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Abstract: Wind speed forecasting is difficult not only because of the influence of atmospheric
dynamics but also for the impossibility of providing an accurate prediction with traditional
statistical forecasting models that work by discovering an inner relationship within historical
records. This paper develops a self-adaptive (SA) auto-regressive integrated moving average with
exogenous variables (ARIMAX) model that is optimized very-short-term by the chaotic particle
swarm optimization (CPSO) algorithm, known as the SA-ARIMA-CPSO approach, for wind speed
prediction. The ARIMAX model chooses the wind speed result from the Weather Research and
Forecasting (WRF) simulation as an exogenous input variable. Further, an SA strategy is applied
to the ARIMAX process. When new information is available, the model process can be updated
adaptively with parameters optimized by the CPSO algorithm. The proposed SA-ARIMA-CPSO
approach enables the forecasting process to update training information and model parameters
intelligently and adaptively. As tested using the 15-min wind speed data collected from a wind
farm in Northern China, the improved method has the best performance compared with several
other models.

Keywords: wind speed; self-adaptive strategy; ARIMAX; WRF simulation

1. Introduction

1.1. Time Series Forecasting and Wind Energy

Time series forecasting plays an essential role in many fields, especially in meteorology,
economics and energy. Time series models produce forecasts by discovering the inner relationships
within historical records. This paper focuses on wind speed forecasting, which is crucial in the whole
life-cycle of wind farm construction and operation and is also the basic technique to guarantee the
grid security of a wind-connected system. Wind power is economic and ecologically friendly, which
makes it one of the most popular and promising alternative energy sources. Wind power accounts for
approximately 10% of the national power use in many European countries, and for more than 15%
in Spain, Germany and the US [1]. However, the main obstacle for wind industry development is
the variability of output power, which seriously prevents wind power penetration and threatens grid
security. To guarantee the security of the grid system, the dispatching department have to balance the
grid’s consumption and production within very small time intervals [2]. Moreover, because the lack
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of accurate information on wind occurrence, the efficiency of wind turbine may also be limited [3].
In actual power generation, wind predictions—especially the short-term forecasts—are important for
scheduling, controlling and dispatching the energy conversion systems [4]. However, as the most
important characteristic of wind, speed can be easily influenced by other meteorological factors, such
as air pressure, air temperature and terrain [5]. Thus, wind speed prediction is not easy to address.
Moreover, wind speed modelling has become one of the most difficult problems [6,7].

1.2. Wind Speed Forecasting: Existing Works

Many methods have been attempted to forecast wind speed. In general, they can be classified
into two categories: physical and statistical methods. Physical methods are always referred to as
meteorological predictions of wind speed, including the numerical approximation of models that
describe the state of the atmosphere [8], such as the Weather Research and Forecasting (WRF)
model [9]. These models always choose physical data such as topography information, pressure
and temperature to forecast wind speed in the future [10,11]. As one of the current-generation
physical models, WRF [9] is widely used in both research [12–14] and operational forecasts.
Reference [13] used the WRF model to manage ocean surface wind simulations forced by different
initial and boundary conditions. Reference [14] compared WRF with the Wind Atlas Analysis and
Application Program (WAsP) model, to test the performance in terms of flow characteristics and
energy yields estimates. Considering numerical weather prediction (NWP) models, one important
issue is downscaling. Generally, two categories are focused on: dynamic and statistical downscaling
methods. Dynamical downscaling methods have clear physical meanings and are unaffected by
the observation data. However, they require large computational costs. Being different, statistical
downscaling—including transfer function method (TFM), weather pattern method (WPM) and
stochastic weather generator (SWG)—is simple to establish and needs a small amount of calculation,
but it may be influenced strongly by observations [15]. Recently, many new statistical downscaling
techniques have been developed, such as the similarity method, hidden Markov model (HMM),
generalized linear model (GLM) and others [15].

Unlike physical models, statistical methods make forecasts by discovering the relationships
in historical wind speed data and sometimes other variables (e.g., wind direction or temperature).
The data used is recorded at the observation site or other nearby locations where data are available.
Moreover, many statistical methods have been applied, such as the auto-regressive integrated
moving average (ARIMA) model, Kalman filters, and the generalized auto-regressive conditional
heteroscedasticity (GARCH) model, etc. The statistical models can be used at any stage during
modelling, and they often merge various methods into one. Physical and statistical models each have
their own advantages for wind speed prediction, but few forecasts use only one of them. The physical
prediction results are just the first step of wind forecast; then, the physically predicted wind speed
can be regarded as an auxiliary input to other statistical models [16–18]. Currently, grey models
(GM) [19,20] and models based on artificial intelligence (AI) techniques [21,22] have been developed
for this area, containing the artificial neural networks (ANNs) of multi-layer perceptrons (MLP) [23],
radial basis function (RBF) [24], recurrent neural networks [25,26], and fuzzy logic [27,28].

As one of the most widely used time series approach, ARIMA has been used as an effective
and efficient forecasting technique in many fields, including traffic, energy, and the economy.
Generally, ARIMA is a linear model that represents both stationary and non-stationary series [29]
and uses historical time series patterns to make forecasts for the future data trend. In terms
of the wind speed prediction problem, which is studied in this paper, the ARIMA models are
effective and suitable for short-term and very-short-term predictions. References [30–32] applied
the auto-regressive moving average (ARMA) model to wind speed predictions with different time
horizons. Furthermore, because wind-related data always show obvious periodicity, a seasonal
ARIMA model can be defined with the consociation of a seasonal difference process [33]. Later, the
fractional-ARIMA model was proposed by Kavasser and Seetharaman [34], which assumes that
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the differencing parameter d of ARIMA (p, d, q) is a fractionally continuous value in the interval
(´0.5, 0.5). Their model was used for wind speed prediction on the day-ahead and two-day-ahead
time horizons in North Dakota. When there is little knowledge available or there is no suitable
model relating the predicted variables to other explanatory factors, the ARIMA model is particularly
useful [35]. Some articles made a hybrid approach by combining the ARIMA model with other
methods. Studies take ARIMA as the first step of a hybrid method, and then the residual series
of ARIMA can be regarded as the nonlinear part of the original series. Reference [36] developed a
hybrid ARIMA-ANN model for hourly wind speed prediction. In their method, the ARIMA model
was first used for wind speed forecasting, while the ANN was chosen to reduce the errors from the
ARIMA models. Later, a hybrid method combined the seasonal ARIMA, and the least square support
vector machine (LSSVM) was developed in Reference [5] for monthly wind speed prediction in the
Hexi Corridor of China. Here, both ANN and LSSVM are quite effective for addressing series within
nonlinear signals.

Improvement made on ARIMA has enhanced the model performance substantially. However, by
considering either the improved ARIMA model or the ARIMA-combined hybrid methods for wind
forecast, most approaches employ only the historical observations but not the factors of atmospheric
dynamics. Some studies claimed that an accurate wind prediction method must include a numerical
weather prediction (NWP)-based process [37].

1.3. Original Contribution: Developed Self-Adaptive Wind Speed Forecasting Strategy

The original contribution of this paper is the development of a self-adaptive (SA) auto-regressive
integrated moving average with exogenous variables (ARIMAX) model optimized by the chaotic
particle swarm optimization (CPSO) algorithm called the SA-ARIMAX-CPSO approach, which is
applied to wind speed prediction. Specifically, the applied ARIMAX model takes the WRF simulation
as an exogenous part, which makes the forecasting model a combination of both statistical and
physical information. Moreover, the CPSO-driven SA strategy enables the proposed method to
syncretize the previous model and the recently updated information. In this paper, the self-adaptation
contains two parts. The first one is new model fitting, when the recent measurements or WRF data
are available. This paper updates the fitting coefficients every time-step, while the WRF model runs
once a day. The second one is adaptation process, where the optimal adaptive weights are determined
only based on the training set.

On the issue of very-short-term wind speed prediction, models were established generally based
on a statistical process, while the NWP simulations were typically used for short-term predictions.
This is mainly due to the model accuracy and calculation costs. This paper develops a hybrid
approach for very-short-term wind speed prediction combining both statistical and physical models,
which has an acceptable amount of calculation and effective model performance. Specifically, the
WRF model is now the current generation physics-based atmospheric model, which is widely
applied; the ARIMA process is the typical time series model, which emphasizes modelling the
relationship among historical observations. Thus, the proposed ARIMAX model in this paper
considers not only the statistical information from historical wind speed observations but also the
physical process of atmospheric motion.

Furthermore, this paper develops a SA strategy to apply for the ARIMAX method. Model
parameters are always fixed values that are determined by the training data set; this may be
unreasonable in a dynamic process. When new information is obtained, the prediction system should
be updated. In this paper, the new information includes two parts—the newly updated measurement
records and the WRF simulation result. From this opinion, this paper develops a SA-ARIMAX
model, which has adaptive model parameters when the new information is available. During this
process, the CPSO algorithm is applied to obtain the optimized parameters. Simulation results
show that the developed SA-ARIMAX-CPSO method in this paper performs considerably better
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than the original auto-regressive moving average with exogenous variables (ARMAX), ARIMAX,
and adaptive ARMAX models.

1.4. Structure of This Paper

The rest of this paper is organized as follows: Section 2 reviews the original ARIMAX model.
Section 3 introduces the improved SA-ARIMA optimized by the CPSO algorithm. Section 4 shows the
available data sets and model measurements. Sections 5 and 6 display the experiments and analysis.
Afterward, conclusions are discussed in Section 7. Finally, acknowledgements and references
are given.

2. Original ARIMAX Model

The developed ARIMAX model in this paper is a single-input and single-output (SISO) system,
which is defined as follows:

A
´

z´1
¯

y ptq “ B
´

z´1
¯

u ptq ` C
´

z´1
¯

e ptq (1)

The input data passes through a difference filter D times, where:

A
´

z´1
¯

“ 1´ a1z´1 ´ ¨ ¨ ¨ ´ apz´p (2)

B
´

z´1
¯

“ b1 ` b2z´1 ` ¨ ¨ ¨ ` bqz´q`1 (3)

C
´

z´1
¯

“ 1` c1z´1 ` ¨ ¨ ¨ ` crz´r (4)

y ptq is the output at time t, u ptq is the exogenous variable at time t, e ptq is the white noise, and p, q
and r are the orders of auto-regressive (AR), moving average (MA) and exogenous (X), respectively.
Moreover, z´1 represents the delay operator, and A

`

z´1˘, B
`

z´1˘ and C
`

z´1˘ are the parameters
of AR, MA and X parts, respectively. It is assumed that the zero points of A

`

z´1˘ and C
`

z´1˘ are
located in the unit circle. Equation (1) can be re-written as:

y ptq “ a1y pt´ 1q ` ¨ ¨ ¨ ` apy pt´ pq ` b1u ptq ` b2u pt´ 1q ` ¨ ¨ ¨ ` bqu pt´ q` 1q

` e ptq ` c1e pt´ 1q ` ¨ ¨ ¨ ` cre pt´ rq
(5)

To determine the model order, the most popular one is the Bayesian Information Criterion
(BIC) [38]. Reference [39] provides a detailed discussion on order determination for the ARIMAX
model by using the BIC method.

The parameters A
`

z´1˘, B
`

z´1˘ and C
`

z´1˘ are obtained by the recursive maximum likelihood
estimation method [40]. Thus:

θ “
“

a1, . . . , ap, b1, . . . , bq, c1, . . . , cr
‰

(6)

The recursive estimation of θ can be expressed as:

θ pt` 1q “ θ ptq ` K ptq
´

y pt` 1q ´ ϕT ptq θ ptq
¯

(7)

where θ p0q can be any value, θ piq “ 0 if i ă 0, and:

K ptq “
P ptq ϕ ptq

1` ϕT ptq P ptq ϕ ptq
(8)

P pt` 1q “ P ptq ´ K ptq ϕT ptq P ptq (9)
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ϕ ptq “ ry pt´ 1q , . . . , y pt´ pq , u ptq , . . . , u pt´ q` 1q , y pt´ 1q

´ϕT pt´ 1q θ ptq , . . . , y pt´ rq ´ ϕT pt´ rq θ pt´ r`qs
(10)

3. Self-Adaptive ARIMAX Optimized by CPSO Algorithm

3.1. Self-Adaptive ARIMAX (SA-ARIMAX) Method

In the original ARIMAX model introduced in Section 2, the model parameters A
`

z´1˘, B
`

z´1˘

and C
`

z´1˘ are fixed by the training data set. This is unreasonable in real applications. When new
information is obtained, the forecast system should be updated. From this point of view, this paper
develops a SA-ARIMAX model with adaptive model parameters.

The model parameters are denoted at time t as Aptq
`

z´1˘, Bptq
`

z´1˘, and Cptq
`

z´1˘, as follows:

Aptq
´

z´1
¯

“ 1´ aptq1 z´1 ´ ¨ ¨ ¨ ´ aptqp z´p (11)

Bptq
´

z´1
¯

“ bptq1 ` bptq2 z´1 ` ¨ ¨ ¨ ` bptqq z´q`1 (12)

ϕCptq
´

z´1
¯

“ 1` cptq1 z´1 ` ¨ ¨ ¨ ` cptqr z´r (13)

Assuming that the model parameters at time t are estimated, Equation (5) can be re-rewritten as:

ŷ pt` 1q “ aptq1 y ptq ` . . .` aptqp y pt´ p` 1q ` bptq1 u pt` 1q ` bptq2 u ptq ` . . .

`bptqq u pt´ p` 2q ` e pt` 1q ` cptq1 e ptq ` . . .` cptqr e pt´ r` 1q
(14)

When the new information is obtained at time pt` 1q, the model parameters should be updated.
As fitted by ARIMAX with the same model orders as previously stated, parameters are obtained
and denoted as Âptq

`

z´1˘, B̂ptq
`

z´1˘, and Ĉptq
`

z´1˘. Then, at time pt` 1q, the parameters of the
forecasting model should be influenced not only by the parameters at time t, Aptq

`

z´1˘, Bptq
`

z´1˘,
and Cptq

`

z´1˘ but also by the new information Âptq
`

z´1˘, B̂ptq
`

z´1˘, and Ĉptq
`

z´1˘. Thus, this paper
takes a weighted average of the two aspects, as:

Apt`1q
´

z´1
¯

“ p1´ αq Âpt`1q
´

z´1
¯

` αAptq
´

z´1
¯

(15)

Bpt`1q
´

z´1
¯

“ p1´ βq B̂pt`1q
´

z´1
¯

` βBptq
´

z´1
¯

(16)

Cpt`1q
´

z´1
¯

“ p1´ γq Ĉpt`1q
´

z´1
¯

` γCptq
´

z´1
¯

(17)

where 0 ă α, β, γ ă 1 are three weights.

3.2. Parameters in the SA-ARIMAX Model

There are two categories of parameters in the SA-ARIMAX model. One category are the
ARIMAX parameters, named A

`

z´1˘, B
`

z´1˘ and C
`

z´1˘ and defined by Equations (11)–(13).
This set of parameters can always be obtained by the least square (LS) method during the model
fitting process. The other category is the self-adaptive parameters, α, β, and γ, defined in Equations
(15)–(17) when applying the SA strategy to an ARIMAX process. It can be easily found that
parameters α, β, and γ represent a weighted average between the historical and the newly fitted
model parameters. Larger α, β, and γ prove that the prediction model takes more information from
the historical model parameters, while smaller values of α, β, and γ prove that the newly fitted model
parameters cause more influence on the final forecasting results.

Values of α, β, and γ affect the model performance by constructing a different information
balance between the historical and newly fitted model parameters. The determination of α, β, and γ is
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difficult but quite essential. To search for the optimized parameters α, β, and γ during the SA process,
this paper applies the CPSO algorithm, which is a swarm intelligent method. The combination
with the CPSO algorithm enables the developed SA-ARIMAX model to absorb the newly updated
information with an optimized coefficient.

3.3. Model Optimization by CPSO Algorithm

3.3.1. Working Principle of CPSO Algorithm

Particle swarm optimization (PSO) simulates the social psychological metaphor based on swarm
intelligence. Two best values exist in the simulation process of PSO. For each particle in the problem
space, the best value obtained up to now is denoted as pBest. In terms of the global version, the
overall best solution achieved up to now is called gBest. The procedure for PSO can be expressed as
shown in Appendix A [41,42].

3.3.2. Developed Method: SA-ARIMAX Optimized by CPSO (SA-ARIMAX-CPSO)

In this paper, the three coefficients, α, β, and γ, are optimized by the CPSO algorithm introduced
in Section 3.3.1. Then, the prediction value at time pt` 1q can be calculated by Equation (14) using
the optimized parameters. The developed self-adaptive ARIMAX method optimized by CPSO, called
SA-ARIMAX-CPSO in this paper, can be divided into several steps as Appendix B shows. Figure 1
shows the flowchart.
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In practice, the new information is not updated at every time t, thus the model parameters
should be updated when the new information, newly-obtained observation or WRF simulation data,
is available. This forecasting process could be concluded as follows: assuming that t` 1 ă T and the
parameters at time t, Aptq

`

z´1˘, Bptq
`

z´1˘, and Cptq
`

z´1˘, are obtained. Thus, the parameters at time
pt` 1q can be calculated:

Apt`1q
´

z´1
¯

“

#

Aptq
`

z´1˘ , if no new information is received
p1´ αq Âpt`1q `z´1˘` αAptq

`

z´1˘ , otherwise
(18)

Bpt`1q
´

z´1
¯

“

#

Bptq
`

z´1˘ , if no new information is received
p1´ βq B̂pt`1q `z´1˘` βBptq

`

z´1˘ , otherwise
(19)

Cpt`1q
´

z´1
¯

“

#

Cptq
`

z´1˘ , if no new information is received
p1´ γq Ĉpt`1q `z´1˘` γCptq

`

z´1˘ , otherwise
(20)

where Âpt`1q `z´1˘, B̂pt`1q `z´1˘, and Ĉpt`1q `z´1˘ represent the new information.

3.3.3. How the CPSO Works: An AI-Based Optimization Process

As introduced in Section 3, the CPSO algorithm is employed as a parameter searching tool,
optimizing the parameters α, β, and γ in Equations (15)–(17). This section aims to display how the
parameters α, β, and γ are optimized during a CPSO-driven process. The maximum iteration is set as
100; Figure 2 displays the parameter values for each iteration.

The CPSO-driven optimization process is a parameter searching process, promoting the
reduction of the fitness value. For each step, the best values, pBest and gBest, will be updated if
the fitness value meets a better value, which means a lower fitness value in this study. Figure 2 shows
the parameter changing trace, where alpha, beta, gamma imply α, β, and γ, respectively. Denote the
t-th iteration of α, β, and γ as x ptq “ px1 ptq , x2 ptq , x3 ptqq. Then, the pt` 1q-th iteration can be
expressed as:

v pt` 1q “ w¨ v ptq ` c1¨ uD ptq ¨ rpBest ptq ´ x ptqs ` c2¨UD ptq ¨ rgBest ptq ´ x ptqs (21)

x pt` 1q “ x ptq ` ∆t¨ v pt` 1q (22)

where w is the parameter called inertia weight, c1 and c2 are positive constants, and uD and UD are
random figures uniformly distributed in r0, 1s. Thus, the vector v can be regarded as the velocity
vector of the parameter iteration. Then, the position x pt` 1q can be calculated by adding the velocity
vector v pt` 1q onto the previous position x ptq, where ∆t means the step length.

To strengthen the randomness, different combination methods regarding parameters were
given [43]. In this paper, w is iterated by the following Tent Map:

w pt` 1q “

$

’

&

’

%

w ptq
0.7

, w ptq ă 0.7
10

3w ptq p1´w ptqq
, w ptq ě 0.7

(23)

w pt` 1q “ w pt` 1q ` 0.5 (24)

c1 and c2 are updated by the Logistic Map:

c1 pt` 1q “ a¨ c1 ptq p1´ c1 ptqq (25)

c2 pt` 1q “ a¨ c2 ptq p1´ c2 ptqq (26)

where, generally, a “ 4, c1, c2 P p0, 1q.
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4. Available Data Sets

This study site is a wind farm in Shandong Province in Northern China. Figure 3 shows the
topography of Shandong Province and the location of the study site. The data set used in this paper
was collected from an anemometer tower located in the range of this wind farm, which measuring
height is 70 m. The available data are from 6:00, 2011-9-30 to 13:45, 2011-11-18, with a time interval of
15 min (Figure 4) There are 3.26% missing data, and the missing data are filled by linear interpolation.
Table 1 shows the basic statistical description of the available data. Moreover, Figure 5 displays the
frequency distribution of the available data and the probability distribution function (pdf) fitted by
the two-parameter Weibull distribution:

f pvq “
k
c

´v
c

¯k´1
exp

„

´

´v
c

¯k


, v ě 0 (27)

where k and c are the shape parameter and scale parameter, respectively, and v represents the wind
speed records. Applying the maximum likelihood (ML) method, the shape and scale parameters are
5.0258 and 2.1490, respectively.Energies 2016, 9 10 
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5. Experiments and Analysis

Experiments in this paper are composed of three parts. The first part displays the WRF
configuration and prediction, which will be used as an exogenous input in the following model
construction. Then, the second part discusses the original ARMAX and ARIMAX predictions.
This part aims to test the model performance without the SA strategy, which means the fixed model
parameters will be used during the whole tested period. After that, the developed SA strategy is
applied, with the same model setup as the original ARMAX and ARIMAX models.
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5.1. WRF Meso-Scale Numerical Model Prediction

The WRF meso-scale numerical model is now the current generation physics-based atmospheric
model, serving the needs of both atmospheric research and operational forecasting. Recently, the WRF
model has become one of the most popular and widely used tools for numeric weather prediction.
In this paper, the WRF model is selected as a representative for the physical models.

The WRF model domain has 150 by 120 horizontal grid points, spaced at 27 km, situated on
47 terrain following vertical levels. In the WRF model, a grid is defined as an integration of three
dimensional points. It contains a set of weather data (wind speed, atmospheric pressure etc.). Physical
equations are used to simulate the atmospheric state; this is based not only on the data on grid but
also a specific physical model. Then, the simulations are calculated by discretized time-steps [44].

In the developed ARIMAX model, a wind speed prediction from the WRF simulation is adopted
as an exogenous variable. First, this section provides the WRF results. The initial and boundary
conditions of the WRF simulation are extracted from the National Centres for Environmental
Prediction (NCEP, http://www.ncep.noaa.gov/) reanalysis data (1˝ˆ1˝); the time resolution is
15 min, and the spatial resolution is 27 km. The physical options of the WRF model are described
in Table 2. The WRF calculation discussed in this paper is a one-day simulation, which starts at
8:00 am (China Standard Time, CST) on the first day to 8:00 am (CST) on the second day.

Table 2. Model configuration of WRF simulation.

Physical Options

Cumulus parameterization Grell 3d ensemble cumulus scheme
Longwave/Shortwave radiation RRTM/Dudhia scheme

Surface layer physics Eta similarity
Land surface processes Noah Land Surface Model

Planetary Boundary layer Mellor-Yamada-Janjic scheme

Figure 6 shows the WRF prediction in the experimental period. It is clear that the WRF prediction
can describe the overall variability of wind speed, even though the forecasting accuracy should be
enhanced. The atmospheric dynamics information plays an important role in WRF prediction. In the
next section, this result will be an exogenous input of the ARIMAX model; it is regarded as a reference
value for the final prediction. Thus, the developed prediction procedure contains information not
only from historical observations but also from physical-based WRF results.
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5.2. Original ARMAX and ARIMAX Predictions

This section establishes the original ARIMAX model. The first 800 observations of the available
data set are chosen as the initial training data set; the rest is used for rolling prediction and model
testing. By using the BIC method, ARMAX (3,3,1) is established. Figure 7 shows the ARMAX results
and absolute error. The absolute error of the ARMAX prediction is mainly distributed in a range
of 0 to 4 m/s. The original ARMAX model has high MAPE in wind speed prediction. This may
result from two aspects. One aspect is the strong fluctuation of the wind speed time series, which
makes it difficult to capture the variation and randomness. The other aspect may be the fixed model
parameters in the original ARMAX model.
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To transform the original observation data into a stationary sequence, the first-order difference
is adopted; therefore, the ARIMAX model is established. Figure 8 shows the transformed data series,
and Figure 9 provides the ARIMAX predictions. Compared with Figure 7, the ARIMAX prediction
has fewer statistical errors and this phenomenon also occurs in Table 3, which provides detailed
error comparisons among the root mean absolute error (RMSE), Bias and correlation coefficient (R).
Compared with ARMAX prediction, the ARIMAX model has a decline of 14.69% in RMSE.

At the same time, it can also be found from Figure 9 that the ARIMAX prediction has a strong
fluctuation, and the predicted value is always considerably higher than the observation. Therefore,
the model performance should be improved further. In the following sections, a method of adaptive
model parameters is applied to both ARMAX and ARIMAX procedures. Simulation results show
that predictions with adaptive parameters perform considerably better than the original ARMAX
and ARIMAX predictions.
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Table 3. Errors of ARMAX and ARIMAX models.

RMSE (m/s) Bias (m/s) R

ARMAX 1.43 ´0.10 0.76
ARIMAX 1.22 0.04 0.87

5.3. Developed SA-ARMAX-CPSO and SA-ARIMAX-CPSO Predictions

In this section, this paper develops a method of adaptive parameters. The developed method
is applied to both SA-ARMAX and SA-ARIMAX procedures. The three weights, α, β, and γ, are
obtained by the CPSO algorithm, as α “ 0.96, β “ 0.92, γ “ 0.39. Figures 10 and 11 show the
prediction results.
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Compared to Figures 7 and 9 the adaptive models show significant improvements. Table 4 shows
the detailed statistical errors of the adaptive ARMAX and adaptive ARIMAX models. The adaptive
ARIMAX model performs slightly better than the adaptive ARMAX model, which can be found from
all three criteria in Table 4.
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However, compared with the original ARMAX and ARIMAX predictions, adaptive models
work more efficiently. Specifically, when compared with the original ARMAX/ARIMAX models,
the SA-ARMAX/ARIMAX-CPSO models show 23.78% and 12.30% lower RMSE, respectively. Bias
of the adaptive methods declines and the correlation coefficients of the adaptive methods increase,
compared with the original ARMAX/ARIMAX models. This is a benefit of the CPSO-driven SA
strategy proposed in this paper. It indicates that the developed adaptive method effectively improves
the original model performances.
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Table 4. Errors of adaptive ARMAX and adaptive ARIMAX models.

RMSE (m/s) Bias (m/s) R

Adaptive ARMAX 1.09 ´0.05 0.87
Adaptive ARIMAX 1.07 0.03 0.89

5.4. Performance Comparison among Several Models

This paper employs the WRF model as an exogenous input to the ARMA/ARIMA methods,
where this physical model runs once a day. Thus, it is significant to compare the model performance
between the WRF and ARMAX/ARIMAX models at the start point of WRF prediction, which is
8:00 am CST in this paper. Figure 12 displays the comparison results among them.
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Figure 12. Performance comparison among WRF, ARIMAX and adaptive ARIMAX. (a) Performance
comparison at start points of WRF; (b) Observation vs. prediction; (c) Error distribution.

Specifically, Figure 12a shows the observation and different predictions at the starting point of
the WRF model. It can be found that no model always performs its best at each start point. Figure 12b
contains three scatter plots between the observation and three different predictions. The smaller
distance between the scatter points and the fixed line (y “ x) refers to the better performance of
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the forecasting model. Obviously, the adaptive ARIMAX model shows the best performance among
the three models. This can also be found in the Figure 12c, which displays the histogram for the
forecasting error. The error distribution of WRF is wider than the other two, which indicates that
the WRF simulation may have bad performances in some cases. This is disadvantageous when
considering the very-short-term wind speed prediction. Different from it, the ARIMAX and adaptive
ARIMAX models use the WRF prediction as an exogenous input; thus, the physical simulation
can be a reference value to the final result. The error distribution of the adaptive ARIMAX model
concentrates around zero value, which implies that the self-adaptive method is more stable and
effective. Moreover, the comparison also indicates that although the physical prediction is regarded
as a reference value, the final result of the ARIMAX prediction is not totally driven by the WRF
simulation. The model performance benefits from both physical and statistical model processes. This
can be also found in Table 5, which displays the comparison among WRF, ARIMAX and adaptive
ARIMAX at the starting points of WRF simulation.

Table 5. Errors comparison at the starting points of WRF simulation.

RMSE (m/s) Bias (m/s) R

WRF 2.54 1.61 0.57
ARIMAX 1.12 ´0.14 0.87

Adaptive ARIMAX 0.91 ´0.15 0.91

6. Further Discussions

The simulation in Section 5.2 shows that the proposed adaptive ARIMAX method performs
better than the adaptive ARMAX and the original ARIMAX models, with a lower value of statistical
errors. To provide a deeper understanding of how the forecasting errors can be reduced by the
proposed method, this section has an additional discussion on this topic from the following aspects.

6.1. Contribution of the CPSO-Driven SA Strategy: Reduce the Forecasting Errors

As mentioned above, the principle of the proposed SA strategy is a combination of the historical
model and the recently updated information, and the three parameters α, β, and γ determine the
weight of this balance. The simulation result indicates that the CPSO-driven SA strategy contributes
to the reduction of model errors.

‚ Contribution of the SA strategy. As well known, statistical models are established by finding
the relationships inside the data records. An intuitionistic idea is that the newly fitted model
contains the recently updated information and always leads to better results. However, series
such as wind speed show continuous changes and strong variations, and the WRF simulation
also contains unavoidable uncertainties itself. All of these factors may result in poor model
performance. Thus, a combination of both the historical model and the recently updated
information makes the forecasting process more stable.

‚ Contribution of the CPSO-driven optimization. Concerning the SA strategy, the most important
task is to determine the balance between the historical model and the newly fitted model,
which means the parameters α, β, and γ. Larger α, β, and γ prove that the model takes more
information from the historical form, whereas the smaller values indicate the newly fitted model
brings more influence. Under this circumstance, the CPSO algorithm is employed as a parameter
searching tool to find the optimal value in the meaning of artificial intelligence.

6.2. Discussion on the Optimized Parameters

The optimal values are not identical for the three parameters. In this paper, the CPSO-driven
optimal values of α, β, and γ are 0.96, 0.92, and 0.39, respectively. These three values are not identical,
which means the three parts in an ARIMAX model, AR, MA, and X, perform in different ways.



Energies 2016, 9, 7 16 of 20

‚ The CPSO-driven optimal values of α and β are similar. Taking α “ 0.96 as an example, it means
that Apt`1q `z´1˘ is nearly equal to Aptq

`

z´1˘, and Âpt`1q `z´1˘ only contributes to a very small
percentage. A comparable discussion can be given for the parameter β. This indicates that the
AR and MA parts heavily rely on the historical model parameters but not the recently updated
model information.

‚ Different from α and β, the optimized value γ “ 0.39 implies that parameter Cpt`1q `z´1˘

takes more information from the newly fitted Ĉpt`1q `z´1˘ than Cptq
`

z´1˘. These parameters
correspond to the X part, which are related to the exogenous WRF input in this paper. The result
shows that large weight should be assigned to recent WRF information. The reason may
be that the WRF simulation describes the physical mechanism of atmosphere, and a recently
updated simulation contains the approaching information of future atmospheric motion.
Thus, parameters Cptq

`

z´1˘ from the new information should be assigned to a larger weight
compared with the previous one. This is helpful for short-term wind speed forecasting and is
different from the principle of statistic parts.

7. Conclusions

As one of the most popular low-carbon resources, wind energy contributes not only to energy
conservation but also to environmental protection. Wind speed prediction is a critical problem in
wind power generation. In this paper, an adaptive ARIMAX model, which takes WRF results as an
exogenous input and has adaptive model parameters, is developed for 15-min wind speed prediction.

The developed adaptive ARIMAX model performs better than the original ARMAX, ARIMAX,
adaptive ARMAX and ANN models. It may result from several aspects. To begin with, considering
both physical and statistical information, the proposed ARIMAX model in this paper chooses the
WRF prediction as the exogenous input. The physics-based WRF describes the state of atmospheric
motion and provides a believable prediction of wind speed with a forecast time horizon of three
days. However, its forecasting accuracy should be improved when downscaled into a given
area. Statistical predictions model the specific wind speed regulation by the historical information.
Thus, taking both the atmospheric movement and the historical regulation into consideration is a
good choice. In the developed ARIMAX model in this paper, the AR and MA parts model the
statistical regulation among observations, while the X part imports the physical prediction result.
Next, compared to the original ARIMAX model, the developed method contains adaptive model
parameters. In the rolling forecasting procedure, the adaptive method can promptly bring new
information into the prediction system. This method is a weighted average of the historical parameter
and the parameter calculated from new information. The information from the historical parameter
can maintain the stability of the forecasting system, while new information updates the system to
obtain an accurate variation trend of the latest wind speed series. In addition, the ARIMAX model
has not been applied in the area of wind speed prediction. Its usage in this paper is a new attempt
for this topic to obtain better forecasting performance. Moreover, the developed method of adaptive
model parameters can also be applied to other forecasting models.
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Appendix A

Algorithm: CPSO
Input:

x ptq “ x1 ptq , x2 ptq , . . . , xn ptq
Output:

x pbestq, best values of input x ptq
Parameters:

w, u, c1, c2

1 INITIALIZATION
/* Initialize the position and velocity of each particle randomly in the n-dimensional problem space,
using the uniform problem distribution function */

2 FOR each (1 ď i ď n) DO
3 xi ptq “ rand pxq
4 END FOR
5 iter “ 1
6 x piterq “ x1 piterq , x2 piterq , . . . , xn piterq
7 WHILE (iter ď itermax) DO /* Find the best fitness value */
8 FOR EACH (xiter

i P x) DO
/* For each particle, evaluate the fitness value, set its pBest as the current position and value */

9 IF (pBesti ą f itness
`

xiter
i

˘

) THEN
10 pBesti “ xiter

i
11 END IF
12 END FOR
13 /* Choose the particle with the best fitness value of all the particles */ FOR EACH (xiter

i P x) DO
14 IF (gBest ą pBesti) THEN
15 gBest “ pBest
16 xBest “ xiter

i
17 END IF
18 END FOR
19 FOR EACH (xiter

i P x) DO
20 vi pt` 1q “ w¨ vi ptq ` c1¨ udi,j ptq ¨ rpBesti ptq ´ xi ptqs ` c2¨Udi,j ptq ¨ rgBest ptq ´ xi ptqs
21 xi pt` 1q “ xi ptq ` ∆t¨ vi pt` 1q
22 END FOR
23 iter “ iter` 1
24 END WHILE
25 RETURN
26 x pbestq “ rx1 pbestq , x2 pbestq , . . . , xn pbestqs

Appendix B

Algorithm: SA-ARIMAX-CPSO
Input:

WRF prediction X and historical records denoted as y
Output:

ŷ pT` 1q , ŷ pT` 2q . . .
Parameters:

α, β, γ-the weight of ARIMAX model
q, p, r-the number of model order
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1 INITIALIZATION
2 WRF prediction
3 Fit ARIMAX model. Parameters of ARIMAX prediction model (Equation (14)) are denoted as

Aptq
`

z´1˘, Bptq
`

z´1˘ and Cptq
`

z´1˘

4 WHILE (t` 1 ă T) DO
5 Adding new information at time (t+1)
6 Re-fit ARIMAX model as Âptq

`

z´1˘ , B̂ptq
`

z´1˘ and Ĉptq
`

z´1˘

7 Calculate ARIMAX prediction model (Equation (14)) at time (t` 1)
8 Calculate α, β, γ by using CPSO algorithm
9 Update the parameters of ARIMAX as Apt`1q `z´1˘, Bpt`1q `z´1˘ and Cpt`1q `z´1˘

10 Obtained the prediction ŷ pt` 2q
11 END WHILE
12 RETURN
13 ŷ pT` 1q , ŷ pT` 2q . . .
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