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Abstract: Proton Exchange Membrane Fuel Cell (PEMFC) fuel cells is a technology successfully used
in the production of energy from hydrogen, allowing the use of hydrogen as an energy vector. It is
scalable for stationary and mobile applications. However, the technology demands more research.
An important research topic is fault diagnosis and condition monitoring to improve the life and
the efficiency and to reduce the operation costs of PEMFC devices. Consequently, there is a need
of physical models that allow deep analysis. These models must be accurate enough to represent
the PEMFC behavior and to allow the identification of different internal signals of a PEM fuel
cell. This work presents a PEM fuel cell model that uses the output temperature in a closed loop,
so it can represent the thermal and the electrical behavior. The model is used to represent a Nexa
Ballard 1.2 kW fuel cell; therefore, it is necessary to fit the coefficients to represent the real behavior.
Five optimization algorithms were tested to fit the model, three of them taken from literature and
two proposed in this work. Finally, the model with the identified parameters was validated with
real data.

Keywords: PEM fuel cell; identification; genetic algorithm; model; LabVIEW

1. Introduction

Proton Membrane Exchange Fuel Cells (PEMFCs) are electrochemical devices, which are
able to convert chemical energy (stored hydrogen) into electrical energy. PEMFCs represent an
interesting power source solution due to their low operation temperature, high power density,
good response to varying loads, and easy scale-up [1]. However, the high cost of this technology
makes modelling, parametric identification and fault diagnosis necessary research topics to improve
the use of PEMFCs [2]. PEMFCs have parameters that vary from one cell to another for different
reasons: manufacturing materials, physical dimensions, aging, working conditions, etc. Adequate
cell identification is necessary to know the internal cell conditions, to define the optimal working
point, to estimate the supply power capacity, and to implement condition monitoring techniques or
fault diagnosis algorithms. More complete, detailed and accuracy models allow the detection of small
variations that can be considered as preludes of possible failures. Detecting these variations could
prevent irreparable damages, lower replacement costs, and improve the reliability of the systems.
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There are some previous works dealing with PEMFC model identification. Each approach includes
its own model structure and simplifications. Regarding the identification techniques, they are highly
dependent on the PEMFC model and they can be classified into two big subsets: static models and
dynamic models. A static model is created to identify the cell polarization curve under specific
conditions of pressure and temperature. Hence, the experiment must keep these variables as constants.

Figure 1 shows a typical cell polarization curve, which represents the main cell characteristics.
As the current increases the voltage drops in three visible sections: the first voltage drop represents
cell activation losses; the second section represents voltage losses by internal resistance, and the third
section represents the voltage drop by gas transportation or concentration losses [3].
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In [4] a model based on neural networks and used the Levenberg-Marquardt BP algorithm to
identify the polarization curve characteristics is proposed. The model inputs were the airflow and the
temperature, and the outputs signals were the current and voltage. The model presents good accuracy,
however, the system demands training with high computational cost, and the authors suggested as an
alternative the use of other optimization algorithms (OAs).

The identification of equations based in the model [5] and using an OA is a clear tendency; these
models have electrical and thermodynamic equations with around seven coefficients which allow
tuning the model. The coefficients are identified using an optimization function which minimizes the
error between simulated and real signals. In [6] the current demand is used as input to generate de
polarization curve. The identification of the coefficients was performed with an OA called hybrid
genetic algorithm (HGA) that avoids the premature convergence of the simple genetic algorithm (SGA).
The HGA needs to be fed with parameters close to previously identified ideal values. In [7] a similar
model to the previous one was used to identify the system with a particle swarm optimization (PSO)
algorithm as an example of an algorithm which accepts initial parameters located in a very broad
range. In [8] a grouping-based global harmony search algorithm (GGHS) is presented to overcome
the limits of the harmony search algorithm (HS). This work compared the GGHS with versions of
HG and PSO, and concluded that the GGHS surpasses the mentioned algorithms. The grasshopper
optimization algorithm (GOA) was proposed by [9] to identify the parameters of three different
PEMFCs, although GGHS and GOA require that the initial parameters fall within closer bounds.
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In [10] the effective informed adaptive particle swarm optimization (EIA-PSO) as a modification of
PSO that makes the algorithm configuration be dynamic to avoid finding fake solutions is proposed.
However, this modification increases the computational cost in regards to a PSO. To overcome the
mentioned problems of PSO, in [11] a grey wolf optimizer is proposed, and this algorithm was
tested with the classical model and five real different PEMFCs. Related to differential evolution (DE)
algorithm framework, some authors have proposed variations to improve the performance of the
scaling factor F. In [12] the hybrid adaptive differential evolution algorithm (HADE) was proposed
and compared with a PSO and two versions of differential evolutionary algorithms. The HADE
surpasses the performance of the other OAs in terms of minimization speed. The comparison was
made using test functions, but the PEMFC model and its optimization function was only carried out
with HADE. Transferred adaptive DE (TRADE) is an improved DE algorithm applied to a PEMFC
and SOFC models proposed by [13]. Though, GGHS and GOA require that the initial parameters fall
within closer bounds both presents attractive results. In a similar way, [14] proposed a hybridization
between a teaching learning-based optimization method (TLBO) and the DE algorithm; this application
obtains better results with low computational cost, compared with single TLBO and DE separately.
In [15] the quantum-based optimization method (QBOM) applied to the identification of three voltage
drop coefficients of a Nexa 1.2 kW PEMFC model is introduced. QBOM showed good accuracy and
high minimization velocity in the identification. However it was applied in the identification of three
parameters versus the seven parameters identified by previously mentioned works.

The above authors demonstrated the usefulness of OAs to parameter identification of PEMFC
polarization curves. Moreover, the PEMFC polarization curve only represents the cell operation at one
single stack temperature value and a single stable pressure of inlet gases.

The second main classification are the dynamic PEMFC models. Those models represent better
the real behavior of a PEMFC because they show changes in the cell response when there are changes
on the load current and other variables and consider the cell as a multiple-input multiple-output
(MIMO) system. Each identification technique uses particular excitation inputs (such as steps, ramps
or waves) and each one uses the outputs to build or to adjust transfer functions or state space models
which include the fuel cell parameters. To facilitate the model identification, some PEMFC models can
also be simplified by working with constant temperatures or by using linearization techniques.

A dynamic model used to test several control strategies was presented in [16]. This model
included inputs such as: inlet molar flow rates of oxygen and hydrogen; inlet temperatures of anode
and cathode gas; and inlet coolant flow rate. After the excitation with input steps, the authors
developed an empirical identification by monitoring the average power density and the average
solid temperature. In [17] the authors used transfer functions to model a PEMFC. This work used
the stack current and the cathode oxygen flow rate as inputs and the stack voltage and the cathode
total pressure as outputs. The model is able to predict the output signals near to the operation point.
In [18], a PEMFC Hammerstein model is presented. The inputs were current, stoichiometric oxygen,
and cooling water flow, and the outputs were the partial pressure of O2 and the stack temperature.
The identification process used different random steps signals as inputs. In [19] a PEMFC dynamic
model that included the polarization curve characteristics and a double layer charge effect is proposed.
The model input was a typical current demand of a DC-DC or a DC-AC. In [20] a NARMAX model to
represent the MIMO relations and to identify the coefficients satisfying the PEMFC voltage simulation
is used. Also a NARMAX model is used by [21] to represent a PEMFC and used a GA to the model
identification, however, the model only represents the fuel cell temperature. Buchlozt and Krebs [22]
splits the PEMFC model into a dynamic part and a static part. The static model was identified with
neural networks whereas the dynamic model was developed with a mix of transfer functions and
linear state-space models. The model inputs were: current density, oxygen stoichiometry, gas supply
pressure, and gasses relative humidity; other values as stoichiometry of oxygen and stack temperature
were set to constant. The model output was the sum of the dynamic and the static voltage. The authors
exposed that the split model allows to reduce the computational time and to improve the accuracy.
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A split model was also presented in [23]. Regarding the dynamic part, the inputs were the current
and the cathode pressure. All these works get deeper in the different relationships between input
and output signals, so they model cell voltage responses to gas pressures and current variations.
Nevertheless, PEMFC operation produces heat that changes the cell temperature. The temperature
affects the cell performance and features as open circuit voltage, internal gas pressures, gas humidity,
and internal resistances. Therefore, the use of temperature as an input variable will give more accuracy
to the model despite the fact that the complexity and nonlinearity are increased.

Wang et al. [24] developed a dynamic equation model where the temperature is considered
to work in a closed loop. The model includes the electrochemical and thermal responses and the
cell double layer charge effect, and has a good response in steady state and transients. The model
characteristics are applicable in fault diagnosis and condition monitoring tasks; thus, this work was
developed for a 500 W PEMFC and is not directly usable for other devices.

One recent approach [25] used an equivalent electrical circuit model to represent a Nexa Ballard
1.2 kW PEMFC. This model simulated both the output voltage and the stack temperature. The model
included fourteen electric coefficients and six thermal coefficients. They were identified with an
evolution strategy (ES) algorithm. This work showed a model that includes the stack thermal dynamics
and they applied GA to the parameter identification, however, the thermal model includes a piecewise
heuristic function to link the temperature with the current to adjust the operation of the cooling system
of the real cell. This last component and the model based on electrical circuits do not let one access the
internal signal system. Salim et al. [26] used an equations-based model which includes the thermal
behavior of a Nexa 1.2 kW PEMFC. The voltage model was developed by fitting a polynomial curve
which involves the classical voltage losses. The thermal model was developed using the sensible heat
and latent heat. The identification process applies PSO with one independent optimization function
for the voltage part and another for the thermal model. The results show high simulation accuracy.
However, the model does not take into account the temperature in a closed loop, nor the cooling
system performance of the device.

The present work is involved in a wider study related with fault diagnosis and condition monitoring
of a Nexa Ballard 1.2 kW PEMFC installed in the Laboratory of Distributed Energy Resources [27].
Figure 2 shows the block diagram of the complete Nexa system. Hydrogen is supplied from a compressed
tank at adequate pressure. Reaction air is supplied by means of a compressor and measured by a mass
flow meter. Temperature is measured at the air outlet, so this is the stack temperature. The system is
cooled by a fan in order to maintain the temperature under the upper limit. Voltage of the complete
stack and the last two cells is measured in order to determine when the hydrogen purge valve is opened
to eliminate accumulated impurities. Current generated by the fuel cell is measured for two reasons:
to open the relay if current exceeds the maximum and to act over the air compressor to maintain the
correct stoichiometric relationship. Table 1 shows the manufacturer values of the PEMFC.
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Table 1. Maximum characteristics of Nexa 1200 fuel cell.

Power 1200 W
Operating voltage range 22–50 V

Current 55 A
Hydrogen consumption 18.5 slpm

Air flow 90 slpm
Temperature 80 ◦C

Cooling air flow 3600 slpm

The overall study requires a model able to represent the device and that uses the maximum
amount of measured data. In addition, the identification process must be accurate, fast, and with the
lowest computational cost as possible to make the model suitable to be used in real time applications.
This paper uses the model presented by [24] to fit the Nexa 1.2 kW PEMFC real data. Moreover, several
GAs are used and they are compared in order to look for the best strategy to fit the model. Section 2
shows the description of the model. Section 3 shows the adjustment of the equations coefficients to fit
the PEMFC Nexa behavior. The results of the identification and the model validation are presented in
Section 4. Finally, we present some conclusions and future work suggestions.

2. The PEMFC Model

The model presented in this paper is an extension of the dynamic model presented in [24]
where the model is explained in detail. The model assumes the following conditions to simplify it:
(a) One-dimensional treatment, (b) Ideal and uniformly distributed gases. (c) Constant pressures in
the flow channels. (d) Fuel and oxidant are humidified. So, the effective anode water vapor pressure
is 50% of the saturated vapor pressure while the effective cathode water pressure is 100%. (e) The
fuel cell works under 100 C and the reaction product is a liquid phase. (f) Thermodynamic properties
are evaluated at the average stack temperature, and the overall specific heat capacity of the stack is
assumed to be a constant. (g) Parameters for individual cells can be lumped together to represent a
fuel-cell stack.

Equations represent several phenomena as: (a) gas diffusion in the electrodes, (b) material
conservation, (c) fuel cell output voltage, starting from the Nernst equation and including the voltage
drop by activation, internal resistances, and concentration, (d) double-layer charging effects present in
the fuel cell membrane, and (e) thermodynamic energy balance.

This work only presents the key equations and the modifications included. Data used for fitting
the model was obtained from the Nexa 1.2 kW PEMFC software (NexaMon OEM 2.0) which gives
information about the key variables as well as inlet pressures and cooling system variables that must
be taken into account to model the thermal performance of the fuel cell. Figure 3 shows the PEMFC
model, including the input/output signals.
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The model was implemented under a LabVIEW® (2010, National Instruments, Austin, TX, USA)
environment. The equations were grouped into electrical and thermal sets. The most remarkable
equation in the electrical set is the cell potential Ecell(t) which is calculated with the Nernst’s
equation. Equation (1) is a simplification of the Nernst’s due the assumptions mentioned above.
Ed,cell(t) represents the electrical effect of gas pressure changes during load transients and classical
voltage drops:

Ecell(t) = E0(t) +
(

R·T(t)
2·F

)
· ln
[
p∗H2(t)·

(
p∗O2(t)

)0.5
]
− Ed,cell(t) (1)

where T(t) is the cell temperature (K); F is the Faraday constant (96487 coulombs/mol); R is the ideal gas
constant (8.3143 J/mol K); E0(t) is the reference potential at standard conditions (298 K, 1 atm); pH2*(t)
is the H2 effective partial pressure; pO2*(t) is the O2 partial pressure. Ed,cell(t) is initially modelled in
Laplace domain as Equation (2) and implemented in the time domain in Equation (3):

Ed,cell = λ·I(s)· τes
τes + 1

(2)

Ed,cell = d·
[(

∆I·p
τ

)
+ I(t)

]
(3)

where I(t) is the current (A); p is the simulation step; d, τ are a delay constants related to PEMFC
distribution layers.

Regarding the thermal equations set, the thermal loss equation was modified to include the
cooling system of Nexa PEMFC. It is identified in Equation (4):

.
qloss(t) = hcell(t)·(T(t) + Troom(t))·Ncell ·Acell ·A f (t) (4)

where, hcell is the convective heat transfer coefficient (W/m2·K) of the stack; Ncell is the number of cells
in the stack; Acell is the cell area (cm2). The control system of a Nexa includes the operation of a fan and
cooling system, providing oxygen inlet and keeping the temperature under a limit to keep operation
conditions and avoid membrane damage. Af(t) is a coefficient to adjust the temperature related to the
cooling system.

The proposed model has been split into functional blocks (Figure 3), so each block can be analyzed
separately for fault diagnosis purposes. Each block contains tunable coefficients to reduce the difference
between the real and the simulated signals. The blocks and its respective coefficients are described
below. The active pressure block calculates the effective partial pressure in the anode and the cathode
side. The block has four parameters:

• c_APCD is a parameter related to the cell current density.
• c_APa is a parameter related to the distance between the anode channel and the catalyst surface.
• c_Apc1 is a parameter related to the distance between the cathode channel and the catalyst surface.
• c_Apc2 is a parameter that fits the pressure of saturated H2O curve in function of the temperature.

The voltage drop block represents the voltage losses by activation, internal resistance, and
concentration. The coefficients are:

• c_Act1 is a parameter related to the activation voltage drop that only depends on temperature.
• c_Act2 is a parameter related to the activation voltage drop, that depends on current

and temperature.
• c_Ohm1 is the parameter related to ohmic losses that depends on current and temperature.
• c_Ohm2 is a parameter related to ohmic losses that only depends on cur-rent.
• c_Conc is a parameter related to the voltage concentration drop.

The potential of the cell are calculated in the potential block which includes two coefficients:
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• c_Pot1 is a value that adjusts the internal electric potential of the cell.
• c_Pot2 is a parameter related to the free Gibbs energy (∆G).

The terminal block represents the electrical global stack behavior. This block includes the cell
potential, the voltage losses, and a voltage drop by fuel and oxidant delays during load transients.
The terminal block has the following parameters:

• c_TDD is the gasses delay time constant during load transients.
• c_TDDG represents a gain that affects the delay by load transients.

The heat loss block represents thermal losses that leave the stack by air convection and energy
absorbed by exhaust gases. The parameters are:

• c_HLh is a gain that affect the overall heat loss.
• c_HLaf is the parameter fitting the thermal loss associated to the cathode side. It is included in

the stack thermal loss.
• c_HLfan is a gain associated with the cooling fan system and it is included in the stack thermal loss.

The PEM block merges the electrical and the thermal equations to represent the global PEMFC
performance. This block has one parameter:

• c_PEMh is related to the total mass of stack and its overall specific heat capacity.

A complete set of parameters (PS) can be used to simulate the PEMFC. Therefore, the goal of
this research will be the search for the set of parameters that minimizes the difference between the
PEMFC real outputs and the model outputs. The notation used to define the different elements of the
algorithms is presented below:

PS = {c_APCD, c_APa, c_APc1, c_APc2, c_Act1, c_Act2, c_Ohm1, c_Ohm2,

c_Conc, c_Pot1, c_Pot2, c_TDD, c_TDDG, c_HLh, c_HLaf, c_HLfan, c_PEMh}

A population of parameter sets (an array of parameter sets) will be denoted as:

PSk =
{

PSk
1 , PSk

2 , PSk
3 , . . . , PSk

j

}
where PSk is the population of the k-th iteration:

PSk
j =

{
ck

1,j, ck
2,j, ck

3,j, . . . , ck
n,j

}
where PSj

k is jth parameter set of the kth population and the ith model parameter will be noted as
ck

i,j. For example, c7
1,2 corresponds with the value of parameter 1 c_APCD in parameter set 2 of the

7th population.
The model was programmed and tested with initial coefficients taken from [24] and from the

device manufacturer manuals. This PEMFC model was simulated using real inputs signals obtained
from real operation of a Nexa 1.2 kW PEMFC using the device software (NexaMon OEM 2.0). Figure 4
shows the predicted voltage and temperature as well as the real values. Therefore, despite the fact that
there is a significant difference, the model seems to be suitable to represent the system dynamics after
a suitable parameter fitting. The MSE obtained with the initial coefficients represent a challenge in the
identification process because the huge initial errors make it difficult to find the optimal parameter set.
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3. Parameter Identification

The PEMFC model, the identification process, and the algorithms were implemented in the
LabVIEW® environment, achieving a modular and versatile programming structure. Figure 5 shows
the identification process. The process begins with the estimation of the initial coefficients. The second
step is the creation of a first population using a random function starting from the initial coefficients
set. In the third step, each coefficient set is simulated in the model with a real data input file. At least,
outputs from simulated and real data are compared in order to calculate the error. The optimization
process ends when a stop condition is met. The stop condition can be specified as a threshold on
the error or as a maximum number of iterations. If the stop condition is not fulfilled, the OA creates
a new population by using a genetic algorithm. This new population is evaluated again in Step 3,
thus repeating the process until the optimization ends.
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The initial population is created from an initial PS1
1 as indicated in Equation (5):

PS1
j =

[
j = 1 : ci,1 = ci,1
j ≥ 1 : ci,1 = (ci,1·z·vd) + ci,1

]
(5)

where z is a random number in the range [−1, 1] and vd is a value to generate initial dispersion (some
GAs include special criteria to create this first population). Each εPS1

j is simulated and comparing the

real output with simulated outputs, to calculate the error εPS1
j with Equation (6):

εPS1
j =

(
εV + εT

2

)
(6)

where εV is the output voltage error, and εT is the stack temperature error, they are calculated as:

εV =

(
RMSEV

FV
·100

)
(7)

εT =

(
RMSET

FT
·100

)
(8)

where RMSEV and RMSET stand for the root mean square error between real and simulated output
voltage signals and stack temperature signals, respectively. FSV and FST stand for the device full scales
related to the output voltage signal and stack temperature signal, respectively:

RMSEout =

√
1
n
·

n

∑
t=1

(OutR(t)−OutS(t))
2 (9)

where n is the data length; OutR(t) and OutS(t) are the real and simulated output signal values at time
t, respectively. Therefore, the goal is to minimize εPSk

j .
Each OA uses a particular policy to create the new population from the previous evaluated

population. The goal is to converge to the optimal solution in the minimum number of steps. In order
to perform this operation, OAs include random components to search for the global best solution
which include values of dispersion to spread or to focus the offspring near a possible solution for
each iteration.

Previous works dealing with PEMFC parameters identification have tested PSO [7,26], HADE [12]
and EA [25]. HADE is an evolution in parameter identification that surpasses the PSO results and EA
was tested to identify the thermal component of a PMFC. This paper tests the previous three algorithms
and includes two new proposals to solve some difficulties found in the model identification.

One important feature of PSO is its ability to gradually focus the search around the minimum.
However, if the algorithm falls around a local minimum, PSO losses the ability to find other possible
solutions with better results. This paper proposes the introduction of periodic perturbations inside the
population in order to force PSO reactivation. The perturbation will consist of a new population PSl

j
based on the best global solution:

PSl
j =

{
cl

1,j, cl
2,j, cl

3,j, . . . , cl
n,j

}
(10)

cl
i,j =

(
cGBest

i ·z·n
)
+ cGBest

i (11)

where Ci
GBest is de i coefficient belonging to the global best solution until iteration k − 1, z is a random

number in the range [−1; 1], and n is a perturbation value. This proposal is named PSOp because the
use of perturbations.
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The PEMFC model identification uses seventeen parameters that must be evaluated so the process
has a considerable computational demand. Therefore, in order to simplify the identification process,
another GA called scout genetic algorithm (ScGA) is proposed. RGA is a minimalistic GA that creates
new populations based on the overall best solution found. The progeny is split into two groups,
the offspring and the scouts:

PSl+1
j =

{
O f f spring number = j·(1− Sn)

Scout number = j·Sn

}
(12)

where j is the population size and Sn is a value in the range [0; 1] which represents the percent of scouts
in the population. The offspring population is calculated as:

PSl+1
os =

(
PSGBest

j ·vos·zj

)
+ PSGBest

j (13)

where PSj
GBest is the coefficient set achieving the best solution until iteration k, zj is a random number

in the range [−1; 1] which modifies all values in one set, and vos is the spread value of offspring which
modifies the whole coefficient set.

The scout population is:

PSl+1
Sc =

{
cl+1

1,j , cl+1
2,j , cl+1

3,j , . . . , cl+1
i,(j.Sc)

}
(14)

where each cl+1
i,j is calculated as:

cl+1
i,j =

(
cGBest

i ·zi·vsc

)
+ cGBest

i (15)

where ci
GBest is the coefficient i of the global best solution until iteration k. zi is a random number in

the range [−1; 1] which affects only the ith coefficient, and vSc is the spread scout value.

4. Results

The identification process was carried out with the five OAs explained in the previous section:
PSO, HADE and EA as in previous approaches; PSOp and ScGA as the proposed new approaches.
For all OAs, the population size (j) was set to 100 individuals starting from the same initial PS1.
The initial population dispersion (vd) was set to 0.5 to create enough diversity. The maximum iteration
number (k) was set to 200 in order to give the same opportunity to each OA.

Figure 6 shows the global best error reached by each OA. The figure shows fast responses for all
the algorithms. However, HADE, EA, and PSO became stuck early in high errors. PSOp and ScGA
produced the lowest errors.
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Table 2 shows that ScGA is the best option to identify the PEMFC model regarding the precision,
velocity and computational cost. In the second place, the PSOp is the most accurate algorithm, but its
computational cost and velocity are not the best. The EA shows middle-level of precision and good
computational time that places it in the third position. PSO presents the known phenomena of getting
stuck around fake local minimal. Finally, HADE is placed in the last position. The optimization velocity
of HADE, EA, and PSOp algorithms indicates that an increment in the number of iterations could give
better results if the simulation time of the parameter identification process is minimal.

Table 2. OA Comparison.

Criteria/Algorithm PSO PSOp HADE EA ScGA

Precision (%)
Value 79.6 26.8 10.9 5.95 3.08
Score 2.97 1 4.07 2.22 1.15

Optimization velocity (iteration) Value 42 190 194 193 63
Score 1 4.52 4.62 4.60 1.50

Computational time (ms) Value 18.9 19.1 22.8 11.6 10.8
Score 1.75 1.77 2.11 1.07 1

Total score 5.72 7.29 10.80 7.89 3.65

Table 3 shows the found values in the identification process, these values were used to validate
the identified model.

Table 3. Initial and identified coefficients.

# Coefficient Initial Value Identified Value

1 c_APCD 5.00 × 10−1 6.46 × 10−1

2 c_APA 1.65 3.39
3 c_APC1 4.19 2.46
4 c_APC2 1.00 × 102 4.39 × 101

5 c_ACT1 1.30 9.37 × 10−1

6 c_ACT2 1.30 7.76 × 10−1

7 c_OHM1 −1.30 −1.13
8 c_OHM2 3.00 × 10−5 7.58 × 10−6

9 c_CONC −2.60 −3.87 × 10−1

10 c_POT1 1.58 × 10−2 4.50 × 10−3

11 c_POT2 1.63 × 10−1 5.24 × 10−2

12 c_TDDG 1.60 × 10−1 1.26 × 10−1

13 c_TDD 8.00 × 101 3.13 × 101

14 c_HLH 9.50 2.25
15 c_HLAF 5.16 1.14
16 c_HLFAN 7.67 5.22 × 10−3

17 c_PEMH 3.42 × 104 2.09 × 104

Due to the model complexity and its non-linearity, the set of identified values create one of the
multiple possible solutions that belong to a Pareto front. To validate the specific solution, the model
was configured with the identified parameters and tested against two load profiles obtained from
saved data files from a Nexa PEMFC. Figure 7 shows the current load profiles, which force different
dynamical PEMFC behaviors. The current profiles are loaded in the model with the other input signals.
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Figure 8 shows the model validation performed with the current profile 1. In the stack temperature
graphic (left) the simulated plot is ahead, but closely following the real plot. The output voltage graphic
shows that the simulated voltage follows the real data, but has a slow response respect to the changes
of load.
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Figure 9 shows the Profile 2 validation. Both graphics confirm the behavior mentioned above.
However, it is remarkable that the temperature simulated cannot decrease in the first section of the
profile. Table 4 shows the errors in the signals of voltage, temperature and the mean of voltage
-temperature using Equations (7) and (8), respectively.

Table 4. Simulation Results.

Current Profile εV (%) εT (%) ε (%)

1 2.21 1.97 2.09
2 2.75 2.22 2.48
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5. Conclusions and Future Works

This paper presents a non-linear model able to represent the real performance of a PEMFC, which
includes not only the electrical behavior but also the thermal behavior. The model has been fit to
represent a real Nexa 1.2 kW PEMFC behavior with the aid of GA. The initial coefficients extracted
from other papers produced an initial error above 30%.

This fact created an interesting challenge because the literature about PEMFC parameter fitting
identification processes starts with values close to the expected target. This research compares five
different GA algorithms to explore the best approach. Three of this GAs were taken from the literature
and two more were proposed in this work. It is shown that the proposed PSOp and ScGA are
remarkable algorithms because of their good precision and low computational cost.

The identified model was tested with real data and it showed good results with overall errors
under 3%. Despite the fact that the identification process achieves low errors, accuracy improvement
of the model will always be needed. Therefore, the work related to the model precision must continue
focused on analyzing the dynamic model behavior.

The PEMFC block model is behaving as a grey box model because some internal signals are
accessible. It is a useful feature to apply condition monitoring and fault diagnosis techniques.
The use of the identified model for real PEMFC fault diagnosis and condition monitoring will be
the next step of the research. The application of this complex and well fit mathematical model will
improve the diagnosis power of the standard procedures. Due to the low computational cost of the
identification process, the real device can be run parallel with the model. Therefore, the model can be
fed with the same inputs as the system in order to perform condition monitoring and diagnosis tasks.
The next challenges of this work are determination of the Pareto front of the possible solutions and
the boundaries of each parameter under normal device operation conditions. Study of the parameter
evolution using a chronological sequence of data files. Those identified values and its variations will
be analyzed to find its relationship with PEMFC aging symptoms, and PEMFC faults.
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