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Abstract: Price arbitrage involves taking advantage of an electricity price difference, storing
electricity during low-prices times, and selling it back to the grid during high-prices periods. This
strategy can be exploited by customers in presence of dynamic pricing schemes, such as hourly
electricity prices, where the customer electricity cost may vary at any hour of day, and power
consumption can be managed in a more flexible and economical manner, taking advantage of the
price differential. Instead of modifying their energy consumption, customers can install storage
systems to reduce their electricity bill, shifting the energy consumption from on-peak to off-peak
hours. This paper develops a detailed storage model linking together technical, economic and
electricity market parameters. The proposed operating strategy aims to maximize the profit of the
storage owner (electricity customer) under simplifying assumptions, by determining the optimal
charge/discharge schedule. The model can be applied to several kinds of storages, although the
simulations refer to three kinds of batteries: lead-acid, lithium-ion (Li-ion) and sodium-sulfur (NaS)
batteries. Unlike literature reviews, often requiring an estimate of the end-user load profile, the
proposed operation strategy is able to properly identify the battery-charging schedule, relying
only on the hourly price profile, regardless of the specific facility’s consumption, thanks to some
simplifying assumptions in the sizing and the operation of the battery. This could be particularly
useful when the customer load profile cannot be scheduled with sufficient reliability, because of the
uncertainty inherent in load forecasting. The motivation behind this research is that storage devices
can help to lower the average electricity prices, increasing flexibility and fostering the integration of
renewable sources into the power system.

Keywords: price arbitrage; battery energy storage system; optimal operation; hourly electricity
prices; energy management

1. Introduction

Electricity customers will face significant challenges in the near future due to the most recent
developments in the energy market sector. These changes have been mainly driven by the increasing
penetration of renewable and distributed energy sources in the power system, which can positively
contribute to a reduction of CO2 emissions. The diffusion of renewable sources has been made
possible thanks to the introduction of support policies, such as those put in place for the photovoltaic
(PV) and wind technology [1–4]. Clearly, the transition from the current centralized electricity market
structure towards a decentralized market model will require major investments in the electricity grid
infrastructure, in order to ensure an adequate level of quality and reliability of the energy supply.
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In the spot markets, the electricity price varies stochastically from one day to the next and
systematically between seasons. The marginal cost of producing energy has become much more
volatile in the last decade, mainly due to the recent moves toward competitive liberalized markets.
Indeed, the competition among actors has increased the range of variability in electricity prices,
expanding the difference between on-peak and off-peak prices. Normally, electricity users are not
exposed to these fluctuations but pay a constant price. In an attempt to reduce demand peaks,
several utilities are moving from a conventional fixed-rate pricing scheme to new market-based
models, where the electricity cost is free to fluctuate depending on the balance between supply
and demand. Such dynamic pricing schemes reflect the prices of the wholesale market and are
able to lower demand peaks and the volatility of the wholesale prices [5]. A first example of
dynamic pricing tariff is time-of-use (TOU) pricing, which provides two or three periods of different
electricity price (generally “on-peak”, “mid-peak” and “off-peak” prices), depending on the hour of
day. Electricity users are advised in advance about electricity prices that are not normally modified
more than once or twice per year. A more flexible electricity-pricing scheme is real-time pricing
(RTP), for which the retail electricity price closely reflects the wholesale energy price. In this case,
customer electricity prices can vary hourly depending on the wholesale market and electricity users
can manage their power consumption in a more flexible and economical manner, taking advantage
of the price differential. The real-time prices can be notified to electricity customers with different
timing, depending on the specific utility’s RTP program. For example, with Ameren’s RTP program
(an Illinois’ Electric Utility), hourly prices for the next day are set the night before and are
communicated to customers so they can modify their power consumption in advance. Differently,
with ComEd’s RTP program (another Illinois’ Electric Utility), hourly prices are based on the
average of the twelve five-minute prices for each hour, and electricity users are notified in real-time,
only when the hour has passed. Later on in this article, the RTP prices will be considered as
day-ahead hourly prices, so electricity customers are advised a day before and can modify their power
consumption accordingly.

The highly volatile behavior of the electricity price can be exploited by using an energy storage
device in order to capture the price differential. Indeed, if an electricity customer is charged at an
hourly-dependent rate, a storage system can be adopted with the aim to shift portions of consumption
to different hours than those where they actually occur. The electricity is simply stored when it is
inexpensive and resold back to the grid at a higher price [6,7].

The object of this article is to analyze, develop and demonstrate a charge/discharge scheduling
method able to maximize the arbitrage benefit of a storage system, subject to technical constraints.
The storage system is described by means of its performance parameters, such as the charge
and generation capacity, the charge/discharge efficiency, the rated charge/discharge rate, the
depth-of-discharge (DOD), etc., which are sufficient to evaluate the arbitrage potential of a storage
system. The scheduling strategy is based on the definition of an objective function, able to maximize
the arbitrage benefit of the storage owner subject to technical constraints, allowing the battery to be
charged/discharged at different DOD, as further detailed in Section 4. The developed model is valid
for any kind of storage, although the simulations refer to a lead-acid, a lithium-ion (Li-ion) and a
sodium-sulfur (NaS) battery. Test results show that the proposed operating strategy is effective to
maximize the profit for the customer. Unlike the studies reported in the literature, often requiring an
estimate of the end-user load profile, the proposed operation strategy is able to properly identify, for
each daily period, the charge/discharge hours relying only on the hourly spot market price profile,
regardless of the specific facility’s consumption. This is made possible thanks to some simplifying
assumptions in the sizing and the operation of the battery energy storage system (BESS), as further
details in Section 3. This could be particularly useful when the customer load profile cannot be
scheduled with sufficient reliability because of the uncertainty inherent in load forecasting. In these
cases, identifying a BESS operating strategy that does not depend on the user’s power profile can be
an important task, since the deviation of the scheduled power profile from the effective one could
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affect the results obtained using more complete methods. Furthermore, the proposed management
strategy requires a low computational burden and can be implemented in simple and available
software, for instance in a spreadsheet, representing a friendly but effective instrument to optimize
the charge/discharge schedule of a storage device.

The next section summarizes existing literature on the topic of optimal operation of storage
systems. In Section 3, the customer energy system used in this paper is briefly described and the basic
operational assumptions are outlined. In Section 4, the problem formulation is provided, showing the
objective function to be maximized and defining the constraint equations. In Section 5, a case study is
presented and the technical and economic parameters for each storage device are provided. Section 6
shows the simulation results and some important remarks about the operating schedule of the storage
devices. Finally, Section 7 summarizes the conclusion of the work.

2. Current Literature

Traditionally, most of the studies address the optimal operation of a storage system based
on linear programming [8–11], nonlinear programming [12], dynamic programming [13–16] and
multipass iteration particle swarm optimization approach [17]. Other charge/discharge strategies
are described in [18–25].

2.1. Linear and Nonlinear Programming

In [8], the authors study the optimal operation of an energy storage unit installed in a
small power producing facility using a conventional linear programming technique. In [9], the
authors determine the optimal charge/discharge schedule by using a linear optimization model
of the battery systems (based on Li-ion and lead-acid technology) for arbitrage accommodation.
They found that the cost and the efficiency of the storage systems have the highest impact
on simulation results. The developed model is linear and can thus be solved without much
computational effort. Bradbury et al. [10] studied seven real-time US electricity markets and 14 different
storage technologies, finding that the optimal profit-maximizing size of a storage device (i.e., hours
of energy storage) depends largely on its technological characteristics (round-trip charge/discharge
efficiency and self-discharge), rather than the magnitude of market price volatility, which instead
increases internal rate of return (IRR). The arbitrage benefit is maximized using a simple linear
programming, subject to technical constraints. Graves et al. [11] emphasize the fact that using average
peak and off-peak prices does not account for the variability in prices and thus leading to significant
errors in the optimal management strategy. They also discuss the use of a linear programming for
determining the optimal operation strategy.

In [12], the authors present an optimal operation strategy of BESSs to the real-time electricity
price in order to achieve maximum profits of the BESS. The algorithm is based on a sequential
quadratic programming method as to maximize the profits for the customer. The strategy is
promising although operating and maintenance costs of the BESS are not taken into account.

2.2. Dynamic Programming

Linear programming is often considered to be too inflexible, as it typically does not capture
the stochastic nature of load profiles. In order to overcome the restriction, dynamic programming
methods are employed to capture the uncertainties in load profiles and electricity prices [13]. The
algorithm developed in [14] is a multipass dynamic programming that ensures the minimization of
the electricity bill for a given battery capacity, while reducing stress on the battery and prolonging
battery life. In [15], the authors address the problem of organizing home energy storage purchases
as a Markov decision process, showing that there exists a threshold-based stationary cost-minimizing
policy. The battery is charged up to the threshold, when the battery level is below the threshold, and
discharged when the level is above the threshold. The proposed strategy is interesting, even though
the system cost is not considered. In [16], the authors propose a self-learning optimal operating
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control scheme based on adaptive dynamic programming for the residential energy system with
batteries. The algorithm is effective in achieving minimization of the cost through neural network
learning. The main feature of the proposed scheme is the ability of the continuous learning and
adaptation to improve the performance during real-time operations under uncertain changes in the
environment or new system configuration of the residential household.

2.3. Other BESS Management Strategies

In [17], a modified particle swarm optimization (PSO) algorithm (called multipass iteration PSO)
is used to solve the optimal operating schedule of a BESS for an industrial TOU rate user with wind
turbine generators. Thanks to the high computational efficiency, the algorithm can be used to evaluate
the optimal operating policy of a BESS in real-time applications, based on the load condition of the
user, the energy left in the BESS, and the output of wind turbines. In [18], the authors estimate the
benefit of using energy storages for aggregate storage applications, such as energy price arbitrage,
TOU energy cost reduction, ancillary services, and transmission upgrade deferral. The maximization
of the arbitrage benefit is carried out by maximizing an objective function, under the assumption
that the electricity prices are both dependent/independent on the battery operation. In [19], a simple
methodology to charge/discharge a residential battery system for energy arbitrage in presence of
TOU prices was described. The statistical variability of the household consumption was accounted
through a Monte Carlo method. The economic feasibility of the storage system was determined in the
context of the Australian retail electricity market, showing that, for various BESSs, the load shifting
strategy can be profitable. In [20], the authors present an estimation of the economic feasibility of
electricity storage in the west Danish power market, exploiting a simple operation strategy of the
BESS in the spot market. The strategy includes two main conditions: (1) the price for buying must be
less than the price for selling times the round trip efficiency (in order to ensure positive incomes) and
(2) the amount of power bought in a given time period must equal the amount of power sold times
the round trip efficiency (in order to ensure the balance of energy). Shcherbakova et al. (2014) [21]
simulated the operation and resulting profits of small storage batteries (NaS and Li-ion) in South
Korea using a charge/discharge strategy based on Hotelling rule. They concluded that neither
technology generates a sufficient amount of arbitrage revenue to cover the battery’s capital costs.
Purvins and Summer [22] presented an optimal battery system management model in distribution
grids for lithium-ion battery system used in stationary applications. The proposed approach is based
on three management priorities, the first being the maximum utilization of renewable energy sources
(RES) energy in distribution grids (preventing situations of reverse power flow at the distribution
level), followed by efficient battery utilization (charging at off-peak prices and discharging at peak
prices) and residual distribution grid demand smoothing. Finally, in [23,24], the authors evaluate
the capacity of storage and active demand side management (DSM) to increase the self-consumed
electricity in the residential sector, using a lead–acid battery. The operating strategy is based on
self-consumption maximization, reducing the use of the grid and supplying the highest amount of
energy from PV generation. In [25], the authors present a home energy management system model
that uses a heuristic algorithm to manage and control home appliances based on a combination of
energy pricing models including TOU and RTP tariffs. The algorithm aims to minimize overall usage
and cost of energy without significantly degrading consumer comfort.

3. Energy System Description and Operational Assumptions

The customer energy system consists of a passive user (end-user), interconnected to a storage
system through a bidirectional converter, as depicted in Figure 1. The bidirectional converter consists
of a rectifier AC/DC (the battery charger) and an inverter DC/AC [26,27]. The battery system is
handled in order to ensure an economic benefit for the customer, exploiting a load shifting strategy.
Since the system marginal price (SMP) value is available one day ahead and it is defined each hour,
the electricity prices are considered as hourly-dependent prices, where each hour of the day has a
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different electricity price. The reference period used in the study is one day, i.e., the battery operation
is defined starting from a vector of 24 elements as input data.

Three different operating modes are considered for the storage system: charging mode, activated
when the electricity prices are low; standby mode, in which the power grid supplies directly the
end-user without contribution of the storage; and discharging mode, activated when the electricity
prices are high, where part of the load is supplied from the battery.

The following assumptions have been made:

- The end-user is allowed to buy the consumed energy at an hourly tariff (RTP tariff), defined by
the utility on a daily basis. The RTP tariffs are assumed to be proportional to the SMP values, by
applying a percentage increase to incorporate the benefit for the utility and taxes (electricity tax
and value added tax (VAT)).

- The power flow is always directed from the grid to the load. The stored energy can only be used
by the customer for load compensation and cannot be sold to the utility.

- The hourly electricity prices are known in advance in a finite horizon setting (daily period) and
the use of the storage device does not influence the prices of electricity in the energy market
(small price taking storage devices). Predictions about future electricity rates are not part of this
work since the aim is to show results based upon the current electricity prices.

- Battery self-discharge is disregarded.
- Battery capacity is assumed constant throughout the battery life, without degradation.
- The common frictions during battery operation are accounted for by incorporating imperfect

charging and discharging efficiency;
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Figure 1. Grid-connected customer energy system operating in parallel with the storage system.

- The charge/discharge rate of the battery is assumed constant and equal to the rated power
capacity of the device. Doing so, the storage charge/discharge constraints are automatically
satisfied (i.e., the energy charged/discharged into the battery at any time t cannot be more than
the rated power capacity of the device). It is worth noting that both the battery capacity and
the battery life are influenced by the charging rate. Indeed, at very high rates the capacity cell
and the battery life are reduced. Fast charging may also have negative consequences on the
battery efficiency [28]. Therefore, the use of a battery at constant charge/discharge rate helps
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to prolong the battery life, to preserve the rated capacity and to keep the battery efficiency at
appropriate values.

- The charging time is assumed equal to the discharging time, in each operating cycle. According
to the last two mentioned hypotheses, the battery returns to the initial state-of-charge (SOC) at
the end of each operating cycle. Such an operation means that the battery energy constraints are
automatically satisfied (i.e., the storage level of the battery cannot be more than the rated energy
capacity of the device).

- The DOD of the battery can take different discrete states, depending on the value of the
objective function.

- The storage capacity is assumed equal to the facilities’ energy consumption during peak times
(i.e., the hours where electricity prices are the highest) on the day of the year of lowest
consumption [29]. In other words, the battery is sized so that it can supply the entire customer
load during peak price hours, on the day of the year of lowest consumption, and only a portion
of the customer’s load on the other days. The choice of the storage capacity is driven by a
trade-off between gaining more arbitrage savings during days with relatively high peak loads
and wasting idle capacity during days with low peak loads. Among all the possible solutions,
the one that ensures the minimum upfront investment cost for the storage owner has been
chosen. The aim of this article is to identify a battery operating strategy able to maximize the
profit of the storage owner (under the considered assumptions), without attempting to identify
the optimal BESS capacity. In other words, the battery has been sized according to a criterion
of minimum cost, which is not necessarily the optimal one. As a consequence of this statement,
the BESS can be operated regardless of the specific facility’s load profile and the power flow is
always directed from the grid to the load, without selling to the utility.

4. Problem Formulation

4.1. Preliminary Considerations

The optimal operating strategy of the storage device is able to uniquely determine the daily
charge/discharge intervals so as to maximize the economic saving for the customer. Figure 2 shows
typical daily profiles of SMP (the national single price of the Italian day-ahead market) for a reference
weekly period (from 31 March to 6 April 2014) [30]. The profiles clearly show a first couple of
min/max prices in the first semi-daily period and a second couple in the second half of the day.
The battery thus will be charged only once a day, twice a day or it will remain idle, depending on
the maximization of the objective function. Since the RTP tariffs are assumed to be proportional to
the SMP values, hereinafter will be referred as RTP prices. It is worth noting that weekdays RTP
values have a first price peak at about 8:00–10:00 a.m. and a second peak at 8:00–9:00 p.m. Differently,
Sunday only retains the second peak at 9:00 p.m. As a result, we can expect that the BESS could be
charged two times on weekdays (including Saturday), only one time on Sunday.

Since the battery can be charged/discharged at different DOD, the algorithm calculates the
moving average (MA) of RTP prices (MA RTP) corresponding to each charge/discharge time, d, where
d is a discrete variable denoting the charge/discharge time of the battery (corresponding to different
DOD values). For example, assuming that the charge/discharge time, d, can take D different discrete
values, the algorithm calculates D daily profiles of MA RTP prices, for each day of the year, i:

MARTPi,d phq “
ÿ

h`d´1
n“h RTP pnq {d h “ 1, . . . , 24´ d` 1 ; d “ 1, . . . , D ; i “ 1, . . . , 365 (1)

where d is an index denoting the charge/discharge time of the battery, i is an index denoting the day
of the year, h is an index denoting the hour of the day, D is the maximum charge/discharge time of
the battery (corresponding to the maximum DOD) and MARTPi,d phq is the MA of RTP prices in hour
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h, corresponding to the charge/discharge time d in the day i. In the following, all equations will be
referred to a generic day i, and the variability of the index over the year will be omitted.Energies 2016, 9 8 
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Since the charge/discharge rate of the battery, PBESS, is assumed constant, the following relation
exists between the DOD and the discharged time, d:

DOD “
EBESS
Cap

“
PBESS ¨ d

PBESS ¨ Dmax
“

d
Dmax

(2)

where EBESS is the energy discharged from the storage device, Cap is the rated energy capacity of the
BESS, and Dmax is the maximum theoretical discharging time of the battery, corresponding to a full
discharge (this is a theoretical discharging value, since the battery can never fully discharge).

Since the battery can be charged once or twice a day, depending on the maximization of the
objective function, the algorithm takes into account two MA RTP profiles for each charge/discharge
time d, the first referred to a daily period, the second to a semi-daily period. In other words, the
algorithm scans both the daily and the semi-daily MA RTP profiles, with the aim of verifying whether
the maximum of the objective function corresponds to only one cycle or to two cycles per day.
Figure 3a,b shows the daily profile of MA RTP related to a daily period or to a semi-daily period,
together with the daily/semi-daily average value, respectively:

AverMAi,d “

24´d`1
ÿ

h“1

MARTPi,d phq { p24´ d` 1q ; d “ 1, . . . , D (3)

$

’

’

’

&

’

’

’

%

Aver
MAp1q

i,d
“

12
ř

h“1
MARTPi,d phq {12

Aver
MAp2q

i,d
“

p24´d`1q
ř

h“p12´d`1q
MARTPi,d phq {12

d “ 1, . . . , D (4)
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where AverMAi,d is the daily average value of the MA RTP profile and Aver
MApkq

i,d
is the semi-daily

average value of the MA RTP profile (in the semi-daily period k of the day i, with k “ 1, 2). Figure 3a,b
also shows the min/max values of MA RTP profiles in the daily/semi-daily period:

MARTPi,d,min , MARTPi,d,max ; d “ 1, . . . , D (5)

MA
RTPpkq

i,d,min
, MA

RTPpkq

i,d,max
d “ 1, . . . , D ; k “ 1, 2 (6)

where
´

MARTPi,d,min , MARTPi,d,max

¯

is the couple of min/max MA RTP values in a daily period and
ˆ

MA
RTPpkq

i,d,min
, MA

RTPpkq

i,d,max

˙

is the couple of min/max MA RTP values in the semi-daily period k of

the day i, respectively. The average values and the min/max MA RTP values are calculated for each
charge/discharge time d and for each day i. The daily profile in Figure 3 corresponds to the RTP
prices when d “ 1, to the MA of RTP prices when d ‰ 1.

4.2. Optimization Problem Formulation

Since the battery can be charged once or twice a day, depending on the value of the objective
function, the algorithm calculates the benefit for the storage owner (electricity customer) in both
cases, verifying in which situation the objective function takes the maximum value. In the following
sections, the objective function will be defined in both situations, by considering a daily or a
semi-daily periodicity, respectively.Energies 2016, 9 10 
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4.2.1. Semi-Daily Periodicity

Under the assumption of semi-daily periodicity, the storage device will perform two charging
cycles per day, according to the MA RTP profile shown in Figure 3b. For each battery cycle, the
problem comes down to maximizing the following objective function:

OFpkqi,d “ max
´

SpkqBESS,i,d ´ CBESScycled,d

¯

(7)

where SpkqBESS,i,d is the saving per kWh obtained charging/discharging the BESS over time d, in
the semi-daily period k of the day i and CBESScycled,d is the storage cost per kWh cycled, obtained
charging/discharging the BESS over time d.

The saving, SpkqBESS,i,d, can be calculated as follows:

SpkqBESS,i,d“
EpkqBESS,i,d

Cap
¨

¨

˝MA
RTPpkq

i,d,max
¨ µd´

MA
RTPpkq

i,d,min

µc

˛

‚“DOD¨

¨

˝MA
RTPpkq

i,d,max
¨ µd´

MA
RTPpkq

i,d,min

µc

˛

‚ (8)

where EpkqBESS,i,d is the energy discharged from the storage device over time d, and µc and µd are the
charge/discharge efficiencies of the battery, respectively.

The storage cost per kWh cycled can be expressed as:

CBESScycled,d “
CTOTBESS

Cap ¨ NFull cycle,d
(9)

where CTOTBESS is the total cost of the storage and NFull cycle,d is the number of equivalent full cycles
of the battery, corresponding to a charge/discharge time d.

Denoted by CBESSkWh , the storage cost per kWh (from Equation (9)) can be expressed as:

CBESScycled,d “
CBESSkWh

NFull cycle,d
(10)

The objective function, OFpkqi,d , can finally be expressed as:

OFpkqi,d “ max

»

–DOD¨

¨

˝MA
RTPpkq

i,d,max
¨ µd ´

MA
RTPpkq

i,d,min

µc

˛

‚´
CBESSkWh

NFull cycle,d

fi

fl (11)

The only variable that appears in the objective function is the DOD. Indeed, NFull cycle,d and
ˆ

MA
RTPpkq

i,d,max
, MA

RTPpkq

i,d,min

˙

are not independent variables, since they are linked to the DOD. The

DOD is thus the only variable to be optimized and the search space is the set of all possible
charging/discharging times, namely all integers between 1 and D. Ultimately, the maximization of
the objective function allows one to obtain the DOD value that maximizes the customer’s benefit, for
each semi-daily charging/discharging cycle.

4.2.2. Daily Periodicity

In the same manner as was done in the previous section, in presence of a daily periodicity of the
MA RTP profile, the objective function, OFi,d, can be expressed as:

OFi,d “ max

«

DOD¨
ˆ

MARTPi,d,max ¨ µd ´
MARTPi,d,min

µc

˙

´
CBESSkWh

NFull cycle,d

ff

(12)
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The maximization of the objective function allows one to obtain the DOD value that maximizes
the customer’s benefit, for each daily charging/discharging cycle.

4.2.3. Constraint Equations

As already stated in Section 3, the battery charging and discharging constraints are automatically
satisfied, since the charge/discharge rate of the battery is assumed constant. The storage energy
constraints are also satisfied, since the battery returns to the same initial SOC at the end of each
charge/discharge cycle (namely the energy discharged is equal to the energy charged, in each battery
cycle). Furthermore, charging/discharging periods should not overlap each other. This might happen
when the battery performs two operating cycles per day. If this is the case, the charging/discharging
period will be reduced accordingly.

The charge/discharge cycle of the battery would only be worth it if the difference between the
maximum and minimum values of MA RTP is higher than the cost of cycling energy plus the cost
of the energy losses in the charge/discharge process. Expressed differently, Equations (11) and (12)
must take positive values for the battery operation to be profitable:

OFpkqi,d ą 0 , OFi,d ą 0 (13)

If the constraints in Equation (13) are not satisfied, the battery will remain idle, since the arbitrage
benefit is not enough to compensate for the cost of cycling energy plus the cost of the energy losses. In
the following, the term “eligible” will be used to indicate an objective function whose value is greater
than zero.

4.2.4. Selection of the Charging/Discharging Intervals

Once Equations (11) and (12) are calculated, the algorithm checks, for each day of the year, if the
summation of the eligible objective functions corresponding to each semi-daily cycle is greater than
that corresponding to the daily cycle, namely:

2
ÿ

k“1

OFpkqi,d ě OFi,d d “ 1, . . . , D (14)

If Equation (14) is satisfied, the battery is charged in the first half of the day, in the second half
or in both, depending on the number of the eligible objective functions, OFpkqi,d . The DOD for each
battery cycle is selected according to Equation (11). If Equation (14) is not satisfied, the battery will
make only one cycle per day. The corresponding DOD is selected according to Equation (12). Finally,
if all the objective functions have negative value (i.e., there are no eligible objective functions), the
battery remains idle in the day i.

It is worth noting that the proposed operating strategy allows maximizing the customer’s benefit
under the assumptions described in Section 3. More complex and complete models could lead
to higher benefits for the storage owner. Furthermore, the proposed method leads to an effective
maximization of the objective function only if the SMP profile is assumed to have a convex form in
the charging/discharging intervals, as in most spot electricity markets. If the price profile differs from
a convex form, the proposed procedure could lead to suboptimal results, but it was verified that the
error margin is narrow.

5. Case Study

The number of equivalent full cycles cannot be estimated directly, as it mainly depends on the
energy cycled by the batteries, namely by the DOD. For most batteries, manufactures show in their
datasheets the curves of number of cycles to failure, N cycle,d vs. the DOD (for given temperature
value), as shown in Figure 4, derived for a lead-acid battery [31].



Energies 2016, 9, 12 11 of 20
Energies 2016, 9 13 

 

 

 

Figure 4. Typical cycles to failure vs. depth-of-discharge (DOD) curve for lead-acid-batteries. 

The number of equivalent full cycles performed by the battery at a given DOD can be obtained as [32]: 

, ∙ ,  (15)

where 	 ,  is the number of cycles to failure, as derived from Figure 4. 

For most of electrochemical batteries, the number of equivalent full cycles remains constant (for given 

operating temperature) and does not depend on the DOD. Expressed differently, the total Ah a battery 

can deliver over its life is approximately constant. However, the relationship deviates for some 

electrochemistries, especially at low DOD. With a view to highlight the changes, Figure 5 shows a 

comparison of cycles to failure vs. DOD curves for three different BESS technologies (lead-acid, Li-ion 

and NaS battery). 

 

Figure 5. Cycles to failure vs. depth-of-discharge (DOD) curve for three different battery technologies. 

Let us assume 5	 , which corresponds to a discharging time 4	  at a DOD = 80%. The 

number of equivalent full cycles, for each selected DOD (ranging from 1 to 4 h), is reported in Table 1, 

for each of the selected battery technologies. The values were calculated using Equation (11). The 
number of cycles to failure, _ , was deduced from the typical cycles to failure vs. DOD curve, for 

each battery option [31,33,34]. Table 1 also shows the percentage increment, ∆ (%), with respect to 

the value corresponding to a DOD = 80%. It is worth noting that the percentage increment is minimum 

for lead-acid, maximum for Li-ion battery. 

Figure 4. Typical cycles to failure vs. depth-of-discharge (DOD) curve for lead-acid-batteries.

The number of equivalent full cycles performed by the battery at a given DOD can be obtained
as [32]:

NFull cycle,d “ DOD¨N cycle,d (15)

where N cycle,d is the number of cycles to failure, as derived from Figure 4.
For most of electrochemical batteries, the number of equivalent full cycles remains constant (for

given operating temperature) and does not depend on the DOD. Expressed differently, the total Ah
a battery can deliver over its life is approximately constant. However, the relationship deviates for
some electrochemistries, especially at low DOD. With a view to highlight the changes, Figure 5 shows
a comparison of cycles to failure vs. DOD curves for three different BESS technologies (lead-acid,
Li-ion and NaS battery).
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Figure 5. Cycles to failure vs. depth-of-discharge (DOD) curve for three different battery technologies.

Let us assume Dmax “ 5 h, which corresponds to a discharging time D “ 4 h at a DOD = 80%.
The number of equivalent full cycles, for each selected DOD (ranging from 1 to 4 h), is reported in
Table 1, for each of the selected battery technologies. The values were calculated using Equation (11).
The number of cycles to failure, Ncycles_ d, was deduced from the typical cycles to failure vs. DOD
curve, for each battery option [31,33,34]. Table 1 also shows the percentage increment, ∆NFull(%),
with respect to the value corresponding to a DOD = 80%. It is worth noting that the percentage
increment is minimum for lead-acid, maximum for Li-ion battery.
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Table 1. Number of equivalent full cycles for each selected DOD, for the three battery technologies.

Lead-Acid Battery Li-Ion Battery NaS Battery

DOD(%) NFull cycles,d ∆NFull p%q NFull cycles,d ∆NFull p%q NFull cycles,d ∆NFull p%q

80% 540 2400 3592
60% 570 5.56 2640 10 4269 18.85
40% 590 9.26 4040 68.3 5445 51.58
20% 660 22.22 10000 316.7 8253 129.76

The analysis has been carried out by referring to a typical medium-scale public facility
(Department of Energy, Information engineering and Mathematical models (DEIM), University of
Palermo). For the selected facility, a reference weekly period has been considered, from 31 March to
6 April 2014. The SMP for the reference weekly period have already been reported in Figure 2.

The proposed strategy can be applied to several kinds of storages, but the test results refer
to three kind of batteries, lead-acid, Li-ion and NaS, that are, nowadays, the most suitable to be
used in residential, commercial or industrial buildings, for load shifting applications. Among the
three technologies, Li-ion batteries are the most promising in terms of cost reduction and cycling
performance [35]. The technical and economic parameters are reported in Table 2 for each of the
selected battery technologies.

Table 2. Technical and economic parameters selected for the three battery technologies.

Components Specifications

Technology Lead-Acid Battery Li-Ion Battery NaS Battery

Energy capacity (kWh) 20 20 20
Power rating (kW) 5 5 5

Roundtrip efficiency (%) 82 90 81
Operating temperature (˝C) (´20)–(+50) (´20)–(+45/+60) 300–350

Healthy DOD (%) 80 80 NA
Cycles to failure (80% DOD) 1100 3000 4500

BESS cost (€/kWh) 171 844 256
PCS cost (€/kW) 172 125 171
BOP cost (€/kW) 70 0 53

The storage cost and the charge/discharge roundtrip efficiency have been selected calculating
the arithmetic mean between low and high literature values [36]. In Table 2, the total storage cost
has been decomposed as the sum of the power conversion system (PCS) cost, the BESS cost and the
balance-of plant (BOP) cost [37]. The operating temperatures and the healthy DOD were derived
from [29]. The rated energy capacity (equal to 20 kWh for each battery) was selected referring to the
facility’s energy consumption during peak price hours, on the day of the year of lowest consumption,
as already specified in Section 3.

The storage costs per kWh cycled are on average higher than the difference between maximum
and minimum electricity prices. Indeed, the average storage costs per kWh cycled are equal to
0.171 €/kWh cycled for lead-acid, 0.103 €/kWh cycled for Li-ion and 0.096 €/kWh cycled for NaS
batteries, as against a maximum value of 0.1 €/kWh for the difference between maximum and
minimum electricity price. For this reason, a grant equal to 75% of the upfront investment cost is
considered in this analysis. The storage costs per kWh cycled have been obtained considering average
values of CBESSkWh and NFull cycle, according to [36].
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6. Simulation Results

For each day of the reference period, the algorithm handles the MA RTP prices, corresponding to
each DOD, calculating the value of the objective functions and verifying the fulfillment of condition
in Equation (14).

The values of the objective functions together with the charge/discharge time, for the three
battery technologies, are reported in Table 3. If Equation (14) is satisfied, Table 3 reports the value
of

ř2
k“1 OFpkqi,d and the column d shows a couple of values, (x,y), denoting the charging/discharging

time of the first and the second half day period, respectively. If Equation (14) is not satisfied, the value
of the daily objective function, OFi,d, is reported and the column d shows a single value denoting the
charging/discharging time in the daily period. Finally, if all the objective functions have negative
value (i.e., there are no eligible objective functions) the battery remains idle and the corresponding
values of the objective function and the charging/discharging times are missing in Table 3.

Table 3. Values of the objective functions in the reference weekly period.

Lead Acid Li-ion NaS

OF d OF d OF d

31/03/2014 0.038 4,4 0.036 2,1 0.122 4,4
01/04/2014 - - - - 0.049 4,4
02/04/2014 - - 0.002 -,1 0.047 4,3
03/04/2014 - - - - 0.018 3,2
04/04/2014 - - 0.004 1,- 0.042 4,-
05/04/2014 - - 0.001 1 0.043 4,4
06/04/2014 0.028 -,4 0.01 -,4 0.071 -,4
Weekly OF 0.066 0.053 0.392

The values reported in Table 3 lead to the following fundamental results (valid under the
assumption that a subsidy equal to 75% of the upfront investment cost is granted to the storage owner):

- Among the three considered storage options, the use of NaS batteries leads to the maximum
benefit for the storage owner (the value of the weekly objective function is around six times the
one observed for the lead-acid battery); indeed, although NaS batteries have an acquisition cost
higher than lead-acid, the number of cycles to failure is more than three times higher than that
of lead-acid battery (see Table 2).

- The lead-acid technology appears to be the least convenient for arbitrage applications, despite
its lower cost. This is essentially due to the low number of equivalent full cycles compared to
the other battery technologies. The Li-ion technology also has a low profitability for arbitrage
applications, essentially because of the high upfront investment cost. However, the situation
could rapidly change since Li-ion batteries are the most promising in terms of cost reduction
and cycling performance [31].

- Lead-acid battery remains idle during most of the days, since the gap between maximum
and minimum electricity price is not enough to compensate for the low number of equivalent
full cycles.

- As previously stated in Section 4.1, NaS battery is charged two times per day on weekdays
(except on Friday), and only one time on Sunday. This is because weekdays have two price
peeks, and the gap between max/min electricity price is high enough to compensate for the cost
of cycling energy plus the cost of the energy losses in the charge/discharge process.

- The NaS battery often performs two operating cycles, whereas the Li-ion battery performs two
operating cycles only on Monday. This is essentially due to the high upfront investment cost of
Li-ion battery compared with NaS technology, and to the lower number of equivalent full cycles.
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- On Sunday, the batteries perform only one cycle in the second half of the day, lasting four hours
(as previously stated in Section 4.1).

It is worth noting that the battery cycle lasts four hours when the objective function takes a high
value, i.e., when the gap between high and low electricity prices is large. Indeed, in this case the first
term of the objective function prevails over the second term and the higher DOD resulting from the
greater discharge duration offsets the number of equivalent full cycles.

Finally, it is possible to assert that, at the current price of storage technologies, the use of batteries
for arbitrage applications is not profitable for the storage owner. The battery is charged once a day
or twice a day depending on the shape of RTP profiles, being the BESS operating cycle dependent on
the specific battery technology.

In order to highlight the advantages of the proposed approach compared to other simple
methods, a comparison is made with respect to a simple strategy (base case) where the battery is
operated in the hours where the gap between the lowest and the highest prices is maximized. The
base case differs from the proposed operating strategy since the battery can be operated at different
hours, not necessarily uninterrupted, but always regardless of the facility’s load profile. Besides, in
the base case, the battery is operated always at its maximum DOD (4 h), if the discharge duration is
compatible with the objective function values, under the fulfillment of constraint conditions.

The values of the objective functions together with the charge/discharge time, in the base case,
are shown in Table 4. When the objective functions have negative value, the corresponding values
and the charging/discharging times are missing in Table 4.

Table 4. Values of the objective functions for the base case.

Lead acid Li-ion NaS

OF d OF d OF d

31/03/2014 0.038 4,4 0.014 4,4 0.122 4,4
01/04/2014 - - - - 0.049 4,4
02/04/2014 - - - - 0.046 4,4
03/04/2014 - - - - 0.013 4,4
04/04/2014 - - - - 0.042 4,-
05/04/2014 - - - - 0.043 4,4
06/04/2014 0.028 -,4 0.009 -,4 0.071 -,4
Weekly OF 0.066 0.023 0.386

% weekly increase - 130% 1.5%

It was found that the percentage increase of the weekly objective function, compared to the base
case, is 130% for Li-ion and 1.5% for NaS batteries, as reported in Table 4.

According to the values reported in Table 4, the comparison between the proposed operating
strategy and the base case leads to the following considerations:

- For lead acid battery, the values of the objective function are the same (the weekly percentage
increase is zero). Indeed, this kind of battery performs the same charging/discharging cycles
both in the proposed operating strategy and in the base case.

- For Li-ion battery, the weekly percentage increase of the objective function is large (130%).
Indeed, in the base case the Li-ion battery remains idle for most of the days and the value of
the objective function on Monday is more than halved compared with the corresponding value
reported in Table 3.

- For NaS battery, the weekly percentage increase of the objective function is 1.5%, as a result of
an increase of the objective functions on Wednesday and Thursday.

The last conclusion is particularly meaningful since it confirms that operating the battery at low
DOD can be advantageous for the storage owner when the gap between high and low electricity
prices is limited (e.g., when the objective function takes a small value).
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Figure 6a,b show the graphic comparison between the objective function values of the two
approaches, for NaS and Li-ion battery, respectively.
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The results obtained from the proposed approach show the effectiveness of the proposed
operating strategy compared to the base case.

Finally, the effect of the proposed operating strategy on the daily curve of the energy extracted
from the main grid is evaluated. To this aim, the power consumption of the department was
registered over a reference period of one week (from 31 March to 6 April 2014).

Figure 7 shows the DEIM power diagram for the reference period, without (Figure 7a) and with
(Figure 7b) storage contribution.



Energies 2016, 9, 12 16 of 20

Energies 2016, 9 18 

 

 

The results obtained from the proposed approach show the effectiveness of the proposed operating 

strategy compared to the base case. 

Finally, the effect of the proposed operating strategy on the daily curve of the energy extracted from 

the main grid is evaluated. To this aim, the power consumption of the department was registered over a 

reference period of one week (from 31 March to 6 April 2014). 

Figure 7 shows the DEIM power diagram for the reference period, without (Figure 7a) and with 

(Figure 7b) storage contribution. 

 

Figure 7. Power diagram of the department without (a) and with storage contribution (b). 

Figure 7b shows power spikes due to the BESS charging/discharging. The maximum weekly peak 

load is increased at 23 kW (against a value of 18 kW without storage) when the proposed operating 

strategy is applied. Conversely, the minimum weekly peak load is reduced to zero when the storage is 

operated (against a value of 5 kW without storage). Therefore, the implementation of the proposed 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
P
o
w
e
r 
d
ia
gr
am

 o
f t
h
e
 d
e
p
ar
tm

e
n
t 
(W

)

Hours (h)

31 March 2014

1 April 2014

2 April 2014

3 April 2014

4 April 2014

5 April 2014

6 April 2014

(a)

0

5000

10000

15000

20000

25000

P
o
w
e
r 
d
ia
gr
am

 o
f 
th
e
 d
e
p
ar
tm

e
n
t 
(W

)

Hours (h)

31 March 2014

1 April 2014

2 April 2014

3 April 2014

4 April 2014

5 April 2014

6 April 2014

(b)

Figure 7. Power diagram of the department without (a) and with storage contribution (b).

Figure 7b shows power spikes due to the BESS charging/discharging. The maximum weekly
peak load is increased at 23 kW (against a value of 18 kW without storage) when the proposed
operating strategy is applied. Conversely, the minimum weekly peak load is reduced to zero when
the storage is operated (against a value of 5 kW without storage). Therefore, the implementation of
the proposed strategy does not lead to a flattening of the power profile but to an increase in the gap
between peak and off-peak loads.

7. Conclusions and Future Work

This paper develops a detailed storage model linking together technical, economic and electricity
market parameters. The storage system is described by means of its performance parameters, such as
the charge and generate capacity, the charge/discharge efficiency, the rated charge/discharge rate,
the DOD, etc., which are sufficient to evaluate the arbitrage potential of the storage device. The
proposed operating strategy aims to maximize the profit of the storage owner (electricity customer)
by determining the optimal charge/discharge schedule. Unlike the studies reported in the literature,
often requiring an estimate of the end-user load profile, the proposed operating strategy is able to
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identify the proper charging schedule of the device regardless of the specific facility’s consumption.
This is made possible since the battery is sized referring to the facilities’ energy consumption during
peak price hours, on the day of the year of lowest consumption. Under this assumption, the storage
will be able to supply the entire customer load during the day of the year of lowest consumption,
but only a portion of the customer’s load on the other days. This could be particularly useful when
the customer load profile cannot be scheduled with sufficient reliability, because of the uncertainty
inherent in load forecasting. In these cases, identifying a BESS operating strategy that does not
depend on the user’s power profile can be an important task, since the deviation of the scheduled
power profile from the effective one could affect the results obtained using more complete methods.
In order to highlight the advantages of the proposed approach compared to other methods, a
comparison is made with respect to a simple strategy (base case) where the battery is charged only
one time per day at its maximum DOD (equal to four hours). The results obtained from the proposed
approach show the effectiveness of the proposed operating strategy. The proposed model can be
applied to several kinds of storages but the test results refer to three electrochemical technologies:
lead-acid, Li-ion and NaS battery. The simulation results show that the operating schedule of the
storage device differs in the various days of the week and it depends on the specific battery used
(the most critical parameters being the acquisition cost of the battery bank and the number of cycles
to failure). The operating cycle lasts four hours (i.e., the maximum available charge/discharge time)
when the objective function takes high values. However, in the days when the objective function
has a lower value, the storage device is operated at a lower discharging time. This is because the
higher gap between high and low electricity prices and the higher value of equivalent full cycles fully
offset the less benefit due to the lower DOD (which results in a lower energy discharged). Simulation
results show that, at current prices, no BESS technology is cost effective, due to the high upfront
investment costs. However, if a subsidy is granted to reduce the initial investment cost, the use of
NaS batteries leads to the maximum benefit among the three considered storage options. This is
essentially due to the high number of equivalent full cycles (four times higher than that of lead-acid
batteries). Conversely, the lead-acid technology appears to be the least convenient for arbitrage
applications, despite its lower cost. This is essentially due to the low number of equivalent full cycles
compared to the other battery technologies. In addition, the Li-ion technology has a low profitability
for arbitrage applications, essentially because of the high upfront investment cost. However, the
situation could rapidly change since Li-ion batteries are the most promising in terms of cost reduction
and cycling performance.

In a future work, the authors will evaluate the effect of load forecasting uncertainty on the
accuracy of storage operating strategies, in order to demonstrate that often the deviation of the
scheduled power profile from the effective one could affect the results of more complete methods.
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Abbreviations

BESS Battery Energy Storage System
BOP Balance-of Plant
DEIM Department of Energy, Information Engineering and Mathematical Models
DOD Depth-of-Discharge
DSM Demand Side Management
IRR Internal Rate of Return
Li-ion Lithium-Ion
MA Moving Average
MA RTP Moving Average of RTP Prices
NaS Sodium-Sulphur
PCS Power Conversion System
PSO Particle Swarm Optimization
PV Photovoltaic
RES Renewable Energy Sources
RTP Real-Time Pricing
SMP System Marginal Price
SOC State-of-Charge
TOU Time-of-Use
VAT Value Added Tax
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