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Abstract: With the development of renewable energy technology and communication technology in
recent years, many residents now utilize renewable energy devices in their residences with energy
storage systems. We have full confidence in the promising prospects of sharing idle energy with others
in a community. However, it is a great challenge to share residents’ energy with others in a community
to minimize the total cost of all residents. In this paper, we study the problem of energy management
and task scheduling for a community with renewable energy and residential cogeneration, such as
residential combined heat and power system (resCHP) to pay the least electricity bill. We take elastic and
inelastic load demands into account which are delay intolerant and delay tolerant tasks in the community.
The minimum cost problem of a non-cooperative community is extracted into a random non-convex
optimization problem with some physical constraints. Our objective is to minimize the time-average
cost for each resident in the community, including the cost of the external grid and natural gas.
The Lyapunov optimization theory and a primal-dual gradient method are adopted to tackle this
problem, which needs no future data and has low computational complexity. Furthermore, we design
a cooperative renewable energy sharing algorithm based on State-action-reward-state-action (Sarsa)
Algorithm, in the condition that each residence in the community is able to communicate with its
neighbors by a central controller. Finally, extensive simulations are presented to validate the proposed
algorithms by using practical data.

Keywords: dynamic energy management; resCHP system; energy sharing; Sarsa algorithm;
smart grid

1. Introduction

With the development of renewable energy technology, many residents utilize renewable energy
devices in their residences with energy storage systems. Therefore, we have full confidence in the
promising prospects of sharing idle energy with others in a community. As a smart grid develops
rapidly, energy management systems have been widely utilized in many fields, e.g., Supervisory
Control and Data Acquisition [1]. Particularly, a residential combined heat and power (resCHP) [2]
system becomes increasingly popular in a smart grid for its relatively low emissions and high efficiency,
which can produce electricity and thermal energy simultaneously. In this way, the system will be more
efficient and economical than previous systems that generate these two kinds of energy separately.
The long-term system cost can be minimized by using large batteries which are used to store electricity.
In addition, renewable energy devices such as solar panel or wind turbine are popular in a smart grid,
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which becomes one typical feature with increasing environmental concerns. However, large-scale
integration of renewable energy will cause the power system to destabilize. In this condition, batteries
and elastic loads can be utilized to decrease the fluctuation caused by renewable energy. In addition,
it is more friendly for the environment to utilize batteries and elastic loads which can do the power
dispatching across time [3].

The energy management and optimal scheduling for a smart grid with resCHP system with hybrid
renewable energy sources can reduce carbon dioxide emissions. Li et al. [4] proposed a real-time
scheduling policy by applying modified Lyapunov optimization to separate and sequentially determine
the joint load scheduling and storage control. Yu et al. [5] proposed a real-time and distributed
algorithm by applying the Lyapunov optimization method and an alternating direction method of
multipliers to solve a stochastic programming problem with many practical constraints. Liu et al. [6]
proposed a parallel distributed optimization algorithm to minimize the cost of microgrids and the
utility company by applying game theory. Ou et al. [7] utilized a dynamic switch and time-variant
control strategies to design a new voltage controller to convert carbon dioxide into methane and
methanol, and then studies control strategies for a hybrid energy microgrid [8], where the controller
utilized a radial basis function network-sliding algorithm and a general regression neural network for
maximum power point tracking (MPPT) control to control real power fast and steadily. In practice, we
should pay more attention to the dynamic operation, MPPT and system stability in faults. Hong et al. [9]
proposed an intelligent controller including the radial basis function network and the improved neural
network for MPPT control. Bui et al. [10] used an agent communication language to develop a modified
contract net protocol for different agents’ communication to optimize the operation of microgrids.
Ou et al. [11,12] discusses a distributed generator model and a distributed energy resource for both
islanded and grid-connected modes. Zhang et al. [13] introduced a power scheduling approach to
solve the problem of renewable energy’s stochastic availability. Ou et al. [14] applied a smart damping
controller for the static synchronous compensator to reduce the power fluctuations and damping in a
hybrid energy microgrid. Mane et al. [15] proposed an improved Lyapunov controller operated in
cascade mode to control a hybrid energy microgrid of fuel and an ultracapacitor. Bahrami et al. [16]
modified the traditional demand response programs for multiple energy carriers to transfer into
an energy center. Mohammadi et al. [17] proposed a method by applying game theory to increase
efficiency of the traditional communication network. With the development of information and
communication technology, we have a good two-way communication between smart appliances
and control centers, which makes it possible to reduce the cost by scheduling the tasks using some
demand response strategies, such as real-time price strategy [18]. Smart appliances can schedule
their tasks by using a real-time price strategy to avoid the peak for reducing the total system cost
and the capacity of generators [19]. Previous researchers designed some algorithms to help the
practical system decide when to store electricity, utilize it, or sell it to the grid according to real-time
price. Without an appropriate real-time price strategy, some needless peaks will arise, which are
unfavourable to coordinate elastic loads [20]. Other researchers focused on scheduling elastic loads
without real-time price.

In the paper, we firstly formulate the minimum cost problem of our system into a non-convex
optimization problem with physical constraints, which is difficult to handle. Then, this problem is
reformulated via relaxing time coupling constraints into a time-averaged constraint. The Lyapunov
optimization theory is adopted to handle the reformulated issue. Furthermore, we design an online
algorithm for energy management and task scheduling, which does not depend on the statistic system
information and has a low computational complexity. Our system model is shown in Figure 1.

We summarize the contributions of our paper as follows:

• We propose a practical integrated model that has a resCHP system, a renewable energy device,
an energy storage (battery) and a boiler for each residence in the community, extending from
other models. Our aim to minimize the time-average cost of the total community, including the
cost from the external grid and the gas station. In each residence, we study two cases that is not
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considered in other models: one has delay intolerant (DI) tasks and the other has delay tolerant
(DT) tasks.

• We firstly formulate a cost-optimal problem of one residence in a non-cooperative community in
order to reduce the total cost with the constraints of DI and DT tasks. Then, we present an online
Task Scheduling Algorithm (TSA) by the Lyapunov optimization approach, which needs no future
data and has low computational complexity. Because it is difficult to separate variables, we use
a standard primal-dual gradient method to figure out a solution of the problem. For less cost, we
propose an energy sharing policy for cooperative energy sharing in the community. By using this
policy, we design a cooperative renewable energy sharing algorithm based on a Sarsa algorithm,
on the condition that each residence in the community needs to communicate with its neighbors
by a central controller.

• Extensive simulations are presented to validate the proposed algorithms by using real trace data.
The TSA algorithm shows that a larger battery maximum output and V will lead to a higher
shaved cost. We satisfy the DT load demand before user-defined deadlines and we can see that,
with the increase of the deadline, the saved cost will increase. Compared with the TSA Algorithm
(non-cooperative algorithm), the cooperative renewable energy sharing algorithm can reduce a
nearly 9% cost for the community while meeting all the demands of the residents.

The rest of this paper consists of the following five sections: Section 2 puts up some questions of
an existing resCHP system and task scheduling in a smart grid. Section 3 proposes a system model
of a community including resCHP systems, renewable energy devices, energy storage and boilers.
We introduce the renewable energy sharing policy and the control target. Section 4 formulates the
optimization problem with some constraints in a non-cooperative and cooperative community and
gives the details of our designed algorithm. In Section 5, we evaluate the performance of our algorithm
by using the real data. Finally, some conclusions are drawn in Section 6.

2. Related Work

With the development of information and communication technology, the traditional power
grid has a good chance of upgrading by disposing different kinds of energy sources optimally.
The resCHP system becomes increasingly popular in smart grids for its low emissions and high
efficiency. Alipour et al. [21] proposed a stochastic programming framework for optimally scheduling,
considering uncertainties of demand response. Motevasel et al. [22] proposed an energy management
system for optimal scheduling of a microgrid with resCHP to find the optimum point of distributed
energy resources, batteries and thermal storage devices. Tasdighi et al. [23] transformed the energy
management issue into a mixed-integer linear programming problem for the system using resCHP.
Ma et al. [24] designed an energy management framework for resCHP consumers with the demand
response using internal prices. In these papers, it is assumed that the electricity price and the load
demand in the future is predictable. These studies solve different problems by using Dynamic
Programming and the ‘curse of dimensionality’ problem [25] appears.

Many previous studies focused on a designing task scheduling policy. Goudarzi et al. [26] proposed
a task scheduling policy that could minimize consumers’ electricity cost by using an inconvenience
function. Buttazzo et al. [27] discussed limited preemption models between two cases of fully preemptive
and nonpreemptive scheduling. Du et al. [28] proposed a novel linear sequential optimization enhanced
multiloop algorithm to schedule load demand considering the satisfaction of consumers. These works
tried to design optimal task scheduling algorithms by only considering the convenience of consumers.

There are many optimization methods for reducing the system cost with energy storage in a
smart grid. Zhou et al. [29] designed an algorithm about the queueing models of a battery and a tank
in the resCHP system to reduce the average cost by adopting a Lyapunov optimization approach.
This approach is also used in other papers to optimize the system cost. Neely et al. [30] reduced
the average cost of flexible consumers and met deadlines of delay tolerant tasks. Guo et al. [31]
considered both DI and DT tasks from the perspective of a household when tackling the problem
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of minimizing the average cost. Urgaonkar et al. [32] developed an online control algorithm of data
center electricity management for minimizing the long-term average cost. However, their models did
not include renewables. Liu et al. [33] designed a centralized algorithm to solve the optimization of
energy management problem based on adaptive dynamic programming. Gatsis et al. [34] proposed
a near-optimal scheduling algorithm considering the Advanced Metering Infrastructure messages
between the consumers and the utility company. Logenthiran et al. [35] tackled the problem formulated
from day-ahead load shifting method for demand-side management of smart grid by a heuristic-based
Evolutionary Algorithm. Koutitas et al. [36] developed a period management strategy of the periodic
loads for reducing the cost in a period of time. Their model did not consider task scheduling in the
resCHP system. In this paper, we consider the optimal scheduling of DT tasks in a comprehensive
system that has a resCHP system, a renewable energy device (e.g., solar panel, wind turbine), a battery
and a boiler for each residence to reduce the total cost.

3. System Model and Problem Statement

The overview of our system is shown in Figure 1. There are a set of smart appliances denoted
by i ∈ {1, 2, · · · , Nt} in the residence j and two types of flows, i.e., information and energy flow.
For simplicity, we assume that one appliance is utilized in a residence each time slot. We assume that
our system works in discrete time slot t ∈ {1, 2, · · · , T} and T will be 72 h if we study this problem in
three days. The details of our system are described as follows.

Main Power Grid

Solar

Wind

Resident 1 Resident N

Central
Controller

Electricity
Demand

Heat

Demand

Household

Controller

Household

Controller

resCHP

Boiler

resCHP

Boiler

Electricity
Demand

Heat

Demand

DI task DT task DI task DT task

Power Flow Information Flow

Figure 1. The structure of a system model.

3.1. System Architecture

This system includes a set of battery, renewable energy devices, boilers and resCHP systems.
Let ej(t) and hj(t) represent the stochastic electricity and heat demand of residence j at time
t, respectively. Electricity demand ej(t) can be balanced by battery bj(t) or external grid pj(t).
Heat demand hj(t) is satisfied by a boiler or the resCHP system for bathing.

In time slot t, the resCHP system of residence j exports electricity ηeuj(t) to the battery and ηhuj(t)
to satisfy heat demand simultaneously, where ηe and ηh are the efficiency of converting natural gas
to electricity and heat. The resCHP system consumes natural gas uj(t). In addition, the battery gets
energy rj(t) from renewable energy and the boiler exports energy gj(t) to satisfy heat demand. We set
the electricity price Ce(t) in the range (Ce,min, Ce,max). We assume that the price of natural gas Cg
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is a constant in each time slot because it does not change greatly. The electricity price Ce(t) can be
obtained from PG & E [37] and the price of natural gas Cg can be known from the report of RateFinder
for June 2017 [38] from PG & E. To minimize the average long-term cost, our algorithm focuses on
the electricity pj(t) bought from the grid and natural gas uj(t) consumed by the resCHP and gj(t)
consumed by the boiler. The symbols used are summarized in Abbreviations.

3.2. Renewables Generation

We assume that there are N residents in a community and all residences are provided with solar
panels and wind turbines. From [39], we define that the energy generated from a solar panel rs(t) for
residence j can be calculated as rs

j (t) = ζ · Aj · I(t) · td, rs(t) ≤ rs,max, where ζ represents the efficiency

of solar energy to electricity, Aj is solar panel area of residence j, I(t) is the illumination intensity
and td is the duration of the time slot t. There is an upper bound rs,max for solar energy with the
illumination intensity. Also from [39], we define that the energy generated from a wind turbine rw

j (t)

can be calculated as rw
j (t) = ς ·WBj · ρv3(t) · td/2, rj

w(t) ≤ rw,max, where ς represents the efficiency of
wind energy to electricity, WBj is rotor blade area of wind turbine, ρ stands for the density of the air,
v(t) is wind speed and td is the duration of time slot t. Obviously, there is an upper bound rw,max for
wind energy. In time slot t, the energy converting from renewable energy generators into battery in
time slot t for residence j is rj(t). We have rj(t) = rs

j (t) + rw
j (t), rj(t) ≤ rs,max + rw,max.

3.3. Electricity and Heat Demand

The electricity demand is set as ej(t) and the heat demand hj(t) for residence j. We assume
that tasks are continuous and the electricity consumption rate πt

j of each task is constant. Electricity
demand is satisfied by the electricity from external grid pj(t) and the electricity from battery bj(t) in
time slot t. Heat demand is satisfied by the resCHP system ηhuj(t) and the boiler gj(t). According to
the energy conservation law, we have the following equation:

ej(t) = pj(t) + bj(t), (1)

hj(t) = ηhuj(t) + ηsgj(t). (2)

3.4. Delay-Tolerant and Delay-Intolerant Tasks

In this part, we provide a brief introduction to DI and DT tasks. There are some DI tasks in our
daily life, such as television or lighting, which needs to be satisfied immediately. DT tasks appear
with the advent of smart appliances. With the development of smart appliances, people can make an
appointment to do some tasks such as washing and bathing.

In our model, residence use nt to present the number of tasks Nt that arrive at time slot t.
According to the degree of delay tolerance, tasks can be divided into two groups: DT tasks and DI
tasks. Each task i ∈ Nt can be characterized by two parameters: the time needed for the task at

i and
the deadline for the task dt

i . The task should be finished before t + dt
i . If at

i = dt
i , the task should be

satisfied immediately; therefore, the task is delay-intolerant. Otherwise, the task is delay-tolerant.
For the DI tasks, we cannot propose an ideal scheduling algorithm. We focus on discussing the optimal
scheduling algorithm of DT tasks to achieve the minimum cost. The postponing time is set as st

i and if
the task is delay-tolerant, the postponing time st

i is 0. We set dmax , maxt,i dt
i for the maximum delay

of tasks.

3.5. Energy Storage

Here, we do not consider the electricity loss of the battery in the process of charging and
discharging. For simplicity, we view the state of the battery as an electricity queue. From Figure 1,
we can see that the energy in energy storage in time slot t for the residence i Bj(t) includes three parts,
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first from the external grid, second from the renewable energy and the last part from the resCHP
system. Thus, the battery level Bj(t) in time slot t is given in the following equation:

Bj(t + 1) = Bj(t) + rj(t) + ηeuj(t)− bj(t). (3)

In general, pj(t) has a positive value, and then we see bj(t) ≤ ej(t) from the aspect of practical
application and the constraints are given as follows:

|bj(t)| ≤ bmax
j , (4)

bj(t) ≤ min{Bj(t), ej(t)}, (5)

where bmax
j is the battery capacity of residence j. The constraint Equations (4) and (5) means that the

electricity discharged or charged from the battery has an upper bound in a practical model.

3.6. Energy Sharing Policy

The electricity demand ej(t) can be satisfied for residence j as the following expression:
pj(t) = ej(t)− bj(t) + ∑j 6=i rjj′(t) residence j can draw or share energy rjj′(t) from its neighbor j′.
According to the law of energy conservation, we can obtain that ∑i ∑j 6=i rjj′(t) = 0.

3.7. Control Target

In time slot t, our system cost consists of the cost from the external grid and natural gas utilized
by the resCHP system and the boiler. Electricity demand ej(t) is dependent on the task scheduling
from time slot t to t− dmax + 1, and we have

ej(t) = ∑t
τ=t−dmax+1 ∑nτ

i=1 ψ(τ + sτ
j + cτ

j > t & τ + sτ
j ≤ t), (6)

and the function ψ(τ + sτ
j + cτ

j > t & τ + sτ
j ≤ t) is not a specific function. We aim to design a

scheduling algorithm to achieve the minimum long-term average cost by assigning the amount of
electricity and gas. The long-term average cost can be described as the following expression:

Cavg
tol = limT→∞

1
T ∑T

t=1 E{∑N
i=1 pj(t)Ce(t) + uj(t)Cg + ηsgj(t)Cg}. (7)

For simplicity, we do not consider some practical factors, such as the electricity loss in the
transmission in order to focus on minimizing the electricity from a grid related with variables (st

i , r(t),
b(t), u(t), h(t)). We can add these factors into our model in the future.

4. Problem Formulation

In this section, we firstly consider a non-cooperative scenario that residents do not share energy
with others. Electricity and heat demand e(t) and h(t) are supposed to be independent from each other.
According to the system model shown in Figure 1, we firstly assume a convex function of consumers’
dissatisfaction Ft

i (s) according to [40], which is a utility function of the task i when it delays s time
slots. If the delay s = 0, the value of the function should be zero. As the delay s increases, the utility
function will increase, which means that dissatisfaction of consumers increases. The utility function
can prove to have a long-term bound α by using the same method in [41]:

lim
T→∞

sup 1
T ∑T

t=1 ∑nt
i=1 Ft

i (s
t
i) ≤ α, (8)

where st
i is the delay for the task i. Generally, we should fulfill a task before its deadline, and the

constraint for st
i is given as the following expression:

0 ≤ st
i ≤ dt

i − at
i . (9)
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The optimization problem can be summarized as follows:

min
rj (t), st

i ,

bj (t), uj (t)

lim
T→∞

1
T

T

∑
t=1

E[pj(t)Ce(t) + (uj(t) + ηsgj(t))Cg], (10)

s.t. (1), (2), (3), (4), (5), (6), (8), (9),

where Ce(t)p(t) + u(t)Cg + ηsg(t)Cg is the total cost of the system in time slot t.
According to the equation Equations (1) and (2), we can simplify this problem as P1:

P1 : min
rj (t), st

i ,

bj (t), uj (t)

lim
T→∞

1
T

T

∑
t=1

E[(ej(t)− bj(t))Ce(t) + uj(t)Cg

+ (hj(t)− ηhuj(t))Cg],

(11)

s.t. (3), (4), (5), (6), (8), (9).

We know that limT→∞ ∑T
t=1 ej(t)Ce(t) is the total cost of power demand. We have the

following equation:

lim
T→∞

∑T
t=1ej(t)Ce(t) = lim

T→∞
∑T

t=1 ∑nt
i=1 ∑

at
i−1

j=0 πt
i Ce(j + t + st

i), (12)

where πt
i is the electricity consumption rate. We rewrite the optimization problem as the following P2:

P2 : min
rj (t), st

i ,

bj (t), uj (t)

lim
T→∞

1
T

T

∑
t=1

E[
nt

∑
i=1

at
i−1

∑
j=0

πt
i Ce(j + t + st

i)

− bj(t)Ce(t) + ηeuj(t)Cg + hj(t)Cg],

(13)

s.t. (3), (4), (5), (6), (8), (9),

P2 is the simplified problem of P1. To solve P2, we use the Lyapunov optimization method [42].
To ensure that dissatisfaction of consumers has a upper bound, we create a virtual queue J(t)

as the following:
J(t + 1) = max{J(t) + ∑nt

i=1 Ft
i (s

t
i)− α, 0}. (14)

We can prove that if this virtual queue J(t) meets the restriction lim supT→∞ J(T)/T = 0 , then
we have

lim
T→∞

sup 1
T ∑T

t=1 ∑nt
i=1 Ft

i (s
t
i) ≤ α. (15)

4.1. The Lower Bound of the Minimum Cost

In this part, we prove that the minimum cost of P2 has a lower bound. We set C and C̃ to be the
minimum cost of P2 and P3:

P3 : min
rj (t), st

i ,

bj (t), uj (t)

lim
T→∞

1
T

T

∑
t=1

E[
nt

∑
i=1

at
i−1

∑
j=0

πt
i Ce(j + t + st

i)− b(t)Ce(t) + ηeuj(t)Cg + hj(t)Cg],

s.t. (3), (5), (8), (9).

We can see that P3 is a relaxation of P2 and C̃ is the lower bound of C. We use Theorem 4.5 in [43]
to prove that C̃ can be calculated according to an optimal randomized stationary policy b̃(t).
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Lemma 1. We can get C̃ from an optimal randomized stationary policy that only depends on the system state.
The control variables (r̃(t), s̃t

i , b̃(t), ũ(t)) are some functions of [nt, ctj, r(t), e(t), h(t)] in each time slot. We have
these functions as follows:

E[
nt

∑
i=1

at
i−1

∑
j=0

πt
i P(j + t + s̃t

i)− b̃(t)Ce(t) (16)

+ ηeũ(t)Cg + h(t)Cg] = C̃,

E[
nt

∑
i=1

Ft
i (s̃

t
i)− α] ≤ 0, (17)

E[r̃(t)− b̃(t)] ≥ 0. (18)

Proof. We prove it by using Theorem 4.5 in [43]. Our problem satisfies all sufficient conditions
proposed in Theorem 4.5 for the existence of an optimal randomized stationary policy. Equation (18)
means that the long-term average dissatisfaction is no less than α. Equations (18) and (19) shows
that Bj(t) and J(t) have a long-term average stability. Finally, C̃ can be calculated by an optimal
randomized stationary policy (r̃(t), s̃t

i , b̃(t), ũ(t), h̃(t)).

4.2. TSA: Task Scheduling Algorithm

We usually use Lyapunov drift to study optimal control of queueing networks. By the Lyapunov
drift, we can stabilize these two queues Bj(t) and Jj(t) for each residence j. We add a weighted
penalty term V to the drift of a Lyapunov function Lj(t). Based on this method, we design a function
Lj(t) = 1

2 (Jj(t)2 + (Bj(t) − ε)2). One part of our goal is to minimize the drift of Lj(t), making
Bj(t) closer to the constant ε where the battery level Bj(t) is bounded. We have several constants
nmax = maxt nt, rmax

j = maxt rj(t), amax = maxt,i ai
t, Fmax = maxt,i Fi

t (d
i
t). We set Zj(t) = (Jj(t), Bj(t)).

From the Lyapunov approach, we define the drift is ∆ = E{(Lj(t + 1)− Lj(t))|Zj(t)}.

Lemma 2. The Lyapunov drift will satisfy

∆ ≤ Jj(t)E[
nt

∑
i=1

Ft
i (s

t
i)− α|Zj(t)] +

1
2
[rj(t) + ηeuj(t)− bj(t)]2

+ (Bj(t)− ε)(rj(t) + ηeuj(t)− bj(t)) + D,

(19)

where D , 1
2 (n

2
maxF2

max + α2). The Lyapunov drift ∆ can be calculated from Jj(t) and Bj(t). We make some
simplification to minimize the Lyapunov drift ∆.

Proof. We first square Equation (14) of J(t). By using max[x, 0]2 ≤ x2, we have

1
2

J(t + 1)2 − 1
2

J(t)2

≤ 1
2
(∑

i=1
ntFt

i (s
t
i)− α)2 + J(t)(

nt

∑
i=1

Ft
i (s

t
i)− α)

≤ 1
2

n2
maxF2

max +
1
2

α2 + J(t)
nt

∑
i=1

Ft
i (s

t
i).

Then, we square Equation (3) of Bj(t). By using some parameters that we defined in the previous
expression, we have
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1
2
[Bj(t + 1)− ε)2 − (Bj(t)− ε)2]

=
1
2
[Bj(t + 1)2 − Bj(t)2]− ε[Bj(t + 1)− Bj(t)]

≤ [Bj(t)− ε][(r(t) + ηeu(t)− b(t)] +
1
2
[r(t) + ηeu(t)− b(t)]2.

Finally, we figure out the Lyapunov drift L(t + 1)− L(t) as follows:

L(t + 1)− L(t)

=
1
2
[J(t + 1)2 + (Bj(t + 1)− ε)2]− 1

2
(J(t)2 + Bj(t)− ε)2)

=
1
2

J(t + 1)2 − 1
2

J(t)2 +
1
2
[Bj(t + 1)− ε]2 − 1

2
[Bj(t)− ε]2

≤ 1
2

n2
maxF2

max +
1
2

α2 + J(t)
nt

∑
i=1

Ft
i (s

t
i) + [Bj(t)− ε][r(t)

+ ηeu(t)− b(t)] +
1
2
[r(t) + ηeu(t)− b(t)]2.

According to the stochastic optimization technique, the Lyapunov drift ∆ should be minimized to
make the queue of consumers’ satisfaction Jj(t) and the queue of battery level Bj(t) mean rate stable.
We also aim to minimize the system cost, so we set a parameter V denoting the trade-off between

the system cost and the Lyapunov drift ∆; then, we add VE[∑nt
i=1 ∑

at
i−1

j=0 πt
i Ce(j + t + st

i)− bj(t)Ce(t) +
ηeuj(t)Cg + hj(t)Cg] on both sides of Equation (19), we have

∆ + VE[
nt

∑
i=1

at
i−1

∑
j=0

πt
i Ce(j + t + st

i)− bj(t)Ce(t)

+ ηeuj(t)Cg + hj(t)Cg]

≤
nt

∑
i=1

E[Jj(t)Ft
i (s

t
i) + V

at
i−1

∑
j=0

πt
i P(j + st

i + t)|Zj(t)

+ D− αJj(t) + E[(Bj(t)− ε)(rj(t) + ηeuj(t)− bj(t))

+
1
2
(rj(t) + ηeuj(t)− bj(t))2

+ V(ηeuj(t)Cg + hj(t)Cg − bj(t)Ce(t))|Zj(t)].

(20)

The goal of task scheduling algorithm (TSA) is to minimize the right side of Equation (20)
according to Equation (5). During time slot t, we can figure out st∗

i = arg min0≤st
i≤dt

i−at
i

J(t)Ft
i (s

t
i) +

V ∑
at

i−1
j=0 πt

i Ce(j + t + st
i). Let f (t) = (Bj(t)− ε)(rj(t) + ηeuj(t)− bj(t)) + 1

2 (rj(t) + ηeuj(t)− bj(t))2 +

V(ηeuj(t)Cg + hj(t)Cg − bj(t)Ce(t)). To minimize E[ f (x)|Z(t)], we have P4 as follows:

P4 : min
r(t),b(t),u(t)

T

∑
t=1

(Bj(t)− ε)(rj(t) + ηeuj(t)− bj(t))

+
1
2
(rj(t) + ηeuj(t)− bj(t))2, (21)

s.t. rj(t) ≤ rmax
s + rmax

w , (22)

|bj(t)| ≤ bmax
j . (23)
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We can see that P4 is feasible and satisfies Slater’s condition. To solve this convex optimization
problem, we have

L =
T

∑
t=1

[(Bj(t)− ε)(rj(t) + ηeuj(t)− bj(t)) +
1
2
(rj(t)

+ ηeuj(t)− bj(t))2] +
T

∑
t=1

ζt(rj(t)− rmax
s − rmax

w )

+
T

∑
t=1

µ+
t (bj(t)− bmax

j ) +
T

∑
t=1

µ−t (−bmax
j − bj(t)),

where ζt, µ+
t , µ−t are the Lagrange multipliers and dual variables for constraints (23). As P4 is convex,

feasible and satisfies Slater’s condition, the Karush–Kuhn–Tucker conditions are accessible and
sufficient for optimality [43], given by

∂L
∂r(t)

= Bj(t)− ε + r(t) + ζt = 0, (24)

∂L
∂ηeu(t)

= Bj(t)− ε + ηeu(t) + VCg = 0, (25)

∂L
∂b(t)

= −(Bj(t)− ε) + b(t)−VCe(t) + µ+
t − µ−t = 0, (26)

ζt(r(t)− rmax
s − rmax

w ) = 0, ζt ≥ 0, r(t)− rmax
s − rmax

w ≤ 0, (27)

µ+
t (b(t)− bmax

j ) = 0, µ+
t ≥ 0, b(t)− bmax

j ≤ 0, (28)

µ−t (−bmax
j − b(t)) = 0, µ−t ≥ 0,−bmax

j − b(t) ≤ 0. (29)

The convex relaxation of P4 is tight if and only if any solution of Equation (22) satisfies ζt ≥ 0 or
ζt = 0, ∀t. Since P4 is a steady-state optimization problem, we solve this problem with the following
algorithm by a standard primal-dual gradient method [44]:

r∗(t) = kr(t)(
∂L

∂r(t)
) = kr(t)(r(t) + Bj(t)− ε + ζt), (30)

ηeu∗(t) = ku(t)(
∂L

∂ηeu(t)
) (31)

= ku(t)(ηeu(t) + Bj(t)− ε + VCg),

b∗(t) = kb(t)(
∂L

∂b(t)
) (32)

= kb(t)(b(t)− (Bj(t)− ε)−VCe(t) + µ+
t − µ−t ),

ζ∗t = kζt(r(t)− rmax
s − rmax

w )+ζt
, (33)

µ∗+t = kµ+
t
(b(t)− bmax

j )+
µ+

t
, (34)

µ∗−t = kµ−t
(−bmax

j − b(t))+
µ−t

, (35)

where kr(t), ku(t), kb(t), kζt , kµ+
t

, kµ−t
are positive scalars representing the controller gains. We set the

highest electricity price Ce,max and set ε = bmax
j + VCe,max. According to Equation (23), we will always

have ε− Bj(t)− Ce(t) > 0 when Bj(t) < bmax
j . The battery will absorb the electricity from grid and

b(t) = −bmax
j . The battery discharges when Bj(t) > bmax

j . We can see that the constraint of Equation
(5) is redundant in this situation. The performance of TSA can be proved by the following theorem.
We can see that the battery level and the cost of the total system are both limited.

Theorem 1. We set ε = bmax
j + VCe,max and Bj(0) = ε, and then Bj(t) will show the following property

of stability:
0 ≤ Bj(t) ≤ ε + bmax

j + rmax
j . (36)
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Proof. First, we prove the upper bound of Bj(t) by using mathematical induction. The basis: for
t = 0, we have Bj(0) = ε < ε + bmax

j + rmax
j for the initial setup. The inductive step: we assume that

Bj(t) ≤ ε + bmax
j + rmax

j . Then, we need to prove that Bj(t + 1) ≤ ε + bmax
j + rmax

j . In the next time slot
t + 1, we have two situations as follows:

(i) if Bj(t) ≤ ε, when ξ = 1 and b(t) = −bmax
j , we will have the maximum of the increased electricity.

Therefore, we will have Bj(t + 1) ≤ ε + bmax
j + rmax

j .
(ii) if Bj(t) > ε, we can know that b(t) > 0 according to Equation (23), that is to say, battery

discharges. Thus, we have Bj(t + 1) ≤ Bj(t) ≤ ε + rmax
j + bmax

j . Above all, we can prove that
Bj(t + 1) ≤ ε + rmax

j + bmax
j .

Second, we prove the lower bound of Bj(t) by also using mathematical induction. The inductive
step: we assume that Bj(t) ≥ 0. Then, we need to prove that Bj(t + 1) ≥ 0. In the next time slot t + 1,
we have two situations as follows:

(i) if Bj(t) ≤ ε, we can know that b(t) > 0, according to Equation (23), that is to say, battery charges.
Therefore, we have Bj(t + 1) > Bj(t) ≥ 0.

(ii) if Bj(t) > ε, we have Bj(t) > bmax + VCe,max. According to Equations (3) and (4), we have
Bj(t + 1) ≥ 0. Above all, we can prove that Bj(t + 1) ≥ 0.

Theorem 2. The cost of the system using TSA satisfies:

lim
T→∞

sup
1
T

T

∑
t=1

E[
nt

∑
i=1

at
i−1

∑
j=0

πt
i Ce(j + t + s∗i )− b∗(t)Ce(t)

+ ηeu∗(t)Cg + h(t)Cg]

≤ C + Ce,maxbmax
j +

D + (bmax
j + rmax

j )2

V
.

(37)

Proof. The constraint of Equation (4) ensures that b(t) is in the range of [0, bmax
j ] when battery

discharges. As we know that Bj(t) < ε + bmax
j + rmax

j , we can figure out that |ε− Bj(t)− VCe(t)| ≤
bmax

j + rmax
j + VCe,max:

nt

∑
i=1

E[J(t)Ft
i (s

t
i) + V

at
i−1

∑
j=0

πt
i P(j + st

i + t)|Z(t)− αJ(t)

+ E[(Bj(t)− ε)(r(t) + ηeu(t)− b(t)) +
1
2
(r(t) + ηeu(t)

− b(t))2 + V(ηeu(t)Cg + h(t)Cg − b(t)Ce(t))|Z(t)]
≤ VC̃ + (bmax + rmax + VCe,max)bmax.

By setting C̃ to be a lower bound of C, we calculate the average value from t = 0 to T as follows:

E{(L(t + 1)− L(t))|Z(t)}+ VE[
nt

∑
i=1

at
i−1

∑
j=0

πt
i Ce(j + t + st

i)

− b(t)Ce(t) + ηeu(t)Cg + h(t)Cg]

≤ TD + T(bmax + rmax)
2 + VTC + VTCe,maxbmax.
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By setting B(0) = ε, we can see that L(0) = 0 in Equation (26). On both sides of Equation (26),
we divide by VT,

lim
T→∞

1
T

T

∑
t=1

E[
nt

∑
i=1

at
i−1

∑
j=0

πt
i Ce(j + t + s∗i )− b∗(t)Ce(t)

+ ηeu∗(t)Cg + h(t)Cg]

≤ C + Ce,maxbmax
j + [D + (bmax

j + rmax
j )2]/V.

Equation (25) shows that, with the increase of parameter V, the total cost shows a converging trend.

Remark 1. When the parameter V is large enough, the total cost will approach a value that is in positive
correlation with the battery capacity.

4.3. Cooperative Renewable Energy Sharing Algorithm

The cooperative scenario is built upon the solutions to the non-cooperative scenario where the
renewable energy is cooperative in the community. In general, there are two following cases of the
renewable energy:

In a situation where the renewable energy is enough, the extra energy pj(t) + bj(t) − ej(t) of
resident j can be offered to its neighbor j′. Assuming that resident j can offer energy rjj′(t) to its
neighbor j′. Then, we have

rjj′(t) = pj(t) + bj(t)− ej(t). (38)

In a situation where the renewable energy is not enough, the inadequate energy ej(t)− pj(t)− bj(t)
of resident j can be drawn from its neighbor. Assuming that resident j can draw energy rjj′(t) from its
neighbor j′. Then, we have

rjj′(t) = ej(t)− pj(t)− bj(t). (39)

According to the law of energy conservation, we can obtain that ∑j′ ∑j 6=j′ rjj′(t) = 0.
Let CTSA be the optimal total cost of the situation where residents are non-cooperative, and

CCRESA be the total cost of the situation where the renewable energy of residents are cooperative in the
community. CTSA = ∑N

i=1 ∑T
t=1 Ctol

j (t), CTSA = ∑N
i=1 ∑T

t=1 Ĉtol
j (t). Ĉtol

j (t) means the cost for residence
j in a cooperative situation. Obviously, CCRESA < CTSA because we utilize idle energy from residents’
neighbors, which can reduce the electricity drawn from the external grid and reduce the total cost.
We design the Cooperative Renewable Energy Sharing Algorithm (CRESA) by the Sarsa algorithm.
We define the four elements as follows:

(1) State Space

We define the state space Φ which consists of electricity price and the number of residents
N. We discretize the electricity price into M intervals; therefore, the state space is given by
Φ = {1, ..., M} × {1, ..., N}. We formulate the reward maximization problem as follows:

max
N

∑
i=1

CTSA
j − CCRESA

j , (40)

s.t. ∑
i

∑
j 6=i

rj
j(t) = 0, (41)

CCRESA
j = CTSA

j −∑
j 6=i

rj
j(t). (42)
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(2) Action Space

We denote the maximum allowable renewable energy drawn from or sharing with neighbors as
Rmax. Therefore, the action space of the renewable energy consists of three actions: harvested, hold on,
and sharing:

A = {−Rmax, 0, Rmax}. (43)

According to Equation (32) in [45], we can obtain CTSA
j − CCRESA

j = (CTSA − CCRESA/N) by

adopting the Nash bargaining method to implement the cooperative plan. We define tmpj = CTSA
j −

CTSA−CCRESA
N . From Algorithm 2 in [45], residence j harvests energy from neighbors when tmpj −

∑T
t=1 Ctol

j (t) ≤ 0 and sharing energy with neighbors when tmpj −∑T
t=1 Ctol

j (t) > 0.

(3) Reward Function

At time slot t, after taking an action a ∈ A at state φ ∈ Φ, the central controller will receive
a reward to ensure that the central controller knows the impact of its action. We should harvest the
renewable energy from neighbors when the electricity price is high and share with neighbors when
the electricity price is low. Therefore, we define the reward function as

r f =


−Ce(t)Rmax, i f tmpj −∑T

t=1 Ctol
j (t) < 0,

0, i f tmpj −∑T
t=1 Ctol

j (t) = 0,
Ce(t)Rmax, i f tmpj −∑T

t=1 Ctol
j (t) > 0,

(44)

(4) Sarsa algorithm

We use the Sarsa algorithm (a classic reinforcement learning algorithm) to design an update
policy including state, action and reward function. For each pair of state φ and action a, we define a Q
function as follows:

Qt+1(φ, a) = Qt(φ, a) + β[r ft(φ, a) + γQt(φ
′, a′)−Qt(φ, a)], (45)

where (φ, a) is the state-action pair in time slot t and (φ′i , a′i) is the possible state-action pair in the next
time slot t + 1, the parameter β ∈ (0, 1] is the learning rate determining the exploration rate of Sarsa,
γ ∈ (0, 1] is the discount factor determining the importance of future rewards.

Based on the Sarsa algorithm, a solution of cooperative renewable energy sharing problem can
be achieved, on the condition that each residence in the community needs to communicate with its
neighbors by a central controller. The Cooperative Renewable Energy Sharing Algorithm (CRESA) is
summarized in Algorithm 1.

Algorithm 1 Cooperative Renewable Energy Sharing Algorithm (CRESA)

1: Initialization: In time slot t ∈ {1, 2, ..., T}, set the parameter β = 0.5, γ = 0.9, ε = 0.9. Initialize the

Q-matrix, Q = 0.
2: Repeat (for each episode)
3: Initialize φ;
4: Choose a from φ using ε-greedy policy derived from Q;
5: Repeat (for each step of episode):
6: Take the best action a, observe r ft, φ′;
7: Observe a′ from φ′ using ε-greedy policy from Q;
8: Update Q(φ, a): Qt+1(φ, a) = Qt(φ, a) + β[r ft(φ, a) + γQt(φ′, a′)−Qt(φ, a)];
9: φ← φ′ and a← a′ ;

10: until φ is terminal.
11: end
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5. Numeric Performance

In this section, we will evaluate the performance of the TSA algorithm by using practical electricity
price data. The parameters for the resCHP systems and the electricity and heat demand in time slot t
will be described in the next part.

5.1. Parameter-Settings for the Dynamic Simulation

We adopt electricity price and natural gas price from PG & E [37] during 24 June 2017–28 June2017.
Figure 2a shows the electricity price Ce(t). We assume that electricity demand and heat demand are
stochastic processes. As in [46], we set ζ = 20% and ς = 30% as a common statistic data, which
represent the efficiency from solar and wind energy to electricity, respectively. We use the real data
from [47,48] for solar radiation I(t) and wind speed v(t). We set the air density as ρ = 1.2041 kg/m3

and the wind blades area as WBj = 10 m2. Figure 2b,c shows the dynamic data of solar radiation and
wind speed. We implement our proposed algorithm on a PC with 64-bit Windows 7, 12 GB RAM and
a 1.80 GHz CPU. Simulation settings are as follows. We consider a system with 150 appliances of 150 h
with 1-h each time slot, i.e., 150 time slots in total. We assume that conversion efficiency of renewable
energy is 20% and the maximum output is 8 kWh. Battery capacity bmax

j is set to be 6 kWh. We assume
that the probability of electricity demand arriving is the same. The electricity consumption rate πt

i of
these appliances are set to be 0.1. We set the function of consumers’ dissatisfaction to be F(x) = x2.
Our resCHP system uses natural gas whose price Cg is set to be $5.4/MMBtu. We assume that α = 30
and parameter V in the Lyapunov drift L(t) is from 1 to 40.

5.2. Performance Evaluation

The cost of DT tasks is compared with that of DI tasks by using our algorithm. By setting
ε = bmax

j + VCemax, we have the maximum battery level ε + bmax
j + rmax

j . In particular, our algorithm
satisfies DI tasks when they arrive. We can figure out that the cost reduced by our algorithm increases
with time.

Figure 3 shows the amount of electricity charged/discharged from the battery b(t) in time slot t.
We capture a figure of 150 time slots. This figure shows how the battery charges/discharges according
to the TSA algorithm.

The battery level Bj(t) which has a hard constraint and we can see it from Figure 4 when the
deadline as dt

i is set to be 14 time slots. By setting ε = bmax
j +VCe,max, Bj(t) has a bound ε+ bmax

j + rmax
j .

As we can see from Figure 4, the battery level has a constraint less than ε + bmax
j + rmax

j in 150 time slots.
Figure 5 plots the percentage of reduced cost in total cost of different deadlines for V = 6. From

Figure 5, we can see that if the deadline of DT tasks is bigger, the percentage of reduced cost in total
cost will increase. We can figure out the reduced cost of DT tasks in one case, which is 12.49% of the
total cost when we set the deadline dt

i = 14. We will obtain more benefits if delay of DT tasks is longer.
We compare the cost of DI tasks in each time slot with that of DT tasks by using our algorithm in

Figure 6 for deadline dt
i = 6. As we can see from Figure 6, one DT task has a lower cost than one DI

task under the same condition.
Figure 7 plots the percentage of reduced cost in total cost of different DT/(DT + DI) for

dt
i = 6, 10, 16 and V = 6. The percentage of reduction in total cost grows as the deadline dt

i increases
from Figure 7. We can see that more DT tasks will lead to a higher reduced cost in our algorithm.

Figure 8 plots the percentage of reduced cost about the parameter V for deadline dt
i = 6.

From Equation (25), we can see that the percentage of reduced cost increases with the parameter V.
Figure 9 depicts the total cost of the system versus V for DT/(DI + DT)= 0.2, 0.5, 1. We can see

that a larger DT/(DI + DT) has a less total cost and the total cost decreases slowly as V grows when V
reaches 30. There is a linear relationship between V and the battery capacity bmax

j . The total cost of
the system also decreases slowly when the battery capacity bmax

j increases, which finally tends to be
a bound. From Equation (14), we can guarantee that the virtual queue of consumers’ satisfaction is



Energies 2018, 11, 2104 15 of 20

bounded and stable. From Figure 4, we can see that the queue of battery level is stable. From Figures 8
and 9, we achieve the optimal system cost when V = 30. This demonstrates that, by our proposed
algorithm, we can minimize our system cost while stabilizing the queue of battery level and the queue
of consumers’ satisfaction.

From Figure 10, we can see that the cumulative total cost in a cooperative community is lower
than that in a non-cooperative community. Our CRESA algorithm can achieve 9% of cost reduction
comparing with the TSA Algorithm in 200 time slots.
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Figure 2. The dynamic real data. (a) electricity prices in 150 time slots from PG & E; (b) the dynamic
solar radiation; (c) the dynamic wind speed.
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6. Conclusions

In this paper, we investigate the problem of energy management and task scheduling for a smart
grid with a resCHP system and renewable energy, considering unpredictable electricity demands
that include two kinds of tasks: DI and DT tasks. To minimize the total cost of the community,
we formulate the cost minimization problem into a stochastic non-convex optimization programming
with physical constraints, which is challenging to solve. Then, by the TSA algorithm based on the
Lyapunov optimization approach, we tackle the reformulated optimization problem after relaxing
the time coupling constraint into a time-averaged constraint. The TSA algorithm shows that a larger
battery maximum output and V will lead to a higher shaved cost. We satisfy the DT load demand
before user-defined deadlines and we can see that, with the increase of the deadline, the saved cost
will increase. Our TSA algorithm which applies the Lyapunov optimization method does have high
efficiency and we will study a more efficient algorithm in our further research. Then, we design
a cooperative renewable energy sharing algorithm based on a Sarsa algorithm for the cooperative
mode, on the condition that each residence in the community needs to communicate with its neighbors
by a central controller. Finally, our proposed CRESA algorithm can obtain a lower cost than a
non-cooperative algorithm and extensive simulations are presented to validate the proposed algorithm.
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Nomenclature

i Index of tasks of residence j
j Index of residence
t Index of time slots
ζ Efficiency of solar energy to electricity
ς Efficiency of wind energy to electricity
ρ Air density
I(t) Solar radiation in time slot t
v(t) Wind speed in time slot t
bj(t) Electricity charged or discharged in battery for residence j
bmax

j Battery capacity for residence j
rj(t) Actual electricity stored in the battery in time slot t for residence j
uj(t) Natural gas consumed by the resCHP system for residence j
gj(t) Natural gas consumed by the boiler for residence j
Ce(t) Electricity price in time slot t
p(t) Electricity drawn from the grid in time slot t
st

ij Delay for task i of residence j
at

ij Required service time for task i of residence j
dt

ij Deadline for task i of residence j
ei(t) Electricity demand in time slot t
hi(t) Heat demand in time slot t
Bi(t) Battery level in time slot t
πi(t) Electricity consumption for task of residence i
Ft

i (s) Dissatisfaction function of task i for delay s
Cg Natural gas price
ηe Efficiency of converting natural gas to electricity
ηh Efficiency of converting natural gas to heat in the resCHP system
ηs Efficiency of converting natural gas to heat consumed by the boiler
ηr Efficiency of converting renewable energy to electricity
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