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Abstract: Rapid economic development has resulted in a significant increase in energy consumption
and pollution such as carbon dioxide (CO2), particulate matter (PM2.5), particulate matter 10 (PM10),
SO2, and NO2 emissions, which can cause cardiovascular and respiratory diseases. Therefore, to
ensure a sustainable future, it is essential to improve economic efficiency and reduce emissions.
Using a Meta-frontier Non-radial Directional Distance Function model, this study took energy
consumption, the labor force, and fixed asset investments as the inputs, Gross domestic product
(GDP) as the desirable output, and CO2 and the Air Quality Index (AQI) scores as the undesirable
outputs to assess energy efficiency and air pollutant index efficiency scores in China from 2013–2016
and to identify the areas in which improvements was necessary. It was found that there was a
large gap between the western and eastern cities in China. A comparison of the CO2 and AQI in
31 Chinese cities showed a significant difference in the CO2 emissions and AQI efficiency scores,
with the lower scoring cities being mainly concentrated in China’s western region. It was therefore
concluded that China needs to pay greater attention to the differences in the economic levels, stages
of social development, and energy structures in the western cities when developing appropriately
focused improvement plans.
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1. Introduction

The increase in the use of fossil fuels since the Industrial Revolution has led to a rapid increase in
the atmospheric concentrations of greenhouse gases such as CO2, and air pollution from fine particles
such as PM2.5, sulphur dioxide (SO2), and nitrogen dioxide (NO2), all of which have had a negative
impact on water resources, crops, natural ecosystems, and human health, and a consequent negative
effect on medium- and long-term sustainable social and economic development [1].

Over the past 30 years, China’s reforms and opening up policies have been primarily aimed
at economic development, which has resulted in an over-exploitation of the natural resources and
a significant increase in environmental pollution and ecological damage. The associated increase
in coal-fired energy consumption has caused increased and worsening air pollution and higher
concentrations of greenhouse gases such as CO2. The International Energy Agency [2] estimated that
China’s share of global CO2 emissions from 2002 to 2030 was going to increase from 14% to 19%, and
the United States Energy Agency [3] estimated that China’s CO2 emissions would comprise 24.5%
of the world’s total by 2030. The World Bank [4] claimed that by 2020, China’s air pollution would
annually cause 600,000 early deaths and 20 million respiratory disease sufferers, and its water pollution
would affect 190 million people and the deaths of 30,000 children from diarrhea.
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China’s focus on industrialization and economic growth in the past two decades has also resulted
in a significant increase in air pollutant emissions such as sulfur dioxide (SO2), nitrogen oxides
(NOX), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC), and black carbon
(BC) [5,6]. The impact of these atmospheric pollutants on health and the environment has caused
significant concern [7,8] as air pollution resulted in 1.2 million premature deaths in China in 2010, with
a further 25 million people contracting severe respiratory illnesses [8].

Because of China’s severe city air pollution, high energy consumption, and environmental
problems need to be urgently addressed to ensure the all-round development of China’s economy,
improving energy efficiency and reducing air pollution and CO2 emissions have become critical issues.

In recent years, Chinese governments at all levels have begun focusing on air pollution and CO2

emissions reductions with some positive results [9]; however, severe air pollution and CO2 emissions
levels remain a serious issue in many cities. Further, because of the global impact of climate change, it
has become increasingly difficult to domestically control air pollution and CO2 levels.

Because of its size, China’s eastern and western regions have wide variations in their economic
and social development in terms of resource endowments, industrial structures and geographical
conditions, which means there are also significant regional disparities in air pollution controls.
In general, the impact of existing policy measures has been effective in the short term, but in some
cities, the medium to long-term results are not satisfactory. Further, most measures have failed to solve
the fundamental causes of air pollution.

Energy efficiency analyses have tended to be based on conventional total factor analysis
frameworks and have only considered ideal output such as economic output while ignoring
unfavorable output such as environmental pollutants, meaning that the economic performance
assessments and efficiency and productivity estimates were biased. More current productivity
analysis frameworks [10–12], however, have included all energy, environmental, and ecological
efficiency elements.

To analyze energy, the environment, and eco-efficiency or productivity, recent studies from
both China and Europe have included GDP as the desirable output and CO2 emissions as the
undesirable output and have used static analyses, dynamic analyses, or Meta-frontier DEA (Data
Envelopment Analysis) methods to assess energy efficiency. Three main static analyses have been used
to assess energy efficiency, including; Charnes, Cooper, Rhodes (CCR), Banker, Charnes, Cooper
(BCC), and radial methods [13]; Slack-Based Measures method [14–16]; and direction distance
function methods [17–19]. There are also three main dynamic energy efficiency analysis methods;
Window analysis [20]; the Malmquist Productivity Index [21–23], and Dynamic SBM models [24].
In some cases, both dynamic and static methods have been used to compare energy [25]. For the
Meta-Frontier Method, dynamic meta-frontiers [26], Meta-Frontier non-radial directional distance
functions [12,27,28], and Bootstrapped DEA Methods [29,30] have been used to measure energy
efficiency and obtain accurate energy efficiency estimates.

To assess environmental efficiency, non-radial DEA methods [31–33], and Directional
Distance Functions [34,35] have been used; however, only a few studies [13,28] have examined
ecological efficiency.

Sulfur dioxide (SO2) has been used as an environmental pollution measure in energy efficiency
environmental evaluations in non-radial DEA models [36–38] and two stage methods [9,39,40]. In other
studies, both SO2 and NO2 have been used as environmental pollution indicators [35,40,41]. However,
only considering CO2 as the undesirable output and ignoring other air pollutants such as PM2.5, SO2,
and NO2 can bias the energy, environmental, ecological efficiency and productivity analyses. Therefore,
to analyze environmental energy efficiency, both CO2 and SO2 (or NO2) need to be considered as
undesirable outputs. Maximum Entropy methods [42], non-radial DEA models with both CO2 and
SO2 as undesirable outputs [20,43,44] and dynamic DEA methods [45] have all been used to explore
environmental efficiency.
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Air pollutants can have a significant impact on economic costs; for example, in 2010, the health
impact of PM10 in Chinese cities was estimated at US 74 billion [46], which was equivalent to 1.3%
of the GDP in that year. In 2013, the Chinese government developed an Air Pollution Control
Action Plan, which highlighted air governance and economic development as an official government
performance measure. As stated, only including CO2 as the undesirable output and ignoring other
undesirable air pollutants such as PM2.5, SO2, and NO2 can lead to biased reports and poor policy
advice. Another problem is that most DEA studies on urban efficiency have only been only at a
national level, with few analyses on the efficiency in cities in different regions. Because China has large
regional differences, different levels of economic development, and varying resource endowments,
the same production technology standard cannot be used for all analyses, especially in the eastern
and western regions. Therefore, it is necessary to compare and investigate urban efficiencies between
regions to ensure more accurate policy recommendations.

The difference between this study and previous similar studies is that urban energy consumption,
CO2 emissions, and atmospheric environmental efficiencies are investigated and the economic
development level endowment differences between cities in the eastern and western regions of China
considered. To do this, this study employed a meta-frontier non-radial directional distance function to
analyze regional energy, CO2, the economy, and air quality index (AQI) efficiencies.

This study divided 31 Chinese cities into eastern and western regions and using data from
2013–2016 examined each city’s energy consumption, labor force, and fixed asset size as the input
indicators, GDP as the desirable output, and CO2 and AQI as the undesirable outputs.

The remainder of this paper is organized as follows: Section 2 presents the research method;
Section 3 lists the empirical results and provides relevant discussions; and Section 4 gives the conclusions.

2. Materials and Methods

Data envelopment analysis (DEA), which is based on the Pareto Optimal solution concept, uses a
linear programming method to evaluate the relative utility of Decision Making Units (DMUs), and
is able to simultaneously measure the efficiency between multiple inputs and multiple outputs to
determine a production efficiency frontier, calculate the DMU production position and the distance to
the efficiency frontier, and assess the DMU efficiency value.

DEA was first proposed by Charnes et al. [47] as the CCR model, which was based on a constant
return to scale hypothesis. Banker et al. [48] then relaxed the constant returns to scale hypothesis
and developed a BCC model based on a variable return to scale assumption. The DEA method has
been widely used for industrial efficiency analyses in the financial industry [49], the transportation
industry [50], the service industry [51], and the manufacturing industry [52]. As environmental
issues have become a greater public concern, applications have been developed [10,11] to measure
energy and environmental efficiencies. However, many of these conventional research efficiency
analyses have failed to include the undesirable outputs. To resolve the problems associated with the
application of undesirable outputs in the DEA model, a radial directional output distance function was
proposed [53,54] based on an extension of the output distance function concept in Shephard [55].
The advantage of the radial directional output distance function is that it allows the DMU to
simultaneously adjust the factor inputs and output and therefore can be adjusted to increase the
desired output and reduce the undesirable output.

However, these radial efficiency models have tended to ignore the variances in the variables,
which can lead to estimation errors. To overcome these defects, Fare et al. [56] developed a non-radial
directional distance function, which proved superior to other methods as it had more reasonable, more
accurate estimation results. Consequently, non-radial directional distance functions have been applied
to energy and environmental efficiency analyses [17,57–59].
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2.1. Environmental Production Technology

Assume that N cities use three inputs; capital (K), labor (L), and energy consumption (E);
to produce one desirable output; gross domestic production (Y); and two undesirable outputs;
CO2 emissions (C), and the AQI (A) (please refer to the AQI calculations in Section 2.5 for detail).
The production technology set (T) is defined below [60–63].

T = {(K, L, E, Y, C, A): (K, L, E) can produce (Y, C, A)} (1)

The production technology follows standard production theory axioms [60]. Here, T is assumed to
be a closed, bounded set with finite inputs that produces finite outputs. To model the joint-production
technology, T is assumed to have weak disposability and null-jointness properties.

2.2. Non-Radial Directional Distance Functions

Suppose that there is an N-dimensional DMU set denoted ri where DMUo represents the DMU
under evaluation and DMUo ∈ N. The inputs and outputs are defined as x ∈ Rm

+, with the inputs
producing the desirable output Y ∈ Rs

+ and the undesirable output Z ∈ Rj
+. Following [17,59,60], the

non-radial directional distance function can be expressed as:
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where, λn is an intensity variable, w =
(
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)
denotes a weight vector, g =

(
−gx, gy,−gz

)
denotes

an explicit directional vector, and θ =
(
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m, θ

y
s , θz

j

)
denotes a scale vector.

2.3. Meta-Frontier Non-Radial Directional Distance Function

To investigate the technological gap between the eastern and western regions, this paper considers
these different groups to be different regions. Two types of frontier technologies are also defined;
a meta-frontier non-radial directional distance function and a group-frontier non-radial directional
distance function. As proposed in [60–63] the technical efficiency (TEE) for the different groups can
be compared using a meta-frontier model. Suppose there are technological heterogeneities between
H groups. The N DMUs can be separated into H subgroups based on their production technologies;

therefore, the number of DMUs in the h-th group is Nh, and
H
∑

h=1
Nh = N. Each subgroup has

own specific production technology, with the DMUs belonging to the same subgroups having a
homogeneous technology level under the group frontier.

Th and Tm are assumed to be the production technology set for the h-th group under the group
and meta-frontiers, with Tm =

{
T1 ∪ T2 · · · TH}

satisfying the over-arching requirement.
Following [63], the group-frontier non-radial directional distance function for group h is defined

based on Equation (2) and the group-frontier (GFE) technical efficiency is determined by solving
Equation (2).

Unlike the group-frontier technology, meta-frontier technologies are based on all observations
between the groups. As in [17,56,57], the value for D

(
Xm, Ys, Zj; g

)
is determined after solving the



Energies 2018, 11, 2119 5 of 20

following DEA model (Equation (3)). The technical efficiency of the meta-frontier (MFE) is also
determined by solving Equation (3).

D
(
Xm, Ys, Zj; g

)
= maxwx

mθx
m + wy

s θ
y
s + wz

j θz
j

s.t.
H
∑

h=1

N
∑

n=1
λnxmn ≤ xm − θx

mgxm, m = 1, . . . , M,

H
∑

h=1

N
∑

n=1
λnysn ≤ ys − θ

y
s gys, s = 1, . . . , S,

H
∑

h=1

N
∑

n=1
λnZjn ≤ Zj − θz

j gzj, j = 1, . . . , J,

h = 1 . . . H θx
m, θ

y
s , θz

j ≥ 0

(3)

Technology Gap Ratio (TGR):

As the meta-frontier is an envelope curve for the group frontiers [62,63], Th is a sub-set of Tm

(Th ⊆ Tm); therefore, the technical efficiency of the meta-frontier (MFE) is less than the technical
efficiency of the group frontier (GFE). This so-called technical gap ratio (TGR) is:

TGR = MFE/GFE (4)

If TGR is equal to unity, the region is considered efficient for the group technology set production
process (the meta-technology set); if the TGR is less than unity, the region is considered inefficient.

2.4. Urban Energy Environmental, CO2, AQI, and GDP Efficiencies

As in the total-factor energy efficiency index used in [64], there are four key features included in
this present study: energy environmental efficiency, CO2 efficiency, AQI efficiency, and GDP efficiency.
In this study, “i” represents the area and “t” represents time. The four efficiency models are defined in
the following:

Energy environmental efficiency =
Target energy input (i, t)
Actual energy input (i, t)

CO2 efficiency =
Target co2 Undesirable output (i, t)
Actual co2 Undesirable output (i, t)

AQI efficiency =
Target AQI Undesirable output (i, t)
Actual AQI Undesirable output (i, t)

GDP efficiency =
Actual GDP desirable output (i, t)
Target GDP desirable output (i, t)

If the target energy input equals the actual input and the CO2 and AQI undesirable outputs equal
the actual undesirable outputs, then the environmental energy, CO2, and AQI efficiencies equal 1,
indicating overall efficiency. If the target energy input is less than the actual input and the CO2 and
AQI undesirable outputs are less than the actual undesirable outputs, then the environmental energy,
CO2, and AQI efficiencies are less than 1, indicating overall inefficiency.

If the target GDP desirable output is equal to the actual GDP desirable output, then the GDP
efficiency equals 1, indicating overall efficiency. If the actual GDP desirable output is less than the
target GDP desirable output, then the GDP efficiency is less than 1, indicating overall inefficiency.

2.5. Data and Variables

This study used 2013 to 2016 panel data for 31 of the most developed cities in eastern and western
China. Data were collected from the Statistical Yearbook of China [65] and the Demographics and
Employment Statistical Yearbooks of China [66] from all cities. Air pollutant data were collected from
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China’s Environmental and Protection Bureau reports [67]. The variables used in the analysis are listed
in the following.

2.5.1. Input Variables

Labor input: Number of employees in each city at the end of each year: unit = 1000 persons.
Capital input: Capital stock in each city calculated from the fixed assets in each city:

unit = 100 million CNY (Chinese Yuan).
Energy consumed: Calculated according to each city’s total energy consumption:

unit = 100 million tonnes. The energy consumption data were taken from China’s Environmental and
Protection Bureau reports from 2014 to 2017 [67]. The total energy consumption unit was 10,000 tonnes
of standard coal. From the statistical yearbook [65] data from each city, the energy consumption
per unit of GDP by region and the unit GDP in each city were used to calculate the total energy
consumption in each city, and included coal, oil, natural gas, and the total consumption of primary
electricity and other energy.

2.5.2. Output Variable

Desired output: The GDP in each city was the output: 100 million CNY. The GDP data in each
provincial capital were derived from the GDP stated in each province’s statistical yearbook for the given
period [65], which consisted of the gross output for the primary, secondary, and tertiary industries
calculated at current prices: unit: 100 million CNY.

2.5.3. Undesirable Output Variables

(A) Air quality index (AQI) data were based on the impact of the ambient air quality standards and
various pollutants on human health, the ecology, and the environment, with the concentration of several
routinely monitored air pollutants being simplified into a single conceptual index. In accordance
with China’s environmental protection standards [67], the AQI represents the short-term air quality
conditions and trends in each city. The main pollutants involved in the air quality assessment were
fine particles, inhalable particles, sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide.

Based on China’s environmental protection standards [67], the AQI calculation and evaluation
processes were as follows:

Step 1: To compare the concentration limits of the various pollutants; the fine particulate matter (PM2.5),
inhalable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3),
carbon monoxide (CO2) and other measured concentration values (including PM2.5, PM10 by 24
h average concentration) were calculated separately for the Air Quality Index (Individual Air
Quality Index, referred to as IAQI).

Step 2: To select the maximum value from the IAQI for each pollutant and determine its AQI; if the
AQI was greater than 50, the largest IAQI pollutant was identified as the primary pollutant.

Step 3: To establish the AQI grading standard air quality level, type, color, health impact and
recommended actions were determined.

In short, the AQI was considered the maximum value for the Individual air quality index (IAQI)
for each pollutant. When the AQI was greater than 50, the corresponding pollutant was the primary
pollutant, with pollutants with an IAQI greater than 100 being considered excessive.

(B) The CO2 emissions data for each city were estimated from the energy consumption.
CO2 emissions have been recognized as the primary cause of changing global temperatures and
rising sea levels. In the past 100 years, global temperatures have risen by 0.6 ◦C, and it is estimated
that by the middle of the 21st century, global temperatures will have increased by 1.5–4.5 ◦C and sea
levels will have risen by 14 cm. As sea levels rise, the Amazon rainforest is expected to disappear,
and the Antarctic and Arctic Ocean ice caps are expected to melt. Air generally contains about 0.03%
of CO2; however, due to human activities (such as the burning of fossil fuels), the CO2 content has
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risen dramatically since the beginning of the industrial revolution, which has resulted in global
warming, melting glaciers, and rising sea levels. Due to the above characteristics, CO2, unlike other
air pollutants, is used as the sole carbon emissions measure and the main measurement for global
solutions to climate change.

This study divided the 31 sample cities into two regions: western region cities (18 in total);
Chengdu, Changsha, Chongqing, Guiyang, Hefei, Huhehot, Kunming, Lanzhou, Lhasa, Nanchang,
Nanning, Taiyuan, Wuhan, Urumqi, Xian, Xining, Yinchuan, and Zhengzhou; and eastern region cities
(13 in total); Beijing, Changchun, Fuzhou, Guangzhou, Harbin, Haikou, Hangzhou, Jinan, Nanjing,
Shanghai, Shenyang, Shijiazhuang, and Tianjin (see Figure 1).
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3. Results and Discussion

3.1. Input-Output Index Statistical Analyses

Figure 2 compares the input and output indicators for the western and eastern Chinese cities.
The employment, fixed asset, energy consumption, GDP, AQI and CO2 indicators clearly show that
the average value for employment, fixed asset investment, and energy consumption in the eastern
cities was greater than the average value in the western cities, and that the GDP, CO2 and AQI values
were lower.

The employment growth rate in the eastern cities in 2013 was slightly higher than in the western
cities, but from 2014, while the rate in the eastern cities began to slowly decline, the rate in the western
cities began to grow, reflecting the continued development.

Both the eastern and western cities had a downward trend in energy consumption, with the
eastern cities’ energy consumption declining faster than in the western cities. While fixed assets
investment in both the western and eastern cities had declining growth rates, the decline was greater
in the eastern than the western cities. The average GDP growth rate however, was similar in both the
eastern and western regions; overall, however, the average GDP growth rate in the eastern cities was
lower, reflecting their more developed status.



Energies 2018, 11, 2119 8 of 20

The average CO2 emissions in the eastern cities dropped by about 0.3% from 2013 to 2014, and
from 2014 to 2015, the average CO2 emissions in the eastern cities declined more rapidly than those in
the western cities. The average CO2 emissions in the western cities were rising slowly from 2013 to
2014, but began to decline from 2014 to 2016, and from 2015 to 2016, the average CO2 emissions in the
western cities had a greater decline than in the eastern cities.

While in the eastern cities and western cities the average AQI was similar, it was initially slightly
higher in the eastern cities; however, in 2016, the average AQI was higher in the western cities.
The average AQI began to decline in the eastern cities from 2013 to 2014 and from 2014 to 2015, the
average AQI decline in the western cities was slightly higher than in the eastern cities, but from 2015
to 2016, the decline in the eastern cities was greater than in the western cities, indicating that there was
a greater average AQI improvement in the eastern cities than in the western cities.
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Figure 2. Input-output index statistical analysis.

3.2. Overall Efficiency Score Ranking from 2013–2016

Table 1 shows the efficiency scores and rankings for each city from 2013 to 2016. The total efficiency
score for five cities was 1 for four consecutive years, indicating that these cities were efficient. The cities
with poor efficiency scores and declining rankings were; Kunming, which ranked 6th in efficiency in
2013, but dropped to 19th between 2014 to 2016; Nanchang ranked 9th in 2013 with a score of 0.92 but
dropped to 16th with a score of 0.87 in 2016; Zhengzhou, which was ranked 8th from 2013 to 2015, was
ranked 18th in 2016 as the efficiency declined sharply to 0.85. The other cities with declining scores and
rankings were Harbin, Hefei, Nanjing, Wuhan, Urumqi, Xian, and Xining. The cities that improved
their efficiency scores and rankings were; Jinan, which had the highest efficiency score increase from
0.78 in 2013 to 1 in 2016; Shenyang, where the efficiency score rose from 0.82 in 2013 to 1 in 2016;
Hangzhou, which had an efficiency score of 0.89 in 2013 and was ranked 17th, raised its score to 0.93
and a rank of 11th; and Guiyang, which had an efficiency score of 0.67 in 2013 and was ranked 30th,
improved to 0.79 in 2016 and was ranked 24th.



Energies 2018, 11, 2119 9 of 20

Table 1. Overall efficiency score rankings between 2013 and 2016.

No. DMU
2013 2014 2015 2016

Score Rank Score Rank Score Rank Score Rank

1 Chengdu 0.7777 24 0.788 24 0.7996 21 0.762 26
2 Changsha 0.9183 10 0.9233 9 0.934 9 0.945 10
3 Chongqing 0.7496 26 0.8102 21 0.7915 23 0.803 22
4 Guiyang 0.676 30 0.7556 27 0.7909 24 0.789 24
5 Hefei 0.8554 19 0.8607 18 0.8601 18 0.821 21
6 Huhehot 0.9113 12 0.9039 12 0.9123 11 0.904 12
7 Kunming 0.9999 6 0.8432 19 0.8583 19 0.842 20
8 Lanzhou 0.7302 28 0.6511 29 0.6705 30 0.667 30
9 Lhasa 1 1 1 1 1 1 1 1

10 Nanchang 0.9191 9 0.917 10 0.9001 13 0.874 16
11 Nanning 1 1 1 1 1 1 1 1
12 Taiyuan 0.6855 29 0.7027 28 0.7009 28 0.729 28
13 Wuhan 0.8564 18 0.8708 16 0.874 17 0.89 14
14 Urumqi 0.8185 21 0.7761 25 0.7855 25 0.784 25
15 Xian 0.7769 25 0.7886 23 0.7699 27 0.734 27
16 Xining 0.737 27 0.6407 30 0.686 29 0.709 29
17 Yinchuan 0.7817 23 0.7641 26 0.7754 26 0.791 23
18 Zhengzhou 0.9435 8 0.9407 8 0.9678 7 0.852 18
19 Beijing 1 1 1 1 1 1 1 1
20 Changchun 0.9016 14 0.8941 14 0.9117 12 0.882 15
21 Fuzhou 0.9882 7 0.864 17 0.8799 16 0.861 17
22 Guangzhou 1 1 1 1 1 1 1 1
23 Harbin 0.8983 15 0.8838 15 0.8887 15 0.848 19
24 Haikou 0.8933 16 1 1 0.9999 6 1 8
25 Hangzhou 0.8929 17 0.9031 13 0.9163 10 0.934 11
26 Jinan 0.7864 22 0.7959 22 0.7967 22 1 1
27 Nanjing 0.9133 11 0.9666 7 0.9462 8 0.963 9
28 Shanghai 1 1 1 1 1 1 1 1
29 Shenyang 0.8245 20 0.8353 20 0.8042 20 1 1
30 Shijiazhuang 0.5708 31 0.5588 31 0.5825 31 0.574 31
31 Tianjin 0.9091 13 0.9096 11 0.893 14 0.902 13

A Wilcoxon signed rank was applied to further test the differences between the eastern and
western region efficiencies. The p-values were compared with the confidence levels α, which were set
at 0.01 and 0.05 to assess the distinctions between the average efficiency in the two regional groups.
Table 2 shows the detailed test results.

Table 2. Wilcoxon signed rank Test of average Technical efficiency.

Years Average of Eastern Average of Western Wilcoxon Scorer Test

2013 0.8907 0.8409 0.1011
2014 0.8932 0.8298 0.0454 *
2015 0.8938 0.8376 0.0422 *
2016 0.9203 0.8275 0.007 **

Notes: * For the two-tailed test, the confidence interval 0.05was significant, ** For the two-tailed test, the confidence
interval 0.01 was significant.

At a significance level of 5%, the eastern region efficiencies were significantly different from the
western region efficiencies from 2014–2016; however, there were less differences in 2013.

3.3. Efficiency Scores and Rankings for Energy Consumption, GDP, CO2, and AQI from 2013 to 2016.

Table 3 lists the energy consumption and GDP efficiency scores for each city, from which it
can be seen that there were large CO2 and AQI efficiency score differences between 2013 and 2016.
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While some cities had obviously lower CO2 efficiency scores and higher AQI efficiency scores, the AQI
efficiency scores in most cities rose over time. For example, the cities with an AQI efficiency of 1 were
Beijing, Guangzhou, Haikou, Nanning, and Shanghai, with Lhasa being close to 1. The cities with
AQI efficiency scores below 0.4 were Changsha, Hangzhou, Tianjin, Wuhan, Urumqi, and Zhengzhou,
indicating that air pollution improvements were necessary.

As can be seen from Table 3, the CO2 efficiency scores in the different cities differed considerably.
Beijing, Guangzhou, Haikou, Nanning, and Shanghai had CO2 emissions efficiencies of 1 and Lhasa
at 0.993 was very close to 1 in 2013 and 1 in 2016. The CO2 emissions efficiency scores in the other
cities varied greatly, clearly showing that different efficiency improvements were needed. Changsha,
Lanzhou, Taiyuan, Xining, and Yinchuan had CO2 emissions efficiency scores below 0.2, and in Taiyuan
in particular, the CO2 efficiency score was under 0.2 in the whole examined period. The CO2 efficiency
scores in Changsha and Yinchuan declined over time, indicating that greater improvement efforts
were needed. Fuzhou, Guiyang, Hangzhou, Huhehot, Kunming, Nanjing, Shenyang, Tianjin, Wuhan,
and Xining had CO2 efficiency scores between 0.2 and 0.4, and Chengdu, Changchun, Chongqing,
Harbin, Nanchang, and Xian had efficiency scores of around 0.8. The AQI efficiency score and the
CO2 efficiency scores also varied widely. Except for Beijing, Guangzhou, Nanning, and Shenyang,
which had AQI efficiency scores of 1 (Figure 2), in the other cities the differences between these two
efficiency indicators were relatively large. Haikou’s AQI efficiency score was 0.89 in 2013 and 1 from
2014 to 2016. Changchun, Changsha, Hangzhou, Hefei, Jinan, Nanjing, Tianjin, Wuhan, Urumqi, and
Zhengzhou Cities had AQI efficiency scores below 0.2 from 2013 to 2016, and Changsha, Wuhan,
Zhengzhou, Tianjin, and Urumqi had efficiency scores at or below 0.2. Therefore, large AQI efficiency
improvements are needed in these cities as the effect of the governance measures was not obvious.

The efficiencies in Changchun, Hefei, Huhehot, Jinan, Shijiazhuang, and Xian changed
significantly over time. By 2016, the AQI efficiency scores had risen above 0.6 to around 0.8, indicating
that in 2016, AQI governance in these cities was achieving positive results. Chengdu, Chongqing,
Guiyang, Lanzhou, and Xining had efficiency scores between 0.6–0.8.

There were wide variations in the CO2 and AQI efficiency scores between and within the different
cities. For example, there was a large difference between the CO2 and AQI efficiency scores in
Zhengzhou because of poor AQI governance and control and while there were small CO2 emissions
efficiency improvements up to 2016, after this time, the CO2 efficiency began to decline. In Yinchuan,
the AQI scores were mostly between 0.6 and 0.8, but there was also poor control of the CO2 emissions.
Lanzhou’s AQI efficiency score was also noticeably higher than its CO2 efficiency score, indicating
that governance should be focused on CO2 emissions. A similar situation was observed in Kunming,
Guiyang, Fuzhou, and Taiyuan. However, even though Taiyuan’s AQI efficiency score was higher
than its CO2 efficiency score, it was still low and therefore focused improvements are needed in both
areas. This was also true for Changsha, Hangzhou, Huhehot, Jinan, Nanjing, Shenyang, Shijiazhuang,
Wuhan, Tianjin, and Urumqi.

As can be seen from Table 3, there were large differences in the energy consumption and GDP
efficiency scores between the cities. Overall, effective energy consumption and economic growth were
observed in Beijing, Guangzhou, Lhasa, Nanning, and Shanghai, all of which had efficiency scores
of 1. Overall, the GDP in most other cities had an upward trend; however, the GDP efficiency scores
dropped in 2016 in Chengdu, Changchun, Fuzhou, Guiyang, Harbin, Hefei, Nanchang, Shijiazhuang,
Zhengzhou, and Xian.
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Table 3. Efficiency scores and rankings for energy consumption, GDP, CO2, and AQI in the cities from 2013 to 2016.

DMU
2013 2014 2015 2016

com GDP CO2 AQI com GDP CO2 AQI com GDP CO2 AQI com GDP CO2 AQI

Chengdu 0.778 0.818 0.715 0.786 0.714 0.825 0.788 0.692 0.8 0.8331 0.8 0.603 0.762 0.808 0.762 0.762
Changsha 0.657 0.924 0.198 0.116 0.664 0.929 0.203 0.121 0.665 0.938 0.195 0.192 0.656 0.948 0.177 0.022
Chongqing 0.75 0.8 0.757 0.75 0.742 0.84 0.618 0.81 0.791 0.8275 0.791 0.791 0.803 0.835 0.803 0.803
Guiyang 0.446 0.755 0.274 0.676 0.547 0.804 0.202 0.756 0.599 0.8271 0.513 0.791 0.63 0.826 0.324 0.789

Hefei 0.855 0.874 0.761 0.124 0.858 0.878 0.861 0.148 0.86 0.8773 0.86 0.235 0.821 0.848 0.808 0.821
Huhehot 0.384 0.919 0.32 0.302 0.748 0.912 0.101 0.158 0.725 0.9194 0.281 0.224 0.692 0.913 0.242 0.052
Kunming 1 1 0.929 1 0.489 0.864 0.148 0.843 0.664 0.8759 0.271 0.858 0.727 0.863 0.451 0.842
Lanzhou 0.32 0.788 0.125 0.73 0.358 0.741 0.183 0.768 0.302 0.7522 0.143 0.612 0.319 0.75 0.147 0.284

Lhasa 1 1 0.993 0.997 1 1 1 0.994 1 1 1 0.992 1 1 1 0.991
Nanchang 0.919 0.925 0.778 0.386 0.897 0.923 0.917 0.735 0.9 0.9092 0.9 0.553 0.874 0.888 0.842 0.874
Nanning 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Taiyuan 0.164 0.761 0.101 0.739 0.185 0.771 0.1 0.344 0.176 0.7698 0.1 0.532 0.23 0.787 0.103 0.035
Wuhan 0.736 0.874 0.359 0.104 0.725 0.886 0.435 0.128 0.76 0.8881 0.464 0.167 0.747 0.901 0.359 0.011
Urumqi 0.653 0.846 0.383 0.212 0.652 0.817 0.332 0.135 0.699 0.8234 0.486 0.2 0.784 0.822 0.784 0.019

Xian 0.777 0.818 0.792 0.145 0.765 0.826 0.789 0.182 0.77 0.813 0.77 0.342 0.734 0.79 0.734 0.067
Xining 0.217 0.792 0.1 0.737 0.25 0.736 0.133 0.734 0.261 0.761 0.124 0.686 0.62 0.774 0.578 0.709

Yinchuan 0.37 0.821 0.116 0.716 0.34 0.809 0.134 0.722 0.275 0.8166 0.105 0.442 0.277 0.827 0.1 0.04
Zhengzhou 0.942 0.947 0.943 0.194 0.939 0.944 0.941 0.1 0.968 0.9688 0.968 0.1 0.852 0.871 0.852 0.079

Beijing 1 1 1 1 1 1 0.999 1 1 1 1 1 1 1 1 1
Changchun 0.872 0.91 0.902 0.427 0.894 0.904 0.716 0.181 0.912 0.9188 0.912 0.171 0.882 0.894 0.86 0.882

Fuzhou 0.988 0.988 0.717 0.988 0.696 0.88 0.391 0.864 0.716 0.8927 0.321 0.88 0.746 0.878 0.45 0.861
Guangzhou 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Harbin 0.892 0.908 0.898 0.215 0.884 0.896 0.718 0.367 0.889 0.8999 0.889 0.205 0.848 0.868 0.844 0.848
Haikou 0.811 0.904 0.541 0.893 1 1 1 1 1 0.9999 1 1 1 1 1 1

Hangzhou 0.739 0.903 0.372 0.127 0.759 0.912 0.332 0.227 0.798 0.9227 0.447 0.201 0.804 0.938 0.397 0.03
Jinan 0.518 0.824 0.192 0.129 0.525 0.83 0.195 0.109 0.555 0.8311 0.218 0.136 1 1 1 1

Nanjing 0.643 0.92 0.171 0.1 0.601 0.968 0.157 0.967 0.885 0.9489 0.869 0.178 0.862 0.964 0.511 0.02
Shanghai 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shenyang 0.64 0.851 0.316 0.216 0.644 0.859 0.249 0.835 0.64 0.8363 0.321 0.198 1 1 1 1
Shijiazhuang 0.39 0.7 0.339 0.168 0.41 0.694 0.299 0.197 0.368 0.7055 0.582 0.465 0.388 0.701 0.276 0.029

Tianjin 0.708 0.917 0.25 0.227 0.719 0.917 0.288 0.111 0.709 0.9033 0.286 0.149 0.713 0.91 0.273 0.01
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Compared to the GDP efficiency scores, the energy consumption scores were lower and the
gap between the cities greater. Changchun, Harbin, Hefei, Nanchang, and Zhengzhou had energy
consumption efficiencies between 0.8 and 1, but Lanzhou, Taiyuan, Shijiazhuang, Xining, and Yinchuan
had energy consumption efficiencies below 0.4. Guiyang, Lanzhou, Shijiazhuang, Taiyuan, Xining,
and Yinchuan all needed to improve their energy consumption, GDP, and CO2 emissions efficiencies.

3.4. Comparison of Meta-Frontier and Group Frontiers

Table 4 illustrates the gaps in the meta-frontier and group frontier rankings from 2013 to 2016.
No gap between the meta-frontier rankings and the group frontier rankings were found for Beijing,
Guangzhou, Lhasa, Nanning, Shanghai, and some other cities. Chengdu, Chongqing, Guiyang,
Lanzhou, Taiyuan, Urumqi, Xian, and Xining, all of which are in the western region, were nine of the
ten cities with the largest group frontier and meta-frontier rankings.

Table 4 shows that in their own regions, cities were efficient. For example, Chongqing, Chengdu,
Urumqi, and Wuhan were all ranked 1st in group efficiency; however, compared with the other cities
in the country, there was a large gap. Other western cities also had large differences between the group
frontier rankings and the meta-frontier rankings. For example, Huhehot and Zhengzhou rank 1st
regionally, but 20th and 12th in comparison with the eastern cities, clearly indicating the gap that
exists between western and eastern Chinese cities and the greater need for efficiency improvements in
the west.

The gap between each city’s efficiency group frontier ranking and meta frontier ranking changed
significantly each year. The difference between Chengdu’s efficiency ranking and the national ranking
in 2013 was 29, in 2014 was 28, in 2015 was 30 and in 2016 was 31, which indicated that the gap between
Chengdu’s efficiency ranking and the meta frontier ranking was widening in 2015 and 2016. Therefore,
even though the improvements in the city’s efficiency were relatively good in comparison with other
cities in the western region, there were still significant improvements needed to be in line with the
eastern cities.

In most cities the improvement gap narrowed over time. For example, Fuzhou, moved from 8th
in 2013 to 1st, Harbin increased 7 ranks, Haikou rose 12 ranks from 22nd to 10th, Jinan jumped from
16th to 1st, Shenyang went from 11th to 1st, and Wuhan rose from 25th to 19th.

However, Kunming, Zhengzhou, Xian, Nanchang, Hefei and some other cities. most of which
were in the western region, saw a rise in their efficiency gap. For example, Kunming’s gap widened
the most from 7th in 2013 to 24th in 2016 and Zhengzhou widened from 12th in 2013 to 22nd in 2016.
The regional rankings also indicated that some cities such as Fuzhou had a greater rank gap than their
efficiency ranking.

Table 4. Comparison of the meta frontier and group frontier city rankings (2013–2016).

DMU

2013
Rank by

Meta-
Frontier

2013
Rank by
Group-

Frontier

2014
Rank by

Meta-
Frontier

2014
Rank by
Group-

Frontier

2015
Rank by

Meta-
Frontier

2015
Rank by
Group-
Frontier

2016
Rank by

Meta-
Frontier

2016
Rank by
Group-
Frontier

Chengdu 29 1 28 1 30 1 31 1
Changsha 18 1 12 1 15 1 15 1
Chongqing 31 1 26 1 31 1 28 1
Guiyang 28 17 25 14 28 11 26 11

Hefei 19 12 17 12 21 12 23 13
Huhehot 20 1 19 1 18 1 18 1
Kunming 7 1 23 1 9 1 24 1
Lanzhou 27 13 30 16 29 17 25 17

Lhasa 1 1 1 1 1 1 1 1
Nanchang 14 11 16 1 20 1 21 1
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Table 4. Cont.

DMU

2013
Rank by

Meta-
Frontier

2013
Rank by
Group-

Frontier

2014
Rank by

Meta-
Frontier

2014
Rank by
Group-

Frontier

2015
Rank by

Meta-
Frontier

2015
Rank by
Group-
Frontier

2016
Rank by

Meta-
Frontier

2016
Rank by
Group-
Frontier

Nanning 1 1 1 1 1 1 1 1
Taiyuan 30 14 31 1 27 15 29 15
Wuhan 25 1 22 1 23 1 19 1
Urumqi 26 1 29 1 24 13 27 12

Xian 23 15 21 15 26 14 30 14
Xining 24 18 27 18 25 18 20 18

Yinchuan 17 16 18 17 17 16 16 16
Zhengzhou 12 1 11 1 10 1 22 1

Beijing 1 1 1 1 1 1 1 1
Changchun 13 7 14 5 19 1 11 10
Fuzhou 8 6 1 8 1 10 1 12

Guangzhou 1 1 1 1 1 1 1 1
Harbin 21 1 20 1 22 1 14 11
Haikou 22 1 1 1 8 1 10 1

Hangzhou 9 9 10 6 11 8 12 8
Jinan 16 12 13 9 16 11 1 1

Nanjing 10 8 9 1 12 7 13 7
Shanghai 1 1 1 1 1 1 1 1
Shenyang 11 11 24 1 14 12 1 1
Shijiazhuang 15 13 15 10 13 13 17 13

Tianjin 1 10 8 7 1 9 1 9

In Figure 3, it can be seen that the efficiency gap in some cities in the eastern region and especially
in the economically developed capital cities in the coastal areas was 0, while there were still relatively
large gaps in the few underdeveloped cities in the east. The efficiency of the provincial capital cities in
the western region was generally lower than in the eastern cities, and there was a relatively continuous
gap in the overall efficiency.
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From Figure 4, an obvious efficiency gap between the eastern and western regions can be seen.
The average gap for the eastern cities was less than in the western cities, and over time, this gap
continued to widen. In 2016, while the efficiency in the eastern cities was increasing, the efficiency in
the western cities was declining, further widening the gap between the two regions.Energies 2018, 11, x FOR PEER REVIEW  14 of 20 

 

 

Figure 4. Regional efficiency gap comparison from 2013–2016. 

A Wilcoxon signed rank Test was applied to further test the differences between the 
technological gap in the eastern and western regions. Table 5 gives the detailed test results. At a 5% 
significance level, from 2013–2016, the technological gap in the eastern region was significantly better 
than the technological gap in the western region. 

Table 5. Wilcoxon signed rank Test of technology gap. 

Years Eastern  Western Wilcoxon Scorer Test 
2013 0.9561 0.8827 0.01 ** 
2014 0.9547 0.8669 0.005 ** 
2015 0.9655 0.8887 0.006 ** 
2016 0.9855 0.8641 0.0005 ** 

Notes: * For the two-tailed test, the confidence interval 0.05 was significant, ** For the two-tailed test, 
the confidence interval 0.01 was significant. 

3.5. Comparative Gaps between the CO2 and AQI Efficiencies 

Table 6 shows the differences in the gap rankings between the CO2 and AQI efficiencies 
compared to the total efficiency in China. In most cities, there was a distinct gap found between the 
individual CO2-only efficiency and the AQI-only efficiency; however, there was only a narrow 
efficiency gap between them. While in some cities, the efficiency gaps were expanding over time, in 
others, they were narrowing. 

In 2013, there was little difference between the CO2-only and AQI-only efficiency gaps in Haikou, 
which ranked 22nd and 23rd. In 2014, the CO2-only efficiency ranking rose to 7th and in 2016 rose to 
10th; however, the AQI-only efficiency gap ranking dropped to 29th in 2015 and then to 28th in 2016, 
which indicated that while Haikou was better than the other cities in terms of air pollution, its CO2 

emissions were more serious. Therefore, as one of the few cities with good air quality in China, 
Haikou should pay more attention to their CO2 emissions. 

Table 6. CO2 and AQI gap analysis. 

DMU 

2013 Gap 
Rank (Not 
Including 

CO2) 

2013 Gap 
Rank 
(Not 

Including 
AQI) 

2014 Gap 
Rank 
(Not 

Including 
CO2) 

2014 Gap 
Rank 
(Not 

Including 
AQI) 

2015 Gap 
Rank 
(Not 

Including 
CO2) 

2015 Gap 
Rank 
(Not 

Including 
AQI) 

2016 Gap 
Rank 
(Not 

Including 
CO2) 

2016 Gap 
Rank 
(Not 

Including 
AQI) 

Chengdu 29 28 31 25 30 30 31 29 
Changsha 18 17 12 11 14 12 15 10 

Chongqing 31 31 26 29 31 31 28 31 
Guiyang 28 27 25 26 27 25 26 17 

Hefei 19 18 18 17 21 17 23 19 

Figure 4. Regional efficiency gap comparison from 2013–2016.

A Wilcoxon signed rank Test was applied to further test the differences between the technological
gap in the eastern and western regions. Table 5 gives the detailed test results. At a 5% significance
level, from 2013–2016, the technological gap in the eastern region was significantly better than the
technological gap in the western region.

Table 5. Wilcoxon signed rank Test of technology gap.

Years Eastern Western Wilcoxon Scorer Test

2013 0.9561 0.8827 0.01 **
2014 0.9547 0.8669 0.005 **
2015 0.9655 0.8887 0.006 **
2016 0.9855 0.8641 0.0005 **

Notes: * For the two-tailed test, the confidence interval 0.05 was significant, ** For the two-tailed test, the confidence
interval 0.01 was significant.

3.5. Comparative Gaps between the CO2 and AQI Efficiencies

Table 6 shows the differences in the gap rankings between the CO2 and AQI efficiencies compared
to the total efficiency in China. In most cities, there was a distinct gap found between the individual
CO2-only efficiency and the AQI-only efficiency; however, there was only a narrow efficiency gap
between them. While in some cities, the efficiency gaps were expanding over time, in others, they
were narrowing.

In 2013, there was little difference between the CO2-only and AQI-only efficiency gaps in Haikou,
which ranked 22nd and 23rd. In 2014, the CO2-only efficiency ranking rose to 7th and in 2016 rose
to 10th; however, the AQI-only efficiency gap ranking dropped to 29th in 2015 and then to 28th in
2016, which indicated that while Haikou was better than the other cities in terms of air pollution, its
CO2 emissions were more serious. Therefore, as one of the few cities with good air quality in China,
Haikou should pay more attention to their CO2 emissions.
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Table 6. CO2 and AQI gap analysis.

DMU

2013 Gap
Rank
(Not

Including
CO2)

2013 Gap
Rank
(Not

Including
AQI)

2014 Gap
Rank
(Not

Including
CO2)

2014 Gap
Rank
(Not

Including
AQI)

2015 Gap
Rank
(Not

Including
CO2)

2015 Gap
Rank
(Not

Including
AQI)

2016 Gap
Rank
(Not

Including
CO2)

2016 Gap
Rank
(Not

Including
AQI)

Chengdu 29 28 31 25 30 30 31 29
Changsha 18 17 12 11 14 12 15 10
Chongqing 31 31 26 29 31 31 28 31
Guiyang 28 27 25 26 27 25 26 17

Hefei 19 18 18 17 21 17 23 19
Huhehot 20 19 19 18 18 18 18 14
Kunming 7 30 23 31 9 28 24 25
Lanzhou 27 26 29 28 29 26 25 23

Lhasa 1 1 1 1 1 1 1 1
Nanchang 14 12 17 10 20 14 21 18
Nanning 1 1 1 1 1 1 1 30
Taiyuan 30 29 30 30 28 27 29 26
Wuhan 25 22 22 21 23 22 19 15
Urumqi 26 25 28 27 24 23 27 24

Xian 23 21 21 19 26 24 30 27
Xining 24 24 27 24 25 21 20 21

Yinchuan 17 16 16 16 16 16 16 11
Zhengzhou 12 11 11 9 10 7 22 20

Beijing 1 1 1 1 1 1 1 1
Changchun 13 13 14 14 19 19 11 13
Fuzhou 8 9 1 8 1 13 1 16

Guangzhou 1 1 1 1 1 1 1 1
Harbin 21 20 20 20 22 20 14 22
Haikou 22 23 7 22 8 29 10 28

Hangzhou 9 7 10 7 11 8 12 8
Jinan 16 15 13 12 15 15 1 1

Nanjing 10 8 9 13 12 9 13 9
Shanghai 1 1 1 1 1 1 1 1
Shenyang 11 10 24 23 13 11 1 1
Shijiazhuang 15 14 15 15 17 10 17 12

Tianjin 1 1 8 6 1 1 1 1

While the large differences in the efficiency gaps in 2013 between the cities were affected by the
CO2 emissions and the AQI, the differences in influence expanded over time. In Nanchang, in 2014,
the efficiency gap that excluded CO2 ranked 17th and the efficiency gap that excluded AQI ranked
10th, in 2015, the efficiency gap that excluded CO2 ranked 20th and the efficiency gap that excluded
AQI ranked 14th, and in 2016, the performance worsened, with the efficiency gap that excluded CO2

ranking 21st and the efficiency gap that excluded AQI ranking 18th. This indicated that compared
with the other cities, Nanchang’s CO2 emissions and air pollution were continuing to deteriorate.

Most efficiency gap rankings rose over time such as in Shenyang, Wuhan, Chongqing, and
Changsha; however, in other cities such as Zhengzhou and Xian, the efficiency gap rankings dropped,
indicating that the air pollution and CO2 emissions were more serious than in the other cities, indicating
that serious attention needs to be paid to strengthening governance. In Zhengzhou in 2013 the efficiency
gap for both CO2 and AQI ranked 12th and 13th, but in 2016, dropped to 20th. Overall, the total
efficiency gap rankings in Nanchang, Nanjing, Haikou, Xian, Hefei, and Chengdu all dropped and
there were large differences in the efficiency gaps between air pollution and CO2.
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4. Conclusions and Policy Recommendations

4.1. Conclusions

This study divided 31 cities in China into eastern and western regions to analyze and assess
the 2013–2016 energy consumption, GDP, CO2 and AQI efficiency scores, and determine the needed
efficiency improvements. The empirical results were as follows.

The cities with low efficiency scores for both AQI and CO2 were Changsha, Hangzhou, Huhehot,
Jinan, Nanjing, Shenyang, Shijiazhuang, Tianjin, Wuhan, Urumqi, and Xian. The cities with AQI
efficiency scores of 1 were Beijing, Guangzhou, Haikou, Nanning, and Shanghai. The cities with CO2

efficiency scores of 1 were Beijing, Guangzhou, Haikou, Nanning, and Shanghai.
The calculation results for the meta-frontier method indicated that there was remained a large

gap between the western and eastern cities. There were only small efficiency differences between
the western cities, with many having efficiency scores of 1, which indicated that policies were being
effective. However, nine of the ten cities with the largest gaps were located in the west and all had
relatively high efficiency values. Compared with the other cities, the greatest gaps were in urban
efficiency, where additional improvements are needed.

The efficiency scores between the different cities were not only different but also exhibited varying
trends over time. The inter-regional comparison found that the differences between the western
cities and the eastern cities were relatively small; however, when comparing the cities with the whole
country, the differences between the eastern cities and the western cities were found to be relatively
large. In some cities with large efficiency gaps, the gap had expanded over time, which tended to
indicate that the efficiency gap was continuing to widen between the western and eastern cities.

4.2. Policy Recommendations

Based on the above results, the central government needs to delegate additional authority to local
governments so that individual cities are able to formulate strategic approaches and targets in line
with their specific efficiency indicators. Due to the large economic growth and social development
differences between the eastern and western cities, the above findings also confirmed that there
was a large and widening energy consumption and AQI and CO2 efficiency score gap between the
eastern and western cities, with the lower CO2 and AQI efficiency scores mainly concentrated in the
western region. Therefore, China needs to pay more attention to the differing economic levels, social
development stages, industrial structures, energy structures, and technological development in the
western cities and adopt systematic solutions based on local meteorological and climatic conditions,
economic and social development, and population quality.

Cities that need to significantly alleviate their CO2 emissions could refer to international green
low-carbon development trends. As the Chinese government has highlighted low-carbon development
as a major strategy for economic and social development and a sustainable ecology, effective measures
must be implemented to control greenhouse gas emissions.

China also needs to speed up its domestic science and technological innovation by offering
research and development incentives, giving full play to the market allocation of resources, having
both central and local governments take leading roles, strengthening the synergetic control of
CO2 and air pollutant emissions, encouraging low carbon leadership, promoting energy structural
reform and industrial upgrading, and initiating supply-side structural reforms and consumption-side
transformations. China can also assist the coordinated development of the regions by participating
in global climate governance, making additional contributions to sustainable economic and social
development, and safeguarding global ecological security.

The 13th Five-Year Plan set a higher goal for CO2 emissions reductions in China. By 2020, the
target for CO2 emissions per unit of GDP is planned to be 18% lower than in 2015, and total CO2

emissions are expected to be effectively controlled. Efforts to control hydro-fluorocarbons, methane,
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nitrous oxide, per-fluorocarbon, sulfur hexafluoride, and other non-CO2 greenhouse gas are to be
further enhanced and carbon sink capacities expanded.

China is striving to hit a first peak in CO2 emissions efficiency for some heavy and chemical
industries by around 2020. The transformation to low-carbon energy systems, industrial systems, and
consumer sectors is expected to yield positive results. A national carbon trading market has already
started operations, and laws, regulations and a standards system for climate change issues have
been established. Systems for statistical accounting, evaluation, and accountability are now complete,
low-carbon pilot project demonstrations are increasing, the synergy between carbon and carbon
reductions has been further strengthened, and the public’s low-carbon awareness has significantly
improved. To achieve these goals, China needs to make positive energy and industrial restructuring,
urbanization, and technological innovation moves.

For pollution prevention and control, some cities with low AQI efficiencies managed to achieve
significant efficiency improvements in 2016, which is the result of the government’s determination in
recent years to fight and control air pollution and to continuously improve the quality of the ecological
environment. While the various governance measures taken are related, the air pollution sources are
different from the CO2 emissions sources. Therefore, the measures that need to be taken and the air
pollution treatments are also different from those applied to CO2 emissions.

We recommend that China pay more attention to governance in the following areas:
First, as the sources of atmospheric pollution are more complex and have regional differences,

diagnoses of the atmospheric pollution causes would assist in its governance. Therefore, China should
increase research investment in to the causes of the air pollution in different cities and regions and
implement solutions through appropriate and focused governance measures.

Second, different geographical locations, meteorological conditions, industrial systems, economic
development levels, population levels, and education levels in Chinese cities all influence atmospheric
pollution governance. Therefore, power should be decentralized so that individual cities can determine
their own city-specific or regional-specific governance measures to target air pollution prevention
and control.

Third, as energy structure not only affects carbon emissions but also air pollution prevention, to
help control CO2 emissions and pollution, China must proactively adopt measures that assist in new
energy development and application.

Fourth, in the short term, a better scientific use of traditional fossil energy is also an effective
measure. As new energy cannot immediately replace traditional fossil energy, new and more effective
technologies need to be implemented to increase the efficient, clean use of fossil energy. The re-use of
fossil energy emissions could also raise the usage efficiency of traditional fossil energy and positively
affect the AQI efficiency. Further, China can also continue to build effective public transport services to
reduce the use of private cars and could produce motor vehicle emissions purification equipment to
further reduce motor vehicle emissions.

Finally, China can strengthen the monitoring and supervision of illegal air pollution emissions,
adhere to present legislation and law enforcement, and control unregulated emissions through the
promulgation of new laws and regulations.
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