 98.56
1999 95.21
2000 94.66
2001 99.60
2002 97.52
2003 96.37
2004 98.63

According to forecasting decision-makers’ experiences, we choose the threshold value of similar
years selection as 96%. Therefore, the five history years (1998 and 2001–2004) with highest similarity
are selected as the similar years of the forecast year 2005.

The power consumption of the province in 1998 and 2001–2005 is shown in Table 3.

Table 3. The power consumption of the Chinese province in 1998 and 2001–2005 (108 kWh) [16,52].

Year 1998 2001 2002 2003 2004 2005

Power Consumption 437.85 557.58 628.82 725.20 833.01 946.33

The forecast values by eleven forecast models are shown in Table 4.
By the validity degree calculation method based on Markov chain and cloud model, the

comprehensive validity degrees of the eleven forecast models are obtained as shown in Table 5.
The forecast model filtering threshold of the eleven forecast models is cvd “ 81.46%. Therefore,

the forecast models FM4, FM5, FM8, FM9, FM11 are selected for the combination forecast and the others
are eliminated. Respectively, we use PSO, IA-PSO and improved IA-PSO for the forecast model weight
determination. There are five selected forecast models SFM1 (FM4: Power function model), SFM2 (FM5:
S-curve model), SFM3 (FM8: Cubic curve model), SFM4 (FM9: Artificial neural network method) and
SFM5 (FM11: Grey system method). The parameters are set as follows: npa = 100, ns f m = 5, vmax = 1,
itermax = 1000, w = 0.6, LF1 = LF2 = 2, napa = 30, r = 25, βmin = 0.001, η1 = η2 = 4. The results of forecast
model weights determination (FMWD) by PSO, IA-PSO and improved IA-PSO, which are abbreviated
as FMWD-PSO, FMWD-IA-PSO, FMWD-improved-IA-PSO, are shown in Table 6.
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Table 4. The forecast power consumption by the eleven forecast models (108 kWh).

Forecast Model 1998 2001 2002 2003 2004 2005

FM1: Exponential model (y = 780.65e´0.82{x) 343.91 636.02 662.58 680.93 694.36 704.55
FM2: Logarithm model (y = 362.13 + 188.39lnx) 362.09 623.33 665.32 699.65 728.73 753.90
FM3: Hyperbola model (y = 722.84 ´ 354.37/x) 368.54 634.24 652.01 663.76 672.21 678.53

FM4: Para-curve model (y = 431.79 ´ 3.58x + 8.17x2) 436.88 556.81 631.53 723.67 833.29 960.30
FM5:Grey system method [53] 437.94 567.04 642.01 727.00 823.23 932.08

FM6: COMPERTZ model (lny = 6.46 ´ 1.29e´x) 400.04 626.88 636.27 639.75 641.14 641.64
FM7: Power function model (y = 358.90x0.385) 358.90 612.43 667.48 716.12 759.91 800.02

FM8: Cubic curve model (y = 432.10 ´ 3.94x + 8.81x2 ´ 0.0087x3) 437.04 556.81 631.56 723.84 833.17 960.04
FM9: Artificial neural network method [36] 406.81 583.02 658.81 725.38 775.44 809.03

FM10: S-curve model (y´1 = 0.0015 + 0.0039e´x) 345.60 649.47 669.01 676.35 679.22 680.30
FM11: Exponential smoothing method [54] 437.85 544.91 615.01 708.33 816.72 892.51

Table 5. The comprehensive validity degree of the eleven forecast models based on the real and forecast
power consumptions in 1998 and 2001–2005.

Forecast Model Comprehensive Validity Degree (%)

FM1 81.09
FM2 77.90
FM3 75.56
FM4 84.32
FM5 85.80
FM6 79.03
FM7 74.87
FM8 88.91
FM9 87.23
FM10 78.45
FM11 82.91

Table 6. The results of FMWD-PSO, FMWD-IA-PSO and FMWD-improved-IA-PSO.

Algorithm Iteration Number
The Forecast Model Weight

SFM1 SFM2 SFM3 SFM4 SFM5

FMWD-PSO 623 0.0611 0.2120 0.3876 0.0861 0.2532
FMWD-IA-PSO 490 0.2598 0.1662 0.3343 0.0343 0.2054

FMWD-improved-IA-PSO 193 0.4105 0.0401 0.4895 0.0002 0.0597

Using the forecast model weights shown in Table 6, the results of weighted combination forecast
(WCF) based on FMWD-PSO, FMWD-IA-PSO and FMWD-improved-IA-PSO, which are abbreviated
as WCF-FMWD-PSO, WCF-FMWD-IA-PSO and WCF-FMWD-improved-IA-PSO, are shown in Table 7.

Table 7. The results of weighted combination forecast methods (108 kWh).

Weighted Combination Forecast 1998 2001 2002 2003 2004 2005

WCF-FMWD-PSO 434.82 558.22 631.93 720.71 821.93 923.03
WCF-FMWD-IA-PSO 436.28 556.97 630.82 721.19 826.19 936.41

WCF-FMWD-improved-IA-PSO 437.05 556.52 630.98 722.97 831.81 954.96

Four synthesized forecast methods reported by Kang et al. [55] are as follows:
(1) Equal weight method: the weights of forecast models are equal, so the combination forecast

value of the forecast year c is as follows:

yc “
1

n f m

n f m
ÿ

d“1

yc,d (38)



Energies 2016, 9, 20 15 of 22

where c = nhis + 1, nhis + 2, . . . , nhis + n f o, d = 1, 2, . . . , n f m. It is a simple combination forecast method,
and both the precision of single forecast model and the relationship between different forecast models
are considered.

(2) Variance analysis method: the combination forecast value of the forecast year c is as follows:

yc “

n f m
ÿ

d“1

ωd ¨ yc,d (39)

where c = nhis + 1, nhis + 2, . . . , nhis + n f o, d = 1, 2, . . . , n f m. All forecast models are independent of
each other, so the variance of combination forecast can be expressed as follows:

Var “
n f m
ÿ

d“1

ωd
2 ¨ δdd (40)

where c = nhis + 1, nhis + 2, . . . , nhis + n f o, d = 1, 2, . . . , n f m, δdd is the variance of the forecast model
FMd. To obtain the minimum value of Varon ωd, the Lagrange multiplier method is used and the
weight of FMd is defined as follows:

ωd “
1

δddp
1
δ11

`
1
δ22

` ...`
1

δn f mn f m

q

(41)

(3) Optimum fitting method
The forecast model weight determination of the optimum fitting method is based on the deviations

of all single forecast models and the complementarily between different forecast models. The deviations
of the forecast model FMd can be expressed as follows:

Devd “
1
2
p

1
nshis

ˇ

ˇ

ˇ

ˇ

ˇ

nshis
ÿ

e“1

py1 ´ y1e,dq

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

nshis

nshis
ÿ

e“1

ˇ

ˇ

ˇ
y1 ´ y1e,d

ˇ

ˇ

ˇ
q (42)

Therefore, the weight of FMd is defined as follows:

ωd “

max
1ďd1ďn f m

Devd1 ` min
1ďd1ďn f m

Devd1 ´Devd

n f m
ř

d“1
p max

1ďd1ďn f m
Devd1 ` min

1ďd1ďn f m
Devd1 ´Devdq

(43)

(4) Optimum forecast method
In this method, n f m forecast models are used to carry out the forecasting respectively, and then

these models are compared according to standard deviations, fitting goodness, correlation degree or
relative error et al. Lastly the best one is chosen as the final forecast model.

Percentage error (PE) and mean absolute percentage error (MAPE) are used as evaluating
indicators to compare the proposed method (WCF-FMWD-improved-IA-PSO) to WCF-FMWD-PSO,
WCF-FMWD-IA-PSO, the single forecast models (SFM1–SFM5) and the four synthesized forecast
methods [55] (equal weight method, variance analysis method, optimum fitting method and optimum
forecast method). They are shown in Table 8.
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Table 8. The percentage error of the proposed method (WCF-FMWD-improved-IA-PSO) and others.

Forecast Method Mean Absolute
Percentage Error (%)

Percentage Error (%)

1998 2001 2002 2003 2004 2005

SFM1 0.42 ´0.22 ´0.14 0.43 ´0.21 0.03 1.48
SFM2 1.12 0.02 1.70 2.10 0.25 1.17 ´1.51
SFM3 0.40 ´0.18 ´0.14 0.44 ´0.19 0.02 1.45
SFM4 6.31 ´7.09 4.56 4.77 0.02 ´6.91 ´14.51
SFM5 2.41 0 ´2.27 ´2.20 ´2.33 ´1.96 ´5.69

Equal weight method [55] 0.98 0.04 1.56 1.10 0.80 ´1.02 ´1.33
Variance analysis method [55] 1.25 0.02 ´1.27 ´0.20 ´2.21 ´1.16 ´2.63
Optimum fitting method [55] 2.78 ´2.09 5.56 0.77 1.02 ´2.91 ´4.32

Optimum forecast method [55] 1.16 ´0.59 2.11 0.97 0.56 1.21 1.50
WCF-FMWD-PSO 0.93 ´0.69 0.12 0.49 ´0.62 ´1.33 ´2.36

WCF-FMWD-IA-PSO 0.53 ´0.36 ´0.11 0.32 ´0.55 ´0.82 ´1.05
WCF-FMWD-improved-IA-PSO 0.35 ´0.18 ´0.19 0.34 ´0.31 ´0.14 0.91

From the comparison of PE and MAPE of the proposed method (WCF-FMWD-improved-IA-PSO)
and others shown in Figures 4 and 5 and Table 8, we can see the follows:

‚ The maximum and minimum PE of the single forecast models (SFM1–SFM5) are ´14.51% and 0
respectively, the maximum and minimum MAPE of the single forecast models (SFM1–SFM5) are
6.31% and 0.40% respectively.

‚ The maximum and minimum PE of the four synthesized forecast methods in Reference [55] are
5.56% and 0.02% respectively, the maximum and minimum MAPE of the four synthesized forecast
methods in Reference [55] are 2.78% and 0.98% respectively.

‚ The maximum and minimum PE of WCF-FMWD-PSO are ´2.36% and 0.12% respectively, the
MAPE of WCF-FMWD-PSO is 0.93% and the iteration number is 623.

‚ The maximum and minimum PE of WCF-FMWD-IA-PSO are 1.05% and ´0.11% respectively, the
MAPE of WCF-FMWD-IA-PSO is 0.53% and the iteration number is 490.

‚ The maximum and minimum PE of WCF-FMWD-improved-IA-PSO are 0.91% and ´0.14%
respectively, the MAPE of WCF-FMWD-improved-IA-PSO is 0.35% and the iteration number
is 193.
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Through the above analysis and the comparison shown in Figures 4 and 5 the proposed method
WCF-FMWD-improved-IA-PSO results in an improved accuracy overall (MAPE is 0.35, maximum and
minimum PE are 0.91% and´0.14%) when compared against other described methods over the chosen
time period and year characteristics. In addition, the proposed method WCF-FMWD-improved-IA-PSO
has the fastest convergence rate in forecast model weight determination when compared against
WCF-FMWD-PSO and WCF-FMWD-IA-PSO. Therefore, using the proposed method to forecast the
medium-and-long-term load is better than using other methods. The correctness and feasibility of the
proposed method are proven.

6. Conclusions

In this paper, we have proposed a robust weighted combination load forecasting method
WCF-FMWD-improved-IA-PSO based on forecast model filtering and adaptive variable weight
determination to forecast the annual electric load. The contribution and novelty are mainly as follows:

(1) Due to the fact that the forecast year’s true load is unknown, the comprehensive validity degree
of forecast model is defined by the integration of fitted value relative error and forecast value
relative error, and then forecast models are filtered based on their comprehensive validity degrees.

‚ The definition of validity degree can effectively overcome the inherent shortcomings of
error theory. Entirely investigating the fitting level and the validity of forecast model,
the comprehensive validity degree definition and the forecast model filtering method can
improve the robustness of combination forecasting.

‚ Revealing the transition pattern between the natural precision and validity degree, the
forecast precision estimation method based on Markov chain and cloud model can provide
an important basis for the subsequent weighted combination forecasting. In the forecast
models’ filtering, the better ones will be selected and the worse ones will be eliminated. It
can also improve the robustness of combination forecasting.

(2) The improved IA-PSO is used to determine the forecast model weight in combination forecasting.
Based on the uniting of immune system’s specific information processing mechanism and PSO’s
global convergence ability, disturbance variable and particle searching speed’s adaptive adjustable
strategy are introduced to improve the algorithm performance. The particles’ diversity is ensured
while the convergence speed is increased. It can avoid the local optimal and improve the accuracy.
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As can be seen from the case study, the maximum and minimum of percentage error by
the proposed method WCF-FMWD-improved-IA-PSO are 0.91%, ´0.14% and the mean absolute
percentage error is 0.35%, which are smaller than those by the single forecast models (SFM1–SFM5), the
four synthesized forecast methods [55], WCF-FMWD-PSO and WCF-FMWD-IA-PSO. These indicate
that the proposed method has significant superiority over other methods in the terms of annual electric
load forecasting accuracy. The iteration number of FMWD-improved-IA-PSO in the proposed method
(193) is far less than the iteration numbers of FMWD-PSO and FMWD-IA-PSO (623 and 490), so
its advantage that the global optimal solution is reached faster than PSO and IA-PSO is confirmed.
In conclusion, the proposed method WCF-FMWD-improved-IA-PSO has a higher robustness and
better accuracy, and it can meet the requirements of the annual electric load forecast and can also be
applied in the forecast of related fields. In the forecast with analogous features, the proposed method
WCF-FMWD-improved-IA-PSO can also be applied.
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Nomenclature

n number
CH year characteristic
CHQ year characteristic quantity
HY history year
FY forecast year
CSI Cosine similarity
FM forecast model
y1 similar year load
y forecast year load
y3 forecast year load by a forecast model
RE1 fitted value relative error
RE forecast value relative error
P1 fitted precision
P forecast precision
FIV fitted validity degree
FOV forecast validity degree
S sub-interval
OC occurrence number
TRN transition number
TP transition probability
TM state transition matrix
IV initial vector
SM state matrix
CVE column vector
Ex expectation
En entropy
He hyper-entropy
En1 normal random number
CV comprehensive validity degree
SFM selected forecast model
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PO particle swarm
PA particle
x position
v speed
LF learning factor
rand random number
w inertia coefficient
PRO probability
AF affinity
CON concentration
iter iteration
F fitness function
PF particle fitness
r vaccination times
Var variance
Dev deviation
Greek letters
σ standard deviation
α empirical coefficient
χ weight
β disturbance variable
∆ swarm convergence degree
η coefficient used to control the upper limit
ω forecast model’s weight
Superscripts
g the gth sub-interval
h the hth sub-interval
(h, g) the transition from the hth to the gth

(k) the kth iteration
(q) step
q the qth power
Subscripts
his history year
fo forecast year
shis selected history year
fm forecast model
sfm selected forecast model
si sub-interval
pa particle
apa added particle
avg average
AVG the average of the numbers which are bigger than the global average
a the ath year characteristic
b the bth year characteristic quantity
c the cth forecast year
d the dth forecast model
e the eth similar year
i the ith column vector
j the jth selected forecast model
l the lth particle
m the dimensional number of solution space
t the tth element
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