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Abstract: This paper addresses the problem of online fault detection of an advanced wind turbine
benchmark under actuators (pitch and torque) and sensors (pitch angle measurement) faults of
different type: fixed value, gain factor, offset and changed dynamics. The fault detection scheme
starts by computing the baseline principal component analysis (PCA) model from the healthy
or undamaged wind turbine. Subsequently, when the structure is inspected or supervised, new
measurements are obtained are projected into the baseline PCA model. When both sets of data—the
baseline and the data from the current wind turbine—are compared, a statistical hypothesis testing
is used to make a decision on whether or not the wind turbine presents some damage, fault or
misbehavior. The effectiveness of the proposed fault-detection scheme is illustrated by numerical
simulations on a well-known large offshore wind turbine in the presence of wind turbulence and
realistic fault scenarios. The obtained results demonstrate that the proposed strategy provides
and early fault identification, thereby giving the operators sufficient time to make more informed
decisions regarding the maintenance of their machines.

Keywords: wind turbine; fault detection; principal component analysis; statistical hypothesis
testing; FAST (Fatigue, Aerodynamics, Structures and Turbulence)

1. Introduction

Wind energy is currently the fastest growing source of renewable energy in the world. As wind
turbines (WT) increase in size, and their operating conditions become more extreme, a number
of current and future challenges exist. A major issue with wind turbines, specially those located
offshore, is the relatively high cost of maintenance [1]. Since the replacement of main components
of a wind turbine is a difficult and costly affair, improved maintenance procedures can lead to
essential cost reductions. Autonomous online fault detection algorithms allow early warnings of
defects to prevent major component failures. Furthermore, side effects on other components can be
reduced significantly. Many faults can be detected while the defective component is still operational.
Thus necessary repair actions can be planned in time and need not to be taken immediately and this
fact is specially important for off-shore turbines where bad weather conditions can prevent any repair
actions. Therefore the implementation of fault detection (FD) systems is crucial.

The past few years have seen a rapid growth in interest in wind turbine fault detection [2]
through the use of condition monitoring and structural health monitoring (SHM) [3,4]. The SHM
techniques are based on the idea that the change in mechanical properties of the structure will be
captured by a change in its dynamic characteristics [5]. Existing techniques for fault detection can
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be broadly classified into two major categories: model-based methods and signal processing-based
methods. For model-based fault detection, the system model could be mathematical—or
knowledge-based [6]. Faults are detected based on the residual generated by state variable or model
parameter estimation [7–11]. For signal processing-based fault detection, mathematical or statistical
operations are performed on the measurements (see, for example, [12,13]), or artificial intelligence
techniques are applied to the measurements to extract the information about the faults (see [14,15]).

With respect to signal-processing-based fault detection, principal component analysis (PCA) is
used in this framework as a way to condense and extract information from the collected signals.
Following this structure, this paper is focused on the development of a wind turbine fault detection
strategy that combines a data driven baseline model—reference pattern obtained from the healthy
structure—based on PCA and hypothesis testing. A different approach in the frequency domain can
be found in [16], where a Karhunen-Loeve basis is used.

Most industrial wind turbines are manufactured with an integrated system that can monitor
various turbine parameters. These monitored data are collated and stored via a supervisory control
and data acquisition (SCADA) system that archives the information in a convenient manner.
These data quickly accumulates to create large and unmanageable volumes that can hinder attempts
to deduce the health of a turbine’s components. It would prove beneficial if the data could
be analyzed and interpreted automatically (online) to support the operators in planning cost-effective
maintenance activities [17–19]. This paper describes a technique that can be used to identify incipient
faults in the main components of a turbine through the analysis of this SCADA data. The SCADA data
sets are already generated by the integrated monitoring system, and therefore, no new installation of
specific sensors or diagnostic equipment is required. The strategy developed is based on principal
component analysis and statistical hypothesis testing. The final section of the paper shows the
performance of the proposed techniques using an enhanced benchmark challenge for wind turbine
fault detection, see [2]. This benchmark proposes a set of realistic fault scenarios considered in an
aeroelastic computer-aided engineering tool for horizontal axes wind turbines called FAST, see [20].

The structure of the paper is the following. In Section 2 the wind turbine benchmark is recalled
as well as the fault scenarios studied in this work. Section 3 presents the design of the proposed fault
detection strategy. The simulation results obtained with the proposed approach applied to the wind
turbine benchmark are given in Section 4. Concluding remarks are given in Section 5.

2. Wind Turbine Benchmark Model

A complete description of the wind turbine benchmark model, as well as the used baseline
torque and pitch controllers, can be found in [2]. In this benchmark challenge, a more sophisticated
wind turbine model—a modern 5 MW turbine implemented in the FAST software—and updated
fault scenarios are presented. These updates enhance the realism of the challenge and will therefore
lead to solutions that are significantly more useful to the wind industry. Hereafter, a brief review of
the reference wind turbine is given and the generator-converter actuator model and the pitch actuator
model are recalled, as the studied faults affect those subsystems. A complete description of the tested
fault scenarios is given.

2.1. Reference Wind Turbine

The numerical simulations use the onshore version of a large wind turbine that is
representative of typical utility-scale land- and sea-based multimegawatt turbines described
by [21]. This wind turbine is a conventional three-bladed upwind variable-speed variable
blade-pitch-to-feather-controlled turbine of 5 MW. The wind turbine characteristics are given in
Table 1. In this work we deal with the full load region of operation (also called region 3). That is,
the proposed controllers main objective is that the electric power follows the rated power.
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Table 1. Gross properties of the wind turbine.

Reference Wind Turbine Magnitude

Rated power 5 MW
Number of blades 3
Rotor/Hub diameter 126 m, 3 m
Hub Height 90 m
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s
Rated generator speed (ωng) 1173.7 rpm
Gearbox ratio 97

In the simulations, new wind data sets with turbulence intensity set to 10% are generated with
TurbSim [22]. It can be seen from Figure 1 that the wind speed covers the full load region, as its values
range from 12.91 m/s up to 22.57 m/s.
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Figure 1. Wind speed signal with turbulence intensity set to 10%.

2.2. Generator-Converter Model

The generator-converter system can be approximated by a first-order ordinary differential
equation, see [2], which is given by:

τ̇r(t) + αgcτr(t) = αgcτc(t) (1)

where τr and τc are the real generator torque and its reference (given by the controller), respectively.
In the numerical simulations, αgc = 50, see [21]. Moreover, the power produced by the generator,
Pe(t), is given by (see [2]):

Pe(t) = ηgωg(t)τr(t) (2)

where ηg is the efficiency of the generator and ωg is the generator speed. In the numerical
experiments, ηg = 0.98 is used, see [2].

2.3. Pitch Actuator Model

The hydraulic pitch system consists of three identical pitch actuators, which are modeled as
a linear differential equation with time-dependent variables, pitch angle β(t) and its reference
βr(t). In principle, it is a piston servo-system, which can be expressed as a second-order ordinary
differential equation [2]:

β̈(t) + 2ξωn β̇(t) + ω2
nβ(t) = ω2

nβr(t) (3)
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where ωn and ξ are the natural frequency and the damping ratio, respectively. For the fault-free case,
the parameters ξ = 0.6 and ωn = 11.11 rad/s are used, see [2].

2.4. Fault Scenarios

Both actuator and sensor faults are considered. All the described faults originate from actual
faults in wind turbines [2]. Table 2 summarizes all the considered fault scenarios.

Table 2. Fault scenarios.

Number Fault Type

F1 Pitch actuator Change in dynamics: air content in oil
F2 Pitch actuator Change in dynamics: pump wear
F3 Pitch actuator Change in dynamics: hydraulic leakage
F4 Torque actuator Offset
F5 Generator speed sensor Scaling
F6 Pitch angle sensor Stuck
F7 Pitch angle sensor Scaling

2.4.1. Actuator Faults

Pitch actuator faults are studied as they are the actuators with highest failure rate in wind
turbines. A fault may change the dynamics of the pitch system by varying the damping ratio (ζ)

and natural frequencies (ωn) from their nominal values to their faulty values. The parameters for the
pitch system under different conditions are given in Table 3. The normal air content in the hydraulic
oil is 7%, whereas the high air content in oil fault (F1) corresponds to 15%. Pump wear (F2) represents
the situation of 75% pressure in the pitch system while the parameters stated for hydraulic leakage
(F3) correspond to a pressure of only 50%. The three faults are modeled by changing the parameters
ωn and ζ in the relevant pitch actuator model.

Table 3. Change in dynamics pitch actuator faults.

Faults ωn (rad/s) ζ

Fault Free(FF) 11.11 0.6
High air content in oil (F1) 5.73 0.45
Pump wear (F2) 7.27 0.75
Hydraulic leakage (F3) 3.42 0.9

For the test, the change in dynamics faults given in Table 3 are introduced only in the third pitch
actuator (thus β1 and β2 are always fault-free).

A torque actuator fault (F4) is also studied. This fault is an offset on the generated torque, which
can be due to an error in the initialization of the converter controller. This fault can occur since the
converter torque is estimated based on the currents in the converter. If this estimate is initialized
incorrectly it will result in an offset on the estimated converter torque, which leads to the offset on the
generator torque. The offset value is 2000 Nm.

2.4.2. Sensor Faults

The generator speed measurement uses encoders and its elements are subject to electrical and
mechanical failures, which can result in a changed gain factor on the measurement. The simulated
fault, F5, is a gain factor on ωg equal to 1.2.

Faults 6 and 7 result in blade 3 having a stuck pitch angle sensor, which holds a constant value
of 5◦ (F6) and 10◦ (F7), respectively.
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Finally, the fault of a gain factor on the measurement of the third pitch angle sensor is studied
(F7). The measurement is scaled by a factor of 1.2.

Table 4. Assumed available measurements. These sensors are representative of the types of sensors
that are available on a MW-scale commercial wind turbine.

Number Sensor Type Symbol Units

1 Generated electrical power Pe,m kW

2 Rotor speed ωr,m rad/s

3 Generator speed ωg,m rad/s

4 Generator torque τc,m Nm

5 first pitch angle β1,m deg

6 second pitch angle β2,m deg

7 third pitch angle β3,m deg

8 fore-aft acceleration at tower bottom ab
f a,m m/s2

9 side-to-side acceleration at tower bottom ab
ss,m m/s2

10 fore-aft acceleration at mid-tower am
f a,m m/s2

11 side-to-side acceleration at mid-tower am
ss,m m/s2

12 fore-aft acceleration at tower top at
f a,m m/s2

13 side-to-side acceleration at tower top at
ss,m m/s2

3. Fault Detection Strategy

The overall fault detection strategy is based on principal component analysis and statistical
hypothesis testing. A baseline pattern or PCA model is created with the healthy state of the wind
turbine in the presence of wind turbulence. When the current state of the wind turbine has to be
diagnosed, the collected data is projected using the PCA model. The final diagnosis is performed
using statistical hypothesis testing.

The main paradigm of vibration based structural health monitoring is based on the basic idea
that a change in physical properties due to structural changes or damage will cause detectable
changes in dynamical responses. This idea is illustrated in Figure 2, where the healthy structure
is excited by a signal to create a pattern. Subsequently, the structure to be diagnosed is excited by the
same signal and the dynamic response is compared with the pattern. The scheme in Figure 2 is also
know as guided waves in structures for structural health monitoring [23].

However, in our application, the only available excitation of the wind turbines is the wind
turbulence. Therefore, guided waves in wind turbines for SHM as in Figure 2 cannot be considered
as a realistic scenario. In spite of that, the new paradigm described in Figure 3 is based on the fact
that, even with a different wind turbulence, the fault detection strategy based on PCA and statistical
hypothesis testing will be able to detect some damage, fault or misbehavior. More precisely, the key
idea behind the detection strategy is the assumption that a change in the behavior of the overall
system, even with a different excitation, has to be detected. The results presented in Section 4 confirm
this hypothesis.
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Figure 2. Guided waves in structures for structural health monitoring. The healthy structure is excited
by a signal and the dynamic response is measured to create a baseline pattern. Then, the structure to
diagnose is excited by the same signal and the dynamic response is also measured and compared with
the baseline pattern. A significant difference in the pattern would imply the existence of a fault.

wind

wind healthy structure dynamic response

pattern

new 
measurements

Figure 3. Even with a different wind turbulence, the fault detection strategy is able to detect some
damage, fault or misbehavior.

3.1. Data Driven Baseline Modeling Based on PCA

Let us start the PCA modeling by measuring, from a healthy wind turbine, a sensor during
(nL − 1)∆ seconds, where ∆ is the sampling time and n, L ∈ N. The discretized measures of the
sensor are a real vector(

x11 x12 · · · x1L x21 x22 · · · x2L · · · xn1 xn2 · · · xnL

)
∈ RnL (4)

where the real number xij, i = 1, . . . , n, j = 1, . . . , L corresponds to the measure of the sensor at time
((i− 1)L + (j− 1))∆ seconds. This collected data can be arranged in matrix form as follows:

x11 x12 · · · x1L
...

...
. . .

...
xi1 xi2 · · · xiL
...

...
. . .

...
xn1 xn2 · · · xnL


∈ Mn×L(R) (5)

whereMn×L(R) is the vector space of n× L matrices over R. When the measures are obtained from
N ∈N sensors also during (nL− 1)∆ seconds, the collected data, for each sensor, can be arranged in
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a matrix as in Equation (5). Finally, all the collected data coming from the N sensors is disposed in a
matrix X ∈ Mn×(N·L) as follows:

X =



x1
11 x1

12 · · · x1
1L x2

11 · · · x2
1L · · · xN

11 · · · xN
1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...
x1

i1 x1
i2 · · · x1

iL x2
i1 · · · x2

iL · · · xN
i1 · · · xN

iL
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

x1
n1 x1

n2 · · · x1
nL x2

n1 · · · x2
nL · · · xN

n1 · · · xN
nL


(6)

=
(

X1 X2 · · · XN
)

where the superindex k = 1, . . . , N of each element xk
ij in the matrix represents the number of sensor.

The objective of the principal component analysis is to find a linear transformation orthogonal
matrix P ∈ M(N·L)×(N·L)(R) that will be used to transform or project the original data matrix X
according to the subsequent matrix product:

T = XP ∈ Mn×(N·L)(R) (7)

where T is a matrix having a diagonal covariance matrix.

Group Scaling

Since the data in matrix X is affected by diverse wind turbulence, come from several sensors and
could have different scales and magnitudes, it is required to apply a preprocessing step to rescale the
data using the mean of all measurements of the sensor at the same column and the standard deviation
of all measurements of the sensor [24].

More precisely, for k = 1, 2, . . . , N we define

µk
j =

1
n

n

∑
i=1

xk
ij, j = 1, . . . , L, (8)

µk =
1

nL

n

∑
i=1

L

∑
j=1

xk
ij, (9)

σk =

√√√√ 1
nL

n

∑
i=1

L

∑
j=1

(xk
ij − µk)2 (10)

where µk
j is the mean of the measures placed at the same column, that is, the mean of the n measures

of sensor k in matrix Xk at time instants ((i− 1)L + (j− 1))∆ seconds, i = 1, . . . , n; µk is the mean of
all the elements in matrix Xk, that is, the mean of all the measures of sensor k; and σk is the standard
deviation of all the measures of sensor k. Therefore, the elements xk

ij of matrix X are scaled to define a

new matrix X̌ as

x̌k
ij :=

xk
ij − µk

j

σk , i = 1, . . . , n, j = 1, . . . , L, k = 1, . . . , N. (11)

When the data are normalized using Equation (11), the scaling procedure is called variable
scaling or group scaling [25].
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For the sake of clarity, and throughout the rest of the paper, the scaled matrix X̌ is renamed as
simply X. The mean of each column vector in the scaled matrix X can be computed as

1
n

n

∑
i=1

x̌k
ij =

1
n

n

∑
i=1

xk
ij − µk

j

σk =
1

nσk

n

∑
i=1

(
xk

ij − µk
j

)
(12)

=
1

nσk

[(
n

∑
i=1

xk
ij

)
− nµk

j

]
(13)

=
1

nσk

(
nµk

j − nµk
j

)
= 0 (14)

Since the scaled matrix X is a mean-centered matrix, it is possible to calculate its covariance
matrix as follows:

CX =
1

n− 1
XTX ∈ M(N·L)×(N·L)(R) (15)

The covariance matrix CX is a (N · L) × (N · L) symmetric matrix that measures the degree of
linear relationship within the data set between all possible pairs of columns. At this point it is worth
noting that each column can be viewed as a virtual sensor and, therefore, each column vector X(:, j) ∈
Rn, j = 1, . . . , N · L, represents a set of measurements from one virtual sensor.

The subspaces in PCA are defined by the eigenvectors and eigenvalues of the covariance matrix
as follows:

CXP = PΛ (16)

where the columns of P ∈ M(N·L)×(N·L)(R) are the eigenvectors of CX. The diagonal terms of matrix
Λ ∈ M(N·L)×(N·L)(R) are the eigenvalues λi, i = 1, . . . , N · L, of CX whereas the off-diagonal terms
are zero, that is,

Λii = λi, i = 1, . . . , N · L (17)

Λij = 0, i, j = 1, . . . , N · L, i 6= j (18)

The eigenvectors pj, j = 1, . . . , N · L, representing the columns of the transformation matrix
P are classified according to the eigenvalues in descending order and they are called the principal
components or the loading vectors of the data set. The eigenvector with the highest eigenvalue,
called the first principal component, represents the most important pattern in the data with the largest
quantity of information.

Matrix P is usually called the principal components of the data set or loading matrix and matrix
T is the transformed or projected matrix to the principal component space, also called score matrix.
Using all the N · L principal components, that is, in the full dimensional case, the orthogonality of
P implies PPT = I, where I is the (N · L)× (N · L) identity matrix. Therefore, the projection can be
inverted to recover the original data as

X = TPT (19)

However, the objective of PCA is, as said before, to reduce the dimensionality of the data set X
by selecting only a limited number ` < N · L of principal components, that is, only the eigenvectors
related to the ` highest eigenvalues. Thus, given the reduced matrix

P̂ = (p1|p2| · · · |p`) ∈ MN·L×`(R) (20)

matrix T̂ is defined as

T̂ = XP̂ ∈ Mn×`(R) (21)
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Note that opposite to T, T̂ is no longer invertible. Consequently, it is not possible to fully recover
X although T̂ can be projected back onto the original N · L−dimensional space to get a data matrix X̂
as follows:

X̂ = T̂P̂T ∈ Mn×(N·L)(R) (22)

The difference between the original data matrix X and X̂ is defined as the residual error matrix E
or X̃ as follows:

E = X− X̂ (23)

or, equivalenty,

X = X̂ + E = T̂P̂T
+ E (24)

The residual error matrix E describes the variability not represented by the data matrix X̂, and
can also be expressed as

E = X(I− P̂P̂T) (25)

Even though the real measures obtained from the sensors as a function of time represent physical
magnitudes, when these measures are projected and the scores are obtained, these scores no longer
represent any physical magnitude [26]. The key aspect in this approach is that the scores from
different experiments can be compared with the reference pattern to try to detect a different behavior.

3.2. Fault Detection Based on Hypothesis Testing

The current wind turbine to diagnose is subjected to a wind turbulence as described in Sections 2
and 3.1. When the measures are obtained from N ∈N sensors during (νL− 1)∆ seconds, a new data
matrix Y is constructed as in Equation (6):

Y =



y1
11 y1

12 · · · y1
1L y2

11 · · · y2
1L · · · yN

11 · · · yN
1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...
y1

i1 y1
i2 · · · y1

iL y2
i1 · · · y2

iL · · · yN
i1 · · · yN

iL
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

y1
ν1 y1

ν2 · · · y1
νL y2

ν1 · · · y2
νL · · · yN

ν1 · · · yN
νL


∈ Mν×(N·L)(R) (26)

It is worth remarking that the natural number ν (the number of rows of matrix Y) is not
necessarily equal to n (the number of rows of X), but the number of columns of Y must agree with
that of X; that is, in both cases the number N of sensors and the number of samples per row must
be equal.

Before the collected data arranged in matrix Y is projected into the new space spanned by the
eigenvectors in matrix P in Equation (16), the matrix has to be scaled to define a new matrix Y̌ as in
Equation (11):

y̌k
ij :=

yk
ij − µk

j

σk , i = 1, . . . , ν, j = 1, . . . , L, k = 1, . . . , N, (27)

where µk
j and σk are defined in Equations (8) and (10), respectively.
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The projection of each row vector ri = Y̌(i, :) ∈ RN·L, i = 1, . . . , ν of matrix Y̌ into the space
spanned by the eigenvectors in P̂ is performed through the following vector to matrix multiplication:

ti = ri · P̂ ∈ R` (28)

For each row vector ri, i = 1, . . . , ν, the first component of vector ti is called the first score or score
1; similarly, the second component of vector ti is called the second score or score 2, and so on.

In a standard application of the principal component analysis strategy in the field of structural
health monitoring, the scores allow a visual grouping or separation [27]. In some other cases, as
in [28], two classical indices can be used for damage detection, such as the Q index (also known as
SPE, square prediction error) and the Hotelling’s T2 index. The Q index of the ith row yT

i of matrix Y̌
is defined as follows:

Qi = yT
i (I− P̂P̂T)yi (29)

The T2 index of the ith row yT
i of matrix Y̌ is defined as follows:

T2
i = yT

i (P̂Λ−1P̂T)yi (30)

In this case, however, it can be observed in Figure 4—where the projection onto the two first
principal components of samples coming from the healthy and faulty wind turbines are plotted—that
a visual grouping, clustering or separation cannot be performed. A similar conclusion is deducted
from Figure 5. In this case, the plot of the natural logarithm of indices Q and T2—defined in
Equations (29) and (30)—of samples coming from the healthy and faulty wind turbines does not
allow any visual grouping. Therefore, a more powerful and reliable tool is needed to be able to detect
a fault in the wind turbine.

score 1
-300 -250 -200 -150 -100 -50 0 50

sc
or

e 
2

-100

-80

-60

-40

-20

0

20

40

60

undamaged
damaged

Figure 4. Projection onto the two first principal components of samples coming from the healthy wind
turbine (red, circle) and from the faulty wind turbine (blue, diamond).
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Figure 5. Natural logarithm of indices Q and T2 of samples coming from the healthy wind turbine
(red, circle) and from the faulty wind turbine (blue, diamond).

3.2.1. The Random Nature of the Scores

Since the turbulent wind can be considered as a random process, the dynamic response of the
wind turbine can be considered as a stochastic process and the measurements in ri are also stochastic.
Therefore, each component of ti acquires this stochastic nature and it will be regarded as a random
variable to construct the stochastic approach in this paper.

3.2.2. Test for the Equality of Means

The objective of the present work is to examine whether the current wind turbine is healthy or
subjected to a fault as those described in Table 2. To achieve this end, we have a PCA model (matrix
P̂ in Equation (20)) built as in Section 3.1 with data coming from a wind turbine in a full healthy
state. For each principal component j = 1, . . . , `, the baseline sample is defined as the set of n real
numbers computed as the j−th component of the vector to matrix multiplication X(i, :) · P̂. Note that
n is the number of rows of matrix X in Equation (6). That is, we define the baseline sample as the set
of numbers {τi

j}i=1,...,n given by

τi
j := (X(i, :) · P̂)(j) = X(i, :) · P̂ · ej, i = 1, . . . , n, (31)

where ej is the j−th vector of the canonical basis.
Similarly, and for each principal component j = 1, . . . , `, the sample of the current wind turbine

to diagnose is defined as the set of ν real numbers computed as the j−th component of the vector ti

in Equation (28). Note that ν is the number of rows of matrix Y in Equation (26). That is, we define
the sample to diagnose as the set of numbers {ti

j}i=1,...,ν given by

ti
j := ti · ej, i = 1, . . . , ν. (32)
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As said before, the goal of this paper is to obtain a fault detection method such that when the
distribution of the current sample is related to the distribution of the baseline sample a healthy state
is predicted and otherwise a fault is detected. To that end, a test for the equality of means will be
performed. Let us consider that, for a given principal component, (a) the baseline sample is a random
sample of a random variable having a normal distribution with unknown mean µX and unknown
standard deviation σX ; and (b) the random sample of the current wind turbine is also normally
distributed with unknown mean µY and unknown standard deviation σY. Let us finally consider that
the variances of these two samples are not necessarily equal. As said previously, the problem that
we will consider is to determine whether these means are equal, that is, µX = µY, or equivalently,
µX − µY = 0. This statement leads immediately to a test of the hypotheses

H0 : µX − µY = 0 versus (33)

H1 : µX − µY 6= 0 (34)

that is, the null hypothesis is “the sample of the wind turbine to be diagnosed is distributed as the
baseline sample” and the alternative hypothesis is “the sample of the wind turbine to be diagnosed
is not distributed as the baseline sample”. In other words, if the result of the test is that the null
hypothesis is not rejected, the current wind turbine is categorized as healthy. Otherwise, if the null
hypothesis is rejected in favor of the alternative, this would indicate the presence of some faults in
the wind turbine.

The test is based on the Welch-Satterthwaite method [29], which is outlined below.
When random samples of size n and ν, respectively, are taken from two normal distributions
N (µX , σX) and N (µY, σY) and the population variances are unknown, the random variable

W =
(X̄− Ȳ) + (µX − µY)√√√√(S2

X
n

+
S2

Y
ν

) (35)

can be approximated with a t-distribution with ρ degrees of freedom, that is

W ↪→ tρ (36)

where

ρ =


(

s2
X
n

+
s2

Y
ν

)2

(s2
X/n)2

n− 1
+

(s2
Y/ν)2

ν− 1

 (37)

and where X̄, Ȳ is the sample mean as a random variable; S2 is the sample variance as a random
variable; s2 is the variance of a sample; and b·c is the floor function.

The value of the standardized test statistic using this method is defined as

tobs =
x̄− ȳ√√√√( s2
X
n

+
s2

Y
ν

) (38)
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where x̄, ȳ is the mean of a particular sample. The quantity tobs is the fault indicator. We can then
construct the following test:

|tobs| ≤ t? =⇒ Fail to reject H0 (39)

|tobs| > t? =⇒ Reject H0 (40)

where t? is such that

P
(
tρ < t?

)
= 1− α

2
(41)

and α is the chosen risk (significance) level for the test. More precisely, the null hypothesis is rejected
if |tobs| > t? (this would indicate the existence of a fault in the wind turbine). Otherwise, if |tobs| ≤ t?

there is no statistical evidence to suggest that both samples are normally distributed but with different
means, thus indicating that no fault in the wind turbine has been found. This idea is represented in
Figure 6.

Wind turbine fault detection through principal component analysis and statistical hypothesis testing F. Pozo, Y. Vidal

hypothesis test

faultyhealthy

yes no

group

scaling

PCA

X Y

P̂

{τ i
j} {tij}

|tobs| ≤ t⋆?

Figure 1. Damage detection will be based on testing for significant changes in the distributions of samples Th and Tc.

2 Wind Energ. 2010; 00:1–1 c© 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/we

Prepared using weauth.cls

Figure 6. Fault detection will be based on testing for significant changes in the distributions of the
baseline sample and the sample coming from the wind turbine to diagnose.

4. Simulation Results

4.1. Type I and Type II errors

To validate the fault detection strategy presented in Section 3, we first consider a total of
24 samples of ν = 50 elements each, according to the following distribution:

• 16 samples of a healthy wind turbine; and
• 8 samples of a faulty wind turbine with respect to each of the eight different fault scenarios

described in Table 2.

In the numerical simulations in this Section, each sample of ν = 50 elements is composed by
the measures obtained from the N = 13 sensors detailed in Table 4 during (ν · L− 1)∆ = 312.4875
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seconds, where L = 500 and the sampling time ∆ = 0.0125 seconds. The measures of each sample are
then arranged in a ν× (N · L) matrix as in Equation (26).

For the first four principal components (score 1 to score 4), these 24 samples plus the baseline
sample of n = 50 elements are used to test for the equality of means, with a level of significance
α = 0.36 (the choice of this level of significance will be justified in Section 4.2). Each sample of ν = 50
elements is categorized as follows: (i) number of samples from the healthy wind turbine (healthy
sample) which were classified by the hypothesis test as “healthy” (fail to reject H0); (ii) faulty sample
classified by the test as “faulty” (reject H0); (iii) samples from the faulty structure (faulty sample)
classified as “healthy”; and (iv) faulty sample classified as “faulty”. The results for the first four
principal components presented in Table 6 are organized according to the scheme in Table 5. It can
be stressed from each principal component in Table 6 that the sum of the columns is constant: 16
samples in the first column (healthy wind turbine) and 8 more samples in the second column (faulty
wind turbine).

Table 5. Scheme for the presentation of the results in Table 6.

Undamaged Sample (H0) Damaged Sample (H1)

Fail to reject H0 Correct decision Type II error (missing fault)
Reject H0 Type I error (false alarm) Correct decision

Table 6. Categorization of the samples with respect to the presence or absence of damage and the
result of the test for each of the four scores when the size of the samples to diagnose is ν = 50.

score 1 score 2 score 3 score 4
H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 16 0 12 1 11 5 9 1
Reject H0 0 8 4 7 5 3 7 7

In Table 6, it is worth noting that two kinds of misclassification are presented which are denoted
as follows:

1. Type I error (false positive or false alarm), when the wind turbine is healthy but the null
hypothesis is rejected and therefore classified as faulty. The probability of committing a type
I error is α, the level of significance.

2. Type II error (false negative or missing fault), when the structure is faulty but the null hypothesis
is not rejected and therefore classified as healthy. The probability of committing a type II error
is called γ.

It can be observed from Table 6 that, in the numerical simulations, Type I errors (false alarms)
and Type II errors (missing faults) appear only when scores 2, 3 or 4 are considered, while when the
first score is used all the decisions are correct. The better performance of the first score is an expected
result in the sense that the first principal component is the component that accounts for the largest
possible variance.

4.2. Sensitivity and Specificity

Two more statistical measures can be selected here to study the performance of the test: the
sensitivity and the specificity. The sensitivity, also called as the power of the test, is defined, in the
context of this work, as the proportion of samples from the faulty wind turbine which are correctly
identified as such. Thus, the sensitivity can be computed as 1 − γ. The specificity of the test is
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defined, also in this context, as the proportion of samples from the healthy structure that are correctly
identified and can be expressed as 1− α.

The sensitivity and the specificity of the test with respect to the 24 samples and for each of the
first four principal components –organized as shown in Table 7– have been included in Table 8.

Table 7. Relationship between type I and type II errors.

Undamaged Sample (H0) Damaged Sample (H1)

Fail to reject H0 Specificity (1− α) False negative rate (γ)
Reject H0 False positive rate (α) Sensitivity (1− γ)

Table 8. Sensitivity and specificity of the test for each of the four scores when the size of the samples
to diagnose is ν = 50.

score 1 score 2 score 3 score 4
H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 1.00 0.00 0.75 0.13 0.69 0.62 0.56 0.13
Reject H0 0.00 1.00 0.25 0.87 0.31 0.38 0.44 0.87

It is worth mentioning that type I errors are frequently considered to be more serious than type
II errors. However, in this application, a type II error is related to a missing fault whereas a type I error
is related to a false alarm. In consequence, type II errors should be reduced. Therefore a small level of
significance of 1%, 5% or even 10% would lead to a reduced number of false alarms but to a higher rate
of missing faults. That is the reason of the choice of a level of significance of 36% in the hypothesis test.

The results in Table 8 show that the sensitivity of the test 1− γ is close to 100%, as desired, with
an average value of 78.00%. The sensitivity with respect to the first, second and fourth principal
component is increased, in mean, to a 91.33%. The average value of the specificity is 75.00%, which is
very close to the expected value of 1− α = 64%.

4.3. Reliability of the Results

Using the scheme in Table 9, the results are computed and given in Table 10. This table is based
on the Bayes’ theorem [30], where P(H1|accept H0) is the proportion of samples from the faulty wind
turbine that have been incorrectly classified as healthy (true rate of false negatives) and P(H0|accept H1)
is the proportion of samples from the healthy wind turbine that have been incorrectly classified as
faulty (true rate of false positives).

Table 9. Relationship between the proportion of false negatives and false positives.

Undamaged Sample (H0) Damaged Sample (H1)

Fail to reject H0 P(H0|accept H0) true rate of false negatives
P(H1|accept H0)

Reject H0
true rate of false positives
P(H0|accept H1)

P(H1|accept H1)
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Table 10. True rate of false positives and false negatives for each of the four scores when the size of
the samples to diagnose is ν = 50.

score 1 score 2 score 3 score 4
H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 1.00 0.00 0.92 0.08 0.69 0.31 0.90 0.10
Reject H0 0.00 1.00 0.36 0.64 0.62 0.38 0.50 0.50

4.4. The Receiver Operating Curves (ROC)

An additional study has been developed based on the ROC curves to determine the overall
accuracy of the proposed method. These curves represent the trade-off between the false positive
rate and the sensitivity in Table 10 for different values of the level of significance that is used in the
statistical hypothesis testing. Note that the false positive rate is defined as the complementary of the
specificity, and therefore these curves can also be used to visualize the close relationship between
specificity and sensitivity. It can also be remarked that the sensitivity is also called true positive rate
or probability of detection [31]. More precisely, for each principal component and for a given level of
significance the pair of numbers

(false positive rate, sensitivity) ∈ [0, 1]× [0, 1] ⊂ R2 (42)

is plotted. We have considered 49 levels of significance within the range [0.02, 0.98] and with a
difference of 0.02. Therefore, for each of the first four principal components, 49 connected points
are depicted, as can be seen in Figure 7.
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Figure 7. The Receiver Operating Curves (ROCs) for the four scores when the size of the samples to
diagnose is ν = 50.

The placement of these points can be interpreted as follows. Since we are interested in reducing
the number of false positives while we increase the number of true positives, these points must be
placed in the upper-left corner as much as possible. However, this is not always possible because
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there is also a relationship between the level of significance and the false positive rate. Therefore, a
method can be considered acceptable if those points lie within the upper-left half-plane. In this sense,
the results presented in Figure 7, particularly with respect to score 1, are quite remarkable. The overall
behavior of scores 2 and 4 are also acceptable, while the results of score 3 cannot be considered, in
this case, as satisfactory.

In Figures 8 and 9 a further study is performed. While in Figure 7 we present the ROCs when the
size of the samples to diagnose is ν = 50, in Figure 8 the reliability of the method is analyzed in terms
of 48 samples of ν = 25 elements each and in Figure 9 the reliability of the method is analyzed in
terms of 120 samples of ν = 10 elements each. The effect of reducing the number of elements in each
sample is the reduction in the total time needed for a diagnostic. More precisely, if we keep L = 500,
when the size of the samples is reduced from ν = 50 to ν = 25 and ν = 10, the total time needed for a
diagnostic is reduced from about 312 s to 156 and 62 s, respectively. Another effect of the reduction in
the number of elements in each sample is a slight deterioration of the overall accuracy of the detection
method. However, the results of scores 1 and 2 in Figures 8 and 9 are perfectly acceptable.

A very interesting alternative to keep a very good performance of the method without almost no
degradation in its accuracy is by reducing L –the number of time instants per row per sensor— instead
of reducing the number of elements per sample ν. This way, if we keep ν = 50, when L is reduced
from 500 to 50, the total time needed for a diagnostic is reduced from about 312 s to 31 s.

We can finally say that the ROC curves provide a statistical assessment of the efficacy of a method
and can be used to visualize and compare the performance of multiple scenarios.
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Figure 8. The ROCs for the four scores when the size of the samples to diagnose is ν = 25.
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Figure 9. The ROCs for the four scores when the size of the samples to diagnose is ν = 10.

5. Conclusions

The silver bullet for offshore operators is to eliminate unscheduled maintenance. Therefore, the
implementation of fault detection systems is crucial. The main challenges of the wind turbine fault
detection lie in its nonlinearity, unknown disturbances as well as significant measurement noise.
In this work, numerical simulations (with a well-known benchmark wind turbine) show that the
proposed PCA plus statistical hypothesis testing is a valuable tool in fault detection for wind turbines.
It is noteworthy that, in the simulations, when the first score is used all the decisions are correct (there
are no false alarms and no missing faults).

We believe that PCA plus statistical hypothesis testing has tremendous potential in decreasing
maintenance costs. Therefore, we view the work described in this paper as only the beginning
of a large project. For future work, we plan to develop a complete fault detection, isolation, and
reconfiguration method (FDIR). That is, a reconfigurable control strategy in response to faults. In the
near future, the next step is to focus our research into efficient fault feature extraction.
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Nomenclature

β Pitch angle
βr Pitch angle reference
ηg Generator efficiency
ωg Generator speed
Pe Electrical Power
τc Reference generator torque
τr Real generator torque
α Significance level for the test (probability of committing a type I error)
γ Probability of committing a type II error
L Number of time instants per row per sensor
N Number of sensors
ν Size of the samples to diagnose
P Principal components of the data set (loading matrix)
T Transformed (or projected) matrix to the principal component space (score matrix)
E Residual error matrix
X Data matrix (original)
Y Data matrix to diagnose
{τi

j}i=1,...,n Baseline sample
{ti

j}i=1,...,ν Sample to diagnose
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