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Abstract: Wind power is the world’s fastest-growing energy source. More power can be generated
from wind energy through the use of new wind machine designs and techniques. The objective of
the present work is to encourage people and governments to develop wind energy-based power
plants to achieve sustainable energy infrastructures, especially in developing countries. In this paper,
a feasibility study of a 100 MW grid-connected wind farm is conducted for five different cities of
Saudi Arabia (KSA). The results indicate that the proposed power plant is feasible both technically
and economically. All sites are found to be within the profitable range with Dhahran being the most
feasible site among the others for the installation of the wind farm. A sensitivity analysis has also
been carried out to find out the effects of different incentives on the payback period of the project.

Keywords: wind power; environmental impact; payback period; sustainable development;
developing countries; Saudi Arabia

1. Introduction

Due to the growing environmental concerns, fast depletion of primary energy resources, escalating
energy costs, and adverse climatic changes, the focus on the utilization of renewable and clean
sources of energy has increased significantly. The renewable sources of energy mainly include wind,
solar photovoltaic, solar thermal, large and small hydro, geothermal, biomass, and wave power.
Among these sources of clean energy, wind and solar are commercially accepted and economically
at par with conventional means. They are both being currently used worldwide. Wind energy is
proved to be an economically acceptable and reliable source of energy [1]. The generation of wind
power has an edge over other renewable energy technologies because of its simple infrastructure,
technological maturity, and low-cost energy generation. Furthermore, the ease of installation and
maintenance, long life of wind turbines, minimum time required for the installation and operation after
site assessment have led to the fast growth of regional and global wind power. The use of wind energy
to meet load demands is expected to play important role in the future worldwide energy scenarios [2].

Additionally, switching from fossil fuels to renewable energy (e.g., wind power resources)
promotes energy security, while likewise addressing issues such as global warming and economic
growth of a country [3]. Renewable energy contributes to energy resilience through its decentralized
structure that can help to lessen the burden on economy of a developing country. According to Fang [4],
an increase of renewable energy consumption by 1% drives a growth of real gross domestic products
(GDP) by 0.120%, GDP per capita by 0.162%, per capita annual income of rural households by 0.444%,
and per capita annual income of urban households by 0.368%. The integration of renewable energy
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technologies will not only eliminate the power shortage issues but also create new job opportunities.
According to IRENA, about 8.1 million jobs were generated though implementation and development
of renewable technologies across the world in year 2015. In this way development of wind energy
farms as a replacement of fossil fuel operated power plants will have a positive effect on the economic
growth of a country like Saudi Arabia.

Modern technological developments have led to much advancement in wind power. The wind
energy technology is the world’s fastest-growing energy option [5]. More power can be generated from
wind energy by adopting new design and techniques of wind energy machines [6]. In the last two
decades, the global wind power installed capacity has rapidly increased which is a clear indicative of
an increasing role of wind power in fulfilling the future energy demands. An average annual growth of
104% in wind power comes into being over the last 10-year period as can be observed from Figure 1, [7].
In 2016 the global wind power installed capacity rose by 12.5% compared to that in 2015 (Figure 2).
China added a total of 23.328 GW wind power in 2016 which is the largest compared with those by
any other countries, followed by 8.203 GW by USA.

The initial cost associated with the renewable energy technologies is a major hurdle and
disadvantage for promotion and development of these technologies in developing countries.
These technologies are beneficial and advantageous when assessed on a long term basis. Site-specific
studies are required for the promotion and deployment of wind power technology in the country.
Accordingly, the main aim of this paper is to provide a long run scenario of developing wind farms in
developing countries like Saudi Arabia. In this paper, a feasibility of a 100-MW grid-tied wind power
plant for five different cities in Saudi Arabia has been conducted. The study also aims to partially
offset the fossil-fuel based power generation with wind operated power systems. The enviro-economic
analysis of installing a wind farm has been investigated by RETScreen software using different
performance indicators. The effect of increasing the government incentives and support on the viability
of the proposed power system has also been evaluated. The obtained results are important not only for
decision makers in the country but also for the continuous development of renewable energy sources
in other developing countries.

The paper has been divided into different sections: Section 1 introduces the topic and highlights
the major objectives and motivation of this study. The background of wind energy technology with
respect to KSA is presented in Section 2; different studies and energy consumption pattern in the
country along with environmental concerns are described in detail. The methodology and description
of performance indices used are described in Section 3, followed by description and design of wind
power system. The obtained results are presented and discussed in Section 4 whereas a summary of
achieved results is presented in Section 5.
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Figure 1. Cumulative global wind power installed capacity [7].
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Figure 2. Annual global added wind power capacity [7].

2. Background

The specific case of Saudi Arabia, where a rapid increase in electricity consumption is leading
to technical and economical stress on the utility and the Ministry of Energy, is not an exception.
The increasing demand for primary energy in the Kingdom of Saudi Arabia (KSA) is illustrated in
Figure 3 [8]. The annual energy consumption was around 169 billion metric ton of oil equivalents in
2007, and reached 268 billion metric ton of oil equivalents in 2017 [8,9]. The comparative greenhouse
gas (GHG) emissions for different countries are shown in Figure 4, which indicates the highest
emission by China. Saudi Arabia is also among the top ten countries of the world in terms of GHG
emissions. The annual growth of GHG emissions in Saudi Arabia is depicted in Figure 5 and shows an
increasing trend right from 1970 to 2015 and beyond. The energy sector is also the largest contributor
of greenhouse gases (GHG) emissions (~89%) in the country as illustrated in Figure 6 [10].

In order to overcome this rising demands of energy in the country wind energy technology could
be beneficial and advantageous, but it is well known that wind power output is not fully dispatchable.
This means that it has an uncertainty and randomness problem, which may affect the normal operation
of the power system. Thus, quite a lot of research has been done to deal with the uncertainty. At first,
the idea of probabilistic forecasting [11,12] has been proposed to quantify the uncertainty of wind
power generation. Then, this uncertainty information is also integrated to power system operation
and electricity market through stochastic programming [13,14].

In the context of KSA, different studies related to wind energy are available in the literature.
These studies include the estimation of wind energy trends using different techniques [15],
wind farm layout design optimization [16], analysis of wind power distribution and estimation
across different regions [17]. Other studies include the time-dependent estimation of wind speed [18].
Some collaborative work has also been done by different local researchers in collaboration with
Greek scientists [19] and Algerian researchers [20] in order to assess wind power potential and its
utilization aspects.

Further to overcome the problems associated with wind power technology, site specific studies
are required to assess the feasibility of wind power technology. In this regard, different studies
have been carried out for implementation of wind energy system and their progress for climatic
conditions of KSA [21–23]. Ramli et al. [21] assessed the potential of solar and wind energy based
power generation with the motivation to maximize the use of renewable energy technologies in
KSA. The results of this study showed a combined solar and wind energy potential of 50 GW in
the country. Eltamaly [22] and Rehman and Aftab [23] in two different studies presented the wind
data analysis for five coastal locations of KSA. The data analysis was carried out using hourly mean
values of wind speed and wind direction covering a period of almost 14 years between 1970 and
1983. Furthermore, Bassyouni et al. [24] used a Weibull distribution approach to analyze the wind
power potential for Jeddah, the commercial capital of Saudi Arabia. The study concluded that under
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the present scenario, the wind power potential can be exploited for off-grid applications for power
generation. Baseer et al. [25] studied the wind power characteristics for Jubail using hourly mean wind
speed measured at 10, 50, and 90 meters above ground level over a period of 5 years from 2008 to 2012.
The study reported that 6825 MWh of energy could be generated annually at a plant capacity factor of
25% using a wind turbine of 3 MW rated capacity.

Apart from that, the economics of wind power technology have also been studied [26,27].
Different models for the prediction of wind energy potential have also been investigated in
the literature [28,29]. These economics related studies suggested that government should provide
incentives to the private and local investor in order to lower the initial associated costs of wind power
technology. Furthermore, it has been suggested in these studies are must to generate wind duration
curves and to calculate the cost per kWh of electricity generated from the chosen wind-machines.
Other studies include the understanding of wind speed trends and inherent properties over a long
period using modern techniques such as wavelets and power spectrum [30–32] and wind farm layout
design optimization and wind turbine selection using multi-criteria algorithms [33]. Furthermore,
the wind speed characteristics such as wind turbulence, wind frequency distribution, wind shear
exponent, diurnal and seasonal wind speed trends, energy yield, and the capacity factors have been
studied in details for different regions of Saudi Arabia [34–40].
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3. Materials and Methods

Different technologies and analyses have been utilized by researchers, engineers, and scientists
for the development of different wind turbine configurations by determining the optimum working
conditions. RETScreen is a clean energy simulation tool which is used worldwide to evaluate the
energy production and savings, costs, emission reductions, financial viability and risk for various types
of renewable and clean energy technologies. The fundamental of RETScreen software is a comparison
between a “base case”, typically the conventional technology, and a “proposed case” that is the clean
energy technology which is wind energy in this case. Based on the input data, RETScreen software
is capable of estimating annual and monthly energy productions and capacity factor of an installed
wind turbine. Furthermore, it can evaluate the financial viability of the project in terms of cash flow,
payback period, and internal rate of return.

The profitability, quality, and efficiency of a project are estimated from capacity factor (CF) internal
rate of return (IRR) whereas net present value (NPV) indicates the net present value or magnitude
added by making an investment. IRR is a discount rate that makes the NPV of all cash flows from
a particular project equal to zero. The built-in mathematical expression used for evaluation of all
indicators using RETScreen tool are as follows:

CF =
Pout

CP × τ
(1)

NPV =
T

∑
t=1

NCi

(1 + d)t − NCt (2)

IRR = NPV → 0 (3)

PBP =
I

NCp
(4)
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GHG reduction =
(

GHGbase − GHGproposed

)
× E (5)

The investors interested in the project set their target for the required return rate depending upon
the capital cost of the project and then compare it with the project IRR. The IRR value equal or greater
than the organization’s required rate of return means that the project is financially profitable and the
investment is justified. On the other hand, a negative value of IRR concludes the project to be rejected.
The equity-payback period is used to calculate the time required to return the initial investments
of the organization involved in the project. The cash flow of the project and the level of debt are
considered for equity-payback. A schematic diagram for optimization analysis of the proposed system
is presented in Figure 7.
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3.1. Site Data Description

Figure 8 shows the regional map of Saudi Arabia. The locations chosen for the present study are
spread across the country. Dhahran and Jeddah are the coastal sites on the Arabian Gulf and the red
sea while Riyadh (central), Guriat (extreme north), and Nejran (south-west) are the inland locations.
The geographical data for all sites are presented in Table 1 whereas the monthly average wind speed
data for different cities are illustrated in Figure 9. The average wind speed is maximum for Dhahran
and minimum for Nejran. The average annual wind speed values for Dhahran, Riyadh, Jeddah, Guriat,
and Nejran are 4.3, 3.1, 3.6, 4.1, and 2.0 m/s, respectively. In general, higher wind speed values are
observed in the summer time while lower in winter time; this coincides with the peak power demand
in summer.
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3.2. Description and Design of the Wind Power System

The power produced by a wind turbine depends on air flux through the area of interest.
The establishment and development of the equation for power output from a wind turbine is explained
in this section. The power Pw in the wind is given by the rate of change of energy E, i.e.:

Pw =
dE
dT

= 0.5×V2 × dm
dT

(6)

where, T is the time, V is the wind velocity, and m is the mass flow.
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The mass flow rate is given by:

dm
dT

= ρ× A f ×
dx
dT

= ρ× A f ×V (7)

where, ρ is the density of air, Af is the swept area, and x is the distance.
The power from the wind turbine for a given wind speed can be calculated by combining

Equations (6) and (7):
Pw = 0.5× ρ× A f ×V3 (8)

As a wind turbine cannot convert 100% of wind energy to the output power, the power coefficient
Cmax should be introduced in Equation (7) and the value of this coefficient varies according to the
turbine used, viz.:

Pw = 0.5× Cmax × ρ× A f ×V3 (9)

The following vital information can be deduced from Equation (8):

• The power output of a wind generator is proportional to the area swept by the rotor; that is,
doubling the swept area makes the power output double.

• The power output of a wind generator is proportional to the cube of the wind speed.

Different models of wind turbines were tested based on the number of turbines required and
annual output for all sites using RETscreen input parameter. The configuration that provides maximum
output power was then selected as the best configuration. The specifications of the selected wind
turbines (AN BONUS 1.3 MW-60) are shown in Table 2. The rated power of the selected turbine models
is 1.30 MW and they start working at a wind speed of 3.0 m/s. The cut-out wind speed is selected as
25 m/s. The rotor diameter of the AN BONUS 1.3 MW-60 is 60 m. The wind turbine is equipped with
three rotor blades. The AN Bonus 1.3 MW-60 is fitted with a 3 stage spur/planetary gearbox.

Table 2. Specifications of wind turbine.

Parameter Unit Value

Power capacity per turbine kW 1300
Manufacturer Siemens -

Model AN BONUS 1.3 MW-60 m -
Number of turbines - 77

Hub height m 60
Rotor diameter per turbine m 62

Swept area per turbine m2 3019.07
Shape factor - 2

Power coefficient % 45
Array losses % 3
Airfoil losses % 2

Miscellaneous losses % 3
Availability % 98

The rated power capacity of a single turbine is 1300 kW and a total of 77 turbines are proposed to
be used for a total installed capacity of 100 MW sized wind farm. The power curve of a selected wind
turbine used is shown in Figure 10. The graph shows the power available from a wind turbine across a
range of wind speeds. Based on the wind speed data, it can be estimated how much power will be
possible to generate using the chosen wind turbine.
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Figure 10. Wind turbine power and energy curve.

4. Results and Discussion

Wind turbine power greatly depends on the wind speed and volume of air passing through the
rotors, and its value differs from site to site and month to month. The total annual energy production
from the proposed system, exported to the grid for all sites, is shown in Figure 11 whereas Table 3
presents the detailed monthly results for electricity generation from the installed wind farm.
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Figure 11. Annual power exported to grid for all sites.

Table 3. Monthly power exported to grid for all sites (MWh).

Months Dhahran Riyadh Jeddah Guriat Nejran

January 21,842 20,452 20,258 20,635 18,981
February 19,591 18,271 18,275 18,475 16,936

March 21,368 19,884 20,067 20,155 18,515
April 20,234 18,840 19,196 19,110 17,730
May 20,420 19,029 19,655 19,407 18,107
June 19,449 18,182 18,913 18,559 17,385
July 19,963 18,668 19,429 19,031 17,840

August 20,040 18,705 19,437 19,049 17,883
September 19,690 18,386 18,918 18,661 17,552

October 20,746 19,429 19,736 19,665 18,525
November 20,562 19,295 19,300 19,538 18,195
December 21,679 20,335 20,143 20,568 18,957

Annual
Average 20,465 19,123 19,444 19,405 18,051
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These values are obtained from the RETScreen simulation software for the turbine configurations
listed in Table 2 and location-specific data. The annual minimum and maximum energy of 245,000 and
216,000 MWh are exported to the grid for Dhahran and Nejran, respectively. The annual electricity
exported for Riyadh, Jeddah, and Guriat is 230,000, 234,000, and 233,500 MWh, respectively. Figure 12
presents the archived values of capacity factor for installed wind turbines for all the sites. A maximum
capacity factor of 28% is observed for climatic conditions of Dhahran whereas; for Riyadh, Jeddah,
Guriat, and Nejran, capacity factors of 26.1, 26.6, 26.6, and 25.4% are observed, respectively.
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The discount rate for feasibility of renewable based power technologies in KSA is normally taken
as 0% [41] which is the case in this paper as well. The interest rates, project life time, and other related
financial parameters are illustrated in Table 4. Figure 13 provides an overview of the cash flow over the
project life time for all sites. The cash flow indicates that the investor is expected to get a positive cash
flow from the 5th year onwards for all sites. Based on this cash flow, simple payback periods of 5.9,
6.3, 6.2, 6.2, and 6.7 years are expected for Dhahran, Riyadh, Jeddah, Guriat, and Nejran, respectively
(Figure 14). A minimum equity payback of 4.4 years is observed for Dhahran. Similarly, Figure 15
illustrates the results obtained for IRR assets and equity. Average values of 23 and 18% are observed
for IRR assets and equity, respectively, for all sites. All the financial indicators show that the proposed
systems seem to be economically feasible.

Table 4. Financial parameters.

Factor Unit Value

Inflation rate % 3
Discount rate % 0

Project life year 25
Debt ratio % 25

Debt interest rate % 0
Debt term year 20
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Figure 15. IRR assets and equity for all sites.

The utilization of wind energy as a partial replacement of traditional power production units in
the country significantly reduces the emission of GHG, as can be observed from Table 5. The results are
presented in term of GHG reduction when the current energy mix of Saudi Arabia is partially replaced
by wind power. The net annual reductions of GHG for Dhahran, Riyadh, Jeddah, Guriat, and Nejran
are found to be 180,947, 169,077, 171,914, 171,567, and 159,596 tCO2, respectively. The average GHG
reductions for Dhahran, Riyadh, Jeddah, Guriat, and Nejran are equivalent to 33,140, 30,967, 31,486,
31,423, and 29,230 cars and light trucks not used, respectively. This significant decrease of harmful
emissions can help to achieve sustainable development in the country. Furthermore, a sensitivity
analysis indicated that government incentives in terms of investment loans without any interest
can play an important role for development and promotion of this renewable technology as can be
observed from Figure 16. A debit ratio of 30–40% can help to achieve a payback period of about 4 years
which makes the technology more attractive for the investors.

Table 5. Net annual reduction of GHG emissions for all sites.

Cities Net Annual Reduction of
GHG Emissions (tCO2)

Cars and Light
Trucks Not Used

Hectres of Forest
Absorbing Carbon

Peoples Reducing
Energy Use by 20%

Dhahran 180,947 33,140 41,124 180,947
Riyadh 169,077 30,967 15,551 169,077
Jeddah 171,914 31,486 15,812 171,915
Guriat 171,567 31,423 15,780 171,568
Nejran 159,596 29,230 36,272 159,596
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Risk Analysis

Risk analysis is an analytical framework for dealing with uncertainties of a project. The objective is
to reduce the likelihood of carrying projects with loss while not failing to accept good projects as costs
and benefits are subjected to uncertainties and may vary from the base case. The risk analysis provides
a probability distribution of the project outcome and a level of risk associated with the project. The risk
analysis has been done using RETScreen with a risk level of 10%. The obtained results of the risk
analysis for the studied wind farm in this paper are illustrated in Figure 17. Different factors such as
initial cost, operating and management cost, and debt have different impacts on the thermo-economic
feasibility of the proposed project as can be observed in Figure 17. Initial cost is the largest, followed
by operating and management costs (O&M). Furthermore, the results obtained for the IRR distribution
and payback period are shown in Figure 18. The probability distributions of IRR and payback period
show the feasibility of the studied project as the risk of the loss is much lower compared with the profit.
The IRR is large between 13% and 16.5%, with two predominant peaks at 13% and 16.3%. On the other
hand, the payback largely occurs for years less than 8, with a peak in the 6th year. It declines rapidly
after the 8th year.
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5. Conclusions

In this study, the RETScreen model is used to investigate the feasibility of a 100 MW wind farm
for the climatic conditions of Dhahran, Riyadh, Jeddah, Guriat, and Nejran. The specific case of
Saudi Arabia is considered because of a rapid increase in electricity consumption in the country
which is posing technical and as well as economical stress on the utility and Ministry of Energy.
The current shares of natural gas and oil used for power generation are 37% and 63%, respectively.
Furthermore, comparative greenhouse gas (GHG) emissions for different countries indicate that Saudi
Arabia is among the top ten countries in terms of GHG emissions. The implementation of the proposed
renewable energy power system will help in boosting the deployment of such technologies and at the
same time will address the problem GHG emissions.

The proposed wind farms can produce 245, 230, 234, 233.5, and 216 GWh of electricity annually
for climatic the conditions of Dhahran, Riyadh, Jeddah, Guriat, and Nejran, respectively. Based on this
cash flow simple payback periods of 5.9, 6.3, 6.2, 6.2, and 6.7 years are expected for Dhahran, Riyadh,
Jeddah, Guriat, and Nejran, respectively. The average values of 23 and 18% are observed for IRR assets
and equity, respectively, for all sites. All the financial indicators show that the proposed system seems
to be economically feasible. Furthermore, it has been observed that a partial replacement of the current
energy mix with the proposed wind power system can make net annual GHG reductions of 180,947;
169,077; 171,914; 171,567; and 159,596 tCO2 equivalent of GHG for Dhahran, Riyadh, Jeddah, Guriat,
and Nejran, respectively. This significant decrease of harmful emissions can help to achieve sustainable
development in the country. Furthermore, a sensitivity analysis indicated that government incentive
of interest-free loans can play an important role in the development and promotion of wind power
technology in this part of the world.

In this paper only wind power technology has been studied, showing a good prospect of electricity
generation in KSA. On the other hand, in order to make renewable-based technologies more feasible,
using wind power technology alone may not be enough. In that case, hybrid technologies should be
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considered which could be a combination of two or more different technologies such as wind and
photovoltaic (PV). That is why; in future similar studies are required for climatic conditions of KSA
which should include combinations of different renewable technologies. In this way, the effective
utilization of wind and other renewable energy sources can be enhanced.

A public-private relationship should be built on a long-term basis for new investments and
promotion of these technologies. The companies should be motivated for investment into wind energy
projects by providing support and encouragements through different incentives. Different policy
implications and interventions are required in order to overcome different barriers to the development
and promotion of renewable technologies in the country. An overview of public policy interventions
required is presented in Figure 19.

Energies 2018, 11, x FOR PEER REVIEW  15 of 18 

 

more feasible, using wind power technology alone may not be enough. In that case, hybrid 
technologies should be considered which could be a combination of two or more different 
technologies such as wind and photovoltaic (PV). That is why; in future similar studies are required 
for climatic conditions of KSA which should include combinations of different renewable 
technologies. In this way, the effective utilization of wind and other renewable energy sources can be 
enhanced. 

A public-private relationship should be built on a long-term basis for new investments and 
promotion of these technologies. The companies should be motivated for investment into wind 
energy projects by providing support and encouragements through different incentives. Different 
policy implications and interventions are required in order to overcome different barriers to the 
development and promotion of renewable technologies in the country. An overview of public policy 
interventions required is presented in Figure 19. 

 
Figure 19. Policy interventions in support of wind power system. 

Author Contributions: M.M.R. conceived the idea, performed the simulations and wrote initial draft of the 
paper with the help of S.R., M.M.A. and L.M.A. helped in writing the paper. The paper was reviewed and revised 
by M.M. R. and S.R. The final draft of the paper was read and approved by all authors. 

Funding: This research was funded by [The Deanship of Scientific Research (DSR) at King Fahd University of 
Petroleum & Minerals (KFUPM)] grant number [IN151026].  

Acknowledgements: The authors would like to acknowledge the support provided by the Deanship of Scientific 
Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through Grant 
number IN151026. Mr. Muhammad Mujahid Rafique (M. Mujahid Rafique) would like to acknowledge the 
support of Marie Curie Alumni Association. He carried out this work with the support of the Marie Curie 
Alumni Association. 

Conflicts of Interest: There is no conflict of interest. 

Figure 19. Policy interventions in support of wind power system.

Author Contributions: M.M.R. conceived the idea, performed the simulations and wrote initial draft of the paper
with the help of S.R., M.M.A. and L.M.A. helped in writing the paper. The paper was reviewed and revised by
M.M. R. and S.R. The final draft of the paper was read and approved by all authors.

Funding: This research was funded by [The Deanship of Scientific Research (DSR) at King Fahd University of
Petroleum & Minerals (KFUPM)] grant number [IN151026].

Acknowledgments: The authors would like to acknowledge the support provided by the Deanship of Scientific
Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through
Grant number IN151026. Mr. Muhammad Mujahid Rafique (M. Mujahid Rafique) would like to acknowledge
the support of Marie Curie Alumni Association. He carried out this work with the support of the Marie Curie
Alumni Association.

Conflicts of Interest: There is no conflict of interest.



Energies 2018, 11, 2147 16 of 18

Nomenclature

Af Frontal area of the blade
CP Total installed plant capacity (kw)
Cmax Power coefficient (%)
CF Capacity factor (%)
d Discount rate (%)
E End annual energy delivered (kwh/year)
GHGbase Proposed case GHG emission factor
GHGproposed Proposed case GHG emission factor
IRR Internal rate of return (%)
I Initial investment (US$)
NPV Net present value (US$)
NCi Net cash inflow (US$)
NCt Total net cash (US$)
NCp Net periodic cash flow (US$)
Pw Wind power (W)
PBP Payback period (years)
Pout Power output from wind turbine (kwh)
τ Time period (hour)
t Number of time periods (%)
T Time (s)
V Wind velocity(m/s)
x Distance (m)
ρ Density of air (kg/m3)
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