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Abstract: Since its appearance in 1991, the Li ion battery has been the major power source 
driving the rapid digitalization of our daily life; however, much of the processes and 
mechanisms underpinning this newest battery chemistry remains poorly understood. As in 
any electrochemical device, the major challenge comes from the electrolyte/electrode 
interfaces, where the discontinuity in charge distribution and extreme disequality in electric 
forces induce diversified processes that eventually determine the kinetics of Li+ 
intercalation chemistry. This article will summarize the most recent efforts on the 
fundamental understanding of the interphases in Li ion devices. Emphasis will be placed 
on the formation chemistry of the so-called “SEI” on graphitic anode, the effect of 
solvation sheath structure of Li+ on the intercalation energy barrier, and the feasibility of 
tailoring a desired interphase. Biologically inspired approaches to an ideal interphase will 
also be briefly discussed. 
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1. What is Interface/Interphase? 
 

“Interface” is where one material ends and the other begins. At interfaces, an abruptly truncated 
atomic array leads to discontinuity in both chemical and electric potentials, and the resultant extreme 
disequilibria, usually existing in a narrow region of nanometric length, lead to drastic deviations in all 
physicochemical properties of the bulk of the adjoining phases. Thus, the interfacial region is defined 
by sudden and significant changes in structure, chemistry, dynamics and reactivity. These altered 
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properties, which remain hitherto little understood, ultimately determine most of the mass and charge 
transfer processes across the interfaces [1]. 

Figure 1. Interface distinguishes electrochemistry from conventional chemistry: (a) chaotic 
collision of reactant particles leads to dissipation of free energy in the form of heat;  
(b) interfaces between electrode/electrolyte force reactions to proceed in an orderly manner, 
thus producing orientation movement of electrons in a Daniel cell (reproduced  
with permission from The Elsevier Encyclopedia of Electrochemical Power Sources,  
© Elsevier, November 2009). 

 
 
A typical interface is usually confined to sub-nano or slightly larger regions (e.g., 0.5~2 nm), 

therefore it has been traditionally treated as a 2D entity for mathematic convenience. However, as 
more inhomogeneous interfaces are created by the pursuit of more energetic phases, and with more 
advances in spectroscopic and imaging techniques, those once “2D” interfaces have become 
increasingly structured in our understandings. To recognize this importance of interfaces’ spatial 
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extension, a new term “Interphase” was coined. Within this 3D entity, chemical compositions, 
morphology, and charge distribution are the critical properties that define the kinetics and dynamics of 
the charge or mass transfer processes in the region [2]. 

 Interface is of special significance to electrochemistry, as it was the electrode/electrolyte interface 
that distinguished electrochemical processes from conventional chemical redox reactions. The 
presence of those interfaces prevents the chaotic direct electron exchange between the oxidant and 
reductant, hence forcing the electrons to flow through an external circuit in an orderly manner  
(Figure 1). In an electrochemical device, the interfaces are the only “legitimate” reaction sites where 
species are consumed or produced. The chemical composition and morphological structure of those 
two interfaces dictate the rate and efficiency of the reactions [3]. 

The interfaces in low-potential electrochemical devices, such as aqueous-based batteries, capacitors 
or fuel cells, have been primarily described as 2D in nature, and their boundaries were defined by the  
so-called electric double layer, or the distance from the electrode surface to the outer-Helmhotz plane 
(the immediate layer of counter ions in electrolyte). This simplicity is the direct benefit of the low 
working potentials of the electrodes, where almost all electrolyte components can remain 
thermodynamically stable. When more energetic electrodes are involved, however, such as with a 
lithium metal or lithium-based graphitic anode (0~0.20 V vs. Li+/Li), and a transition-metal oxide 
cathode (>4.0 V vs. Li+/Li), the interfaces separating those electrodes from electrolyte become “3D”, 
or interphases in our notion, mainly due to the decomposition of electrolyte components which 
passivate the reaction sites on the electrodes. The study on the chemistry and formation mechanism of 
these interphases constitutes an important part in understanding the youngest battery chemistry: Li ion 
batteries [4]. 

 
2. Li Ion Battery Technology: History, Glory and Challenge  
 

The pursuit of a battery of higher energy density has been centered around how to harness the 
lithium metal electrode. “The Ultimate Anode” status of lithium for battery chemistry was made 
possible by the fortuitous combination of three factors that are irreproducible for any other element on 
the periodic table: (1) lithium is the metal with the lowest atomic number, hence possessing the largest 
theoretical specific capacity of 3,884 m·A·h·g−1; (2) it is the most electronegative metal (–3.10 V vs. 
Standard Hydrogen Electrode, SHE), hence generating the highest possible cell voltage against any 
given positive electrode, and (3) it is also the lightest metal (0.54 g·cm−3), hence contributing to the 
highest possible gravimetric (Wh/Kg) as well as specific energy densities (Wh/L). However, research 
efforts of three decades eventually diminished the feasibility of a rechargeable lithium metal electrode 
due to its dendritic morphology during the repeated dissolution/deposition cycles and the subsequent 
strong tendency to fire and explosion.  

A lithium-based rechargeable chemistry was made possible only when an intercalation host was 
found to accommodate Li+. In this so-called “rocking chair” or “lithium ion” concept, redox reaction 
only occurs on the host lattice without involving the reduction of Li+, therefore issues of poor 
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rechargibility as well as safety hazard could be circumvented [5] In the state-of-the-art Li ion  
battery, graphitized carbon serves as anode, whose interlayer structure accommodates Li+ at a  
potential ~0.20 V vs. Li+/Li, while a transition metal oxide or phosphate serves as cathode, whose layer, 
spinel or olivine structures accommodate Li+ at potentials in the range of 3.5~4.1 V vs. Li+/Li. 
Coupling of those electrodes created a secondary battery chemistry operating with energy  
densities between 100~180 Wh/Kg over thousands of cycles at 100% charge/discharge. Obviously, the 
prolonged cycle life came at the expense of energy density, which remains rather distant from the  
promised 500~800 Wh/Kg projected for a lithium metal electrode [6] 

Nevertheless, this energy density is already unprecedented for a rechargeable battery chemistry, as 
compared with 50 Wh/Kg of Nickel Cadmium (NiCd) and 80 Wh/Kg of Nickel Metal Hydride (NiMH) 
batteries, the latter of which appeared on the market at almost the same time as the Li ion one. Since its 
birth in the early 1990s, Li ion batteries have experienced steady growth and have eventually come to 
dominate the rechargeable battery market for portable electronics, driving the less energy dense  
Ni-based chemistries into niches (Figure 2). By the end of 2008, Li ion battery industry represented  
an 8 billion US$ market. 

The energy density of Li ion battery has been consistently improved due to combined efforts at new 
materials and more aggressive cell engineering. The latter probably led to the sudden surge of hazard 
incidents involving thermal runaway of Li ion batteries in consumer electronics around 2005, which 
was soon brought under media spotlight and initiated waves of recalls by major manufacturers. The 
highlighted safety concerns over this youngest battery chemistry indicated that the potential of the 
current materials has been nearly exploited to exhaustion for higher energy density, and it inevitably 
cast a shadow over the next possible application of Li ion batteries in vehicular electrification 
technologies, where battery modules composed of >100 large format Li ion cells will release multiple 
orders of magnitude of destruction force if similar thermal runaway occurs. In addition to safety 
concerns, the future challenges facing Li ion technology also include the cost and cycle life.  

The 1st generation Li ion batteries were based on lithiated cobalt (Co) oxide cathodes, which still 
account for more than half of the cathode chemistry in cells manufactured nowadays around the world; 
however, Co is not an especially abundant element on the earth. Partially due to the explosive growth 
of Li ion industry in the past decades, the price of Co on the international market has seen dramatic 
rises since 2003. Both the current production and market trends indicate that Co-based chemistry will 
be unable to support the projected future demand from the much larger scale applications of electric 
(EV), hybrid electric (HEV) or plug-in hybrid electric vehicle (PHEV). This is the reason that recent 
research efforts have been focused on seeking a cathode intercalation chemistry that is either Co-free 
or at least less Co-dependent. Lithiated manganese oxide of spinel structure (LixMn2O4), doped 
lithiated nickel oxide (LiNi0.80Co0.15Al0.05O2), lithiated nickel manganese cobalt oxide 
(LiNi1/3Mn1/3Co1/3O2), and lithiated iron phosphate (LiFePO4) were all fruits of such efforts, each with 
its own merits and compromises [6,7]. 
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Figure 2. The steady growth of and rapid dominance by Li Ion batteries since its birth: 
(a) Li ion cell units manufactured per year; (b) sales comparison between Li ion batteries 
and the other two rechargeable chemistries (sources: (a) Battery Digest; (b) “Global and 
China's Li-ion Battery and Its Raw Materials Market Report, 2008–2009”, Market 
Avenue Inc., http://www.marketavenue.cn; (c) www.bccresearch.com/report/). 

 

 
 

The state-of-the-art small format Li ion cells used in various portable electronics can survive at least 
hundreds of cycles, depending on the depth of charge/discharge and user behavior. While this 
relatively short life duration can roughly approach or even outlive the average life expectance of most 
portable electronics, the battery modules designed for vehicles have to support the much longer service 
life of most vehicles, which are normally designed for a 10 year life or 10,000 mile driving range; 
Otherwise the high cost, as well as user inconvenience issues, will become the prohibitive factors 
preventing the marketing of EV/HEV/PHEVs. It was estimated that an advanced Li ion battery 
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chemistry would be required to possess cycle life of at least 1,000 deep (80%) cycles to ensure that the 
battery modules of an electrified vehicle will need to be replaced no more than twice in its entire life. 

 
3. Interphase in Li-based Batteries 
 

There is perhaps no better example than the Li ion battery of the critical role of interphase in a 
working electrochemical device [3,8]. As the most electronegative element available, lithium has an 
intrinsic redox potential of –3.10 V (vs. SHE), where almost no solvent or salt can remain 
thermodynamically stable. The reason behind the apparent stability of lithium metal in non-aqueous 
electrolytes is that one or more electrolyte components decompose reductively upon contact with 
lithium, and the resultant decomposition products deposit on the lithium surface, thus creating a film 
insulating to electron conduction or tunneling but pervious to ionic diffusion. This protective film of 
electrolyte nature was named solid electrolyte interphase (SEI) [2,4]. 

In a Li ion battery, there is legitimately no presence of metallic lithium, as the anode role is served 
by graphitic carbon, whose interlayer structure accommodates Li+ intercalation. Since the intercalation 
potential is in close vicinity ( ~0.20 V vs. Li) to that of lithium metal, it had been assumed (and later  
turned out to be correct) that an SEI-like electron barrier must also be present between the graphitic 
anode and the electrolyte to stop sustaining electrolyte decomposition [9]. Presumably, a similar 
interphase should also exist between cathode and electrolyte in consideration of the instability of 
electrolyte components at high potentials of most transition metal oxides (>4.0 V vs. Li+/Li), but 
traditionally the term “SEI” was preserved for graphitic or metallic lithium anodes only. It was because 
of those two interphases that the electrolyte could remain kinetically stable against the strongly 
oxidative and reductive electrodes, thus supporting the reversible intercalation chemistry of Li+. In this 
sense, Li ion battery is a device that relies on interphases to function.  

This critical importance of interphases in Li ion devices is highlighted in the so-called EC-PC 
disparity and the possible postponement of Li ion technology by it [10]. Early in 1950s graphite was 
found to form intercalation compounds with Li+ in molten lithium metal [11], but the electrochemical 
lithiation of graphite never succeeded during the following decades, the primary reason being that  
non-aqueous electrolytes during that period were almost exclusively based on propylene carbonate (PC, 
in Figure 3) [12]. The decomposition product of PC through single-electron pathway happens to be 
unable to protect the layer structure of graphite from exfoliating at ~0.70 V vs. Li+, and consequently 
Li+-intercalation could never occur. The lack of interphasial chemistry knowledge at the time 
prevented people from exploring PC’s closest homologous member, ethylene carbonate (EC, in Figure 
3) until the late 1980s [13]. The interphase formed by EC, though through a similar single-electron 
pathway, turns out to offer a drastic surprise: it enables the reversible Li+-intercalation chemistry at 
potentials close to that of Li metal electrode (Figure 3), thus laying the foundation for Li ion 
technology [4,14]. Since then EC has become an indispensable electrolyte components in all Li ion 
cells manufactured. In retrospect, it is not an exaggeration to conclude that the interphasial difference 
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of EC and PC, induced by a single methyl group, delayed the emergence of Li ion technology by 
nearly four decades!  

Figure 3. The difference in interphasial chemistry caused by a methyl group might be 
responsible for the four decade postponement of Li ion technology: voltage profiles of 
graphitic anodes in LiPF6/EC and LiPF6/PC during polarization to 0.002 V vs. Li 
(reproduced with permission from The Electrochemical Society). 

 
 
SEI enables Li ion chemistry to function, but it also constitutes the most resistive component in the 

entire cell, as compared to electrode and electrolyte bulks (Figure 4) [3].  

Figure 4. The comparison of resistances generated by interphasial and the bulk electrolyte 
during the Li ion cell operation. Rb, Rint and Rcell represent the bulk (electrolyte), 
interphasial and the total cell resistance, respectively (reproduced with permission from the 
Elsevier Encyclopedia of Electrochemical Power Sources, ©Elsevier, November 2009). 
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Since interphase is where mass/charge transfer occurs, its properties determine the kinetics of the 
electrochemical reactions, or the power capability of the entire cell. This bottleneck effect is more 
pronounced at sub-zero temperatures or in applications under high drain rate. Hitherto interphases 
remain the least understood component in Li ion cell, due to the fact that most surface characterization 
techniques must be operated under high vacuum, and hence would induce too much disturbance rather 
than faithfully reveal the chemical state of interphases formed in-situ during the initial charging of the 
Li ion cells. Nevertheless, during the past two decades, the studies on SEI have generated numerous 
electrochemical literatures, covering the chemistry, formation mechanism, morphology as well as 
physicochemical properties. 
 
4. Chemistry and Formation Mechanism of SEI 
 

Organic carbonates with cyclic structures, such as EC, PC , and acyclic structures, like dimethyl 
carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), serve as the main 
ingredients as electrolyte solvents in state-of-the-art Li ion batteries, mainly because they can form 
stable interphase on transition metal oxides [8]. Occasionally unsaturated carbonates such as vinyl 
carbonate (VC) and vinylethyl carbonate (VEC) were also used at small concentration as additives to 
manipulate the chemistry of interphase formation.  

Both oxidative and reductive decompositions of these solvents were investigated, but with 
conspicuous emphasis on the latter. The reason behind this uneven distribution of interests originated 
from the much higher instability of graphitic materials toward non-aqueous electrolytes than cathode 
ones. Since the layered structure of graphite is held together by the weak Van de Waals force (as 
opposed to the strong Coulombic attraction between slabs of counterions in various cathode materials), 
the interstitials along on c-axis are readily accessible to solvent molecules that co-intercalate with 
solvated Li+. Due to the large size of the solvent molecules and the average coordination number of Li+  
(which is ~4), this co-intercalation almost always introduces tremendous stress to the graphite lattice.  
In case of organic carbonate solvents, since gaseous product is usually generated (Scheme 1), the  
co-intercalation almost always leads to the exfoliation of the graphene layers [15]. 

Aurbach undoubtedly made the most marked contribution in identifying the effective chemical 
ingredients in SEI. With surface spectroscopy and chemical synthesis he and coworkers determined the 
major products of organic carbonates from surface reduction to be semi-carbonates that are generated 
via a single-electron pathway [9]. More recent spectroscopic as well as diagnostic studies further 
confirmed Aurbach’s findings while adding an alternative two-electron pathway leading to oxalates 
and alkoxides (Scheme 1) [16,17].  

Although ab initio computations have suggested that carboxylates or semi-carbonates of higher 
order, such as butylene dicarbonate, would be more thermodynamically stable products of the surface 
reductions, NMR and FTIR spectra excluded such possibilities [16,18]. It is important to point out that 
the reduction of neat solvents at electrode surface should be very unlikely due to the rather high 
activation energy barrier; however, the presence of Li+ in the solution and the subsequent formation of 
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its solvation sheath drastically catalyzed such reductions by lowing the energy barrier (Figure 5) [19]. 
Naturally the composition of this supermolecular complex Li Sn (n = 3~4) would dictate the eventual 
chemistry of the interphase. 

Scheme 1. Three possible pathways for surface reductions of organic carbonates on 
graphitic anodes. Pathway A represents a two-electron reduction of organic carbonate, 
which was determined to be an unlikely route; while pathways B and C are mainly 
responsible for SEI ingredients. 
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Figure 5. Schematic illustration of the effect of Li+-solvation on the activation barrier of 
surface reduction for organic carbonates. 

 
 
 
While a general agreement has been reached concerning the chemistry of interphase, controversy 

mainly centered around the formation mechanism with two rival models. The original SEI concept 
evolved from the passivation phenomenon of lithium metal electrode, which possesses a  
non-intercalating surface [2]. When electrolyte components are reduced on this “flat surface”, it was 
believed that the decomposition products should deposit on lithium electrode and form a thin film that 
inactivates lithium surface. Due to this manner of interphasial species accumulating on a simple 
surface, this formation mechanism was often referred to as “2D formation model” of SEI. It must be 
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A further complication of graphitic electrode concerns the particular structure of graphite. Since 
solvated Li+ could only intercalate at the edge sites of the graphite, it is expected that chemical 
components of SEI would appear at edge sites instead of basal planes. AFM studies confirmed this 
staged and regionalized formation of SEI (Figure 7).  

After the formation of SEI is completed, the interlayer distance in graphitic anode decreases  
from 1.59 nm to ca. 0.35 nm, and this graphene structure would be maintained nearly constant during 
the reversible Li+ intercalation chemistry. The so-called “breathing effect” due to repeated  
Li+-intercalation/de-intercalation would only cause a volume change of less than 10%. In this sense, 
although the ternary GIC only exists transiently upon the initial charging of graphitic anode, its 
significance can never be underestimated, as the graphite anode would permanently bear its chemical 
signature during the entire life of the device. 

Figure 7. Schematic description of the step-wise formation of SEI on graphite surface 
based on AFM results. (reproduced  from Figure 10 in [22] with the permission from the 
Electrochemical Society.) 

 
In the post-SEI formation stage, the interphase acts as filter to the migrating solvated Li+, whose 

solvation sheath must be stripped before a naked Li+ can be intercalated. Due to the small ionic radius 
of Li+, the solvent molecules in the primary solvation sheath is expected to be tightly bound, hence this 
desolvation process should occur with difficulty and only when the electrode provide sufficient voltage 
gradient to compensate the energy to be consumed by the disruption of solvation sheath (Figure 8). 
More recent studies by Abe et al. identified this desolvation process at electrode/electrolyte interphase 
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as the “rate determining step” in the operation of a Li ion device, which is largely responsible for the 
cell resistance at low temperature or under high drain rate applications [23,24]. 

Figure 8. Schematic description of a solvated Li+ diffusing through the formed SEI at 
electrolyte/graphite interface (below) and the associated energetic coordinates. 

 
 

An issue of particular interest concerns how bulk electrolyte composition affects the chemical 
ingredients of SEI. Xu et al. attempted to establish such a correlation by using the NMR technique to 
analyze the SEI components collected from the cycled graphitic anodes [18,25]. By comparison with 
the known standard SEI ingredients that have been synthesized in vitro, it was discovered that the 
interphasial reduction products do not come proportionally from the bulk electrolyte composition, 
and that the cyclic component (EC) is the preferential ingredient of SEI as long as EC/Li ratio is more 
than 4, which happens to be the average solvation number of Li+ (Figure 9).  

In other words, the SEI composition is not “collinear” with the bulk electrolyte. This preference of 
EC-originated ingredients in SEI was believed to be the direct consequence of EC-dominance in 
Li+-solvation sheath; thus, SEI chemistry inevitable bears the signature of the Li+-solvation sheath 
composition. To tailor an ideal interphase for faster Li+- intercalation kinetics, one has to consider the 
effect of Li+-solvation/desolvation processes. 
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Figure 9. 13C-NMR of graphite surfaces indicates “non-colinearity” between interphasial 
and bulk compositions of electrolyte. Above: SEI ingredients collected from graphitic 
anode in EC/DMC 5:5 (a) and 1:9 (b); Below: in EC/EMC 3:7 (a), 2:8 (b) and 1:9 (c). 
The contributions from acyclic reduction product are negligible until their proportion in 
bulk electrolyte becomes especially high (70% for DMC and 80~90% for EMC). 

 
5. Tailoring an Ideal Interphase 
 

The interphase in a Li ion device is always bifunctional: it protects the electrolyte from sustaining 
parasitic reactions on electrodes, but also slows down the mass/charge transfer rates across the 
interface. Therefore the stability or reversibility of this rechargeable battery chemistry comes at the 
expense of its kinetics. In some application scenarios such as sub-ambient temperature discharge or 
high rate/pulse drain, this expense becomes too high, and researchers were induced to minimize the 
above negative aspect of interphase without compromising its protection of the graphene structure or 
the electrolyte components. 

To lessen the interphasial kinetic barrier, investigators have attempted to achieve a desired 
interphasial chemistry by manipulating electrolyte compositions. This approach was made possible by 
the stepwise characteristic of interphase formation on graphitic anodes, where certain electrolyte 
additives, if chosen properly for their reduction potential, can be selectively decomposed on graphite 
surface during the initial charge cycle of a Li ion cell, before other electrolyte components could, thus 
leaving unique chemical signatures on the resultant interphasial chemistry (remember that this ordered 
reduction during the so-called “(SEI) forming cycle” is almost impossible with a metallic lithium 
electrode). Due to the trace presence (<5%) of those additives in electrolytes, most of them are 
expected to be consumed at the completion of SEI formation, hardly leaving any impact on the bulk 
properties of the electrolytes, such as production cost, ion conductivity, viscosity and wetting 
capabilities toward polyolefin-based separators [26]. It was because of these merits that the additive 
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surface, impedance behavior, etc., cannot be predicted simply on the basis of their reduction or 
oxidation potentials. A commonality of all those tailored interphases is that the issue of Li+-desolvation 
was never addressed, even though it has been identified as one of the most important (if not The Most 
Important) kinetic barriers in the cell chemistry. One would imagine that no matter how thin or even 
how ionically conductive an SEI could be tailored into, the solvated Li+ must still be stripped off its 
solvation sheath before it can intercalate into graphene or other host lattice. At the first intuitive 
thought one would argue that there is little to do because the energy consumption in the desolvation 
process should be independent of interphasial chemistry. However, a recent reports on Cu-plated 
graphitic surfaces contradicts this belief and indicates that the charge-transfer process associated with 
Li+-desolvation exhibited much reduced activation energy [30]. The rationale behind this encouraging 
report remains little understood, but it is obvious that a tailored interphase could affect the  
Li+-desolvation. Perhaps the future efforts in electrolyte additive efforts should shift to emphasis on an 
SEI chemistry containing designed-in catalytic sites that assist in breaking up the solvation sheath of Li+. 

 
6. Perspective: Inspiration from Nature 
 

The desolvation-dictated transport at interphases in Li ion device reveals an intrinsic dilemma that 
has been troubling the efforts at formulating an ideal electrolyte. On one hand, the electrolyte solvents 
are required to have effective solvation power towards the ions of lithium salt, especially Li+, so that 
sufficient ion conduction could be provided; on the other, the solvents should not bind to Li+ 
excessively, so that Li+ could be freed at the interphase to answer the call of intercalation chemistry. 
Thus, a fine balance between these two conflicting requirements must be maintained, which in part 
leads to the current electrolyte solvents used in Li ion industry [8] Naturally, the usage of solvents at 
two extremes, those with limited solvation power to Li+ such as non-polar olefins, or those solvents 
with extra affinity to Li+ such as members from the crown-ether family, have to excluded. 

On a fundamental level, the above “solvation vs. transport” dilemma was actually rooted in a single 
association constant that is characteristic with each solvent’s capability to solubilize Li+. An ideal 
solution to this dilemma would be a solvent molecule with an association parameter that can vary in 
different local regions of the cell, hence Li+ can be effective solvated in the bulk of electrolyte where 
the association parameter remains high, and be rapidly released at an interphase where the association 
parameter of the same solvent molecule becomes low. It can be imagined that the kinetic rate of Li+ 
across an interphase would be improved by orders of magnitude due to the exponential relations 
between diffusion rate of Li+ and the activation energy barrier it must overcome. Li ion devices with 
such an “active” interphase should provide rate capabilities well beyond what is restricted by an 
passive interphase. But is it possible for a single solvent molecule to possess varying association 
parameter towards an ion at the same temperature and pressure? 

While a varying association “constant” may sound a little “exotic” in the traditional realms of 
physical chemistry, it is by no means an impossible stretch from reality; in fact it is a quite common 
phenomenon in the world of life sciences [31]. Assisted by the complicated conformations that are 



Energies 2010, 3                            
 

 

150

enabled by the large bio-molecules, the association parameter of many enzymes (polymers of α-amino 
acids, or proteins) would adopt different values at the request of the Nature, which is referred as the 
“allosteric effect”. A conspicuous example of allostery lies in the transport mechanism of oxygen 
within our bodies by hemoglobin (Figure 11), whose conformation in the arterial system or lungs 
(where O2 is in high partial pressure) encodes a rather high association parameter towards O2, thus 
most hemoglobin molecules are fully loaded with O2; after these O2-carrying hemoglobin molecules 
travel with the blood stream to venous terminals, another conformation was adopted, which encodes a 
much lower O2-association parameter and prompts the release of O2. Such a conformational switch is 
reversible and often triggered by a catalytic species present at the switch sites.  

Figure 11. In a bio-system, the O2-association parameter of hemoglobin (Hb) varies with 
the external O2-partial pressure by adopting two different conformations, Oxy-Hb with 
high affinity and deoxy-Hb with low affinity towards O2. Thus, O2 tends to be dissolved in 
blood where its concentration is high while released where its concentration is low. The 
overall result is an accelerated transport of O2 within the system, which is impossible with 
a simple O2-chelating agent that has a constant association parameter, like what Li ion has 
in conventional electrolyte. 

 
 
Despite the scientific validity of allostery, is it possible to design such a solvent or additive 

molecule that would work in similar manner in an electrochemical device? Obviously one cannot 
simply apply the hemoglobin or other enzymes well known in biochemistry directly to a nonaqueous 
electrochemical device, because (1) the presence of the active hydrogen groups in those α-amino acids 
cannot provide an electrochemical stability window suitable for the high potential operations of battery 
chemistry such as Li ion; and (2) more importantly, the non-aqueous environment would “denature” 
those enzymes, which can no longer maintain their native conformations to perform the desired 
functions (Figure 12).  
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