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Abstract: In order to alleviate the negative impacts of harmonically distorted grid conditions on
inverters, this paper presents a linear quadratic regulator (LQR)-based current control design for an
inductive-capacitive-inductive (LCL)-filtered grid-connected inverter. The proposed control scheme is
constructed based on the internal model (IM) principle in which a full-state feedback controller is used
for the purpose of stabilization and the integral terms as well as resonant terms are augmented into a
control structure for the reference tracking and harmonic compensation, respectively. Additionally, the
proposed scheme is implemented in the synchronous reference frame (SRF) to take advantage of the
simultaneous compensation for both the negative and positive sequence harmonics by one resonant
term. Since this leads to the decrease of necessary resonant terms by half, the computation effort of the
controller can be reduced. With regard to the full-state feedback control approach for the LCL-filtered
grid connected inverter, additional sensing devices are normally required to measure all of the
system state variables. However, this causes a complexity in hardware and high implementation cost
for measurement devices. To overcome this challenge, this paper presents a discrete-time current
full-state observer that uses only the information from the control input, grid-side current sensor,
and grid voltage sensor to estimate all of the system state variables with a high precision. Finally, an
optimal linear quadratic control approach is introduced for the purpose of choosing optimal feedback
gains, systematically, for both the controller and full-state observer. The simulation and experimental
results are presented to prove the effectiveness and validity of the proposed control scheme.

Keywords: distorted grid; digital signal processor (DSP) TMS320F28335; grid-connected inverter;
internal model; linear quadratic regulator; LCL filter

1. Introduction

The increasing interest in grid-connected voltage source inverters (VSI) for renewable energy
conversion systems poses a challenge to the current control design of inverter systems. In particular,
the current control scheme is responsible for a high quality of injected current to meet the power quality
standard of distributed generation such as the IEEE-519 in USA or the IEC 61000-3-2 in Europe [1]
even under harmonically distorted grid voltages. Additionally, the filter connected between the utility
grid and VSI plays an essential role to attenuate the current in high switching frequency from the pulse
width modulated inverter. In general, LCL filters are regarded as being satisfactory for three-phase
voltage source grid-connected inverters because they provide a better grid-side current quality with
lower costs and a smaller physical size when compared to the conventional L filters. Nevertheless,
the disadvantages of using LCL filters include a high-order system and the resonance behavior. As a
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result, the current control strategies of LCL-filtered inverters are more difficult and complex to stabilize
the system.

There are two methods to damp the resonance frequency of the LCL filter: passive damping
using additional physical components on LCL circuits, and active damping implemented by modifying
the control algorithm. A large number of studies in literature address the controller design in both
ways. In [2], a passive resistor is added in series with the filter capacitance with the aim of attenuating
the peak of LCL filter resonance. However, the main drawback of this method is that it causes extra
losses through heat dissipation and overall reduction of the system efficiency. On the other hand, the
active damping approaches are generally preferable and used quite commonly due to the fact that they
stabilize the system without increasing the losses. An active damping realized by virtual resistance
based on the capacitance current feedback is presented in [3–5]. In particular, Jia. Y et al. [3] presents
the capacitance current feedback active damping implemented via a proportional gain of the feedback
signal. The stability enhancement and robustness against distorted grid voltages are also discussed in
this work. Similarly, the capacitor current feedback loop of the LCL filter is implemented to improve both
the damping characteristic and inner-loop stability of a hierarchical control structure [4]. Furthermore,
an H-infinity repetitive controller in [5] demonstrates a better performance and efficiency of the inverter
by introducing the feedback of capacitor current to damp the resonance. Even though the stabilization
can be achieved, those schemes increase the complexity and cost in hardware caused by extra sensors
to obtain capacitor currents. As in other approaches, the studies in [6–8] present a state-space control
scheme which provides a convenient and straightforward way for resonance damping. In order to avoid
extra sensing devices, a full-state observer is also presented in these works, whereupon the number of
sensors used in the controller is compatible with the design of the conventional L filter case.

Aside from the resonance of the LCL filter, the issue of grid voltage distortion should be taken
into account in a current controller design for a grid-connected inverter. Thus, the adoption of a
proportional-resonant (PR) controller in the control strategy was studied widely in both classical and
modern control approaches to improve the power quality. Conventionally, the proportional-integral
(PI) controllers in rotating frame and the resonant controller in the stationary frame have been studied
in detail in [9], which demonstrates that an equivalent control performance can be achieved by these
controllers. The research work in [10] uses multiple PI controllers that are implemented in respective
reference frames rotating with the fundamental and harmonic frequencies to achieve control objectives
such as reference tracking and harmonic compensation. Another approach uses a PR scheme and
harmonic compensation control performing at particular frequencies in the stationary frame to restrain
the disturbance caused by the distorted grid voltage [3,11–15]. However, since these approaches
require two regulators to compensate both the negative and positive sequences, several regulators
might be necessary in the control scheme to meet the required total harmonic distortion (THD)
performance, which often leads to a significantly heavy computational burden. In order to reduce
the complexity of the digital implementation, the PI and resonant (PI-RES) current control scheme
constructed in the synchronous reference frame (SRF) has been studied in [16–18] to achieve multiple
harmonic compensation with the number of resonant controllers reduced by half. In particular, PI-RES
control schemes in the SRF are proposed for active power filters [18] or a three-phase grid converter
system [16,17] for the purpose of compensating multiple harmonics.

Aside from the resonant control scheme, an H-infinity repetitive control approach was studied
in [6] which presented the robustness against the system parameter variations of the LCL-type
grid-connected inverter. In addition, Fu. X et al. investigated a neural network (NN)-based
vector control approach for single-phase grid-connected converters to achieve an improved control
performance without any damping method for LCL filter [19].

In addition to the typical control structure based on the transfer function design [3,13–15], the
internal model (IM) principle proposed by Francis and Woham [20] has been applied to design
controllers such as the PI and PR in the state-space. In this regard, several studies considered the
IM approach to integrate control terms into the current control structure [17,21–23]. However, such
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a multivariable design approach also poses a challenge to an appropriate selection of controller
gains to stabilize the system as well as to ensure both the desired steady-state and transient-state
performances. The current controller design using the direct pole placement method in the state-space
has been accomplished in the continuous-time domain [7], as well as in the discrete-time domain [8,21].
Although the controller gains can be chosen based on the open-loop poles and the desired dynamics of
the closed-loop system, the pole placement method is not an attractive way in a complex system due
to the laborious process to select a large number of state-feedback and controller gains. On the other
hand, the studies in [12,17,22] solve the linear matric inequalities derived from the stability condition
in the Lyapunov sense to obtain the controller gains systematically. In the same vein, an optimal
solution based on the linear quadratic regulator (LQR) has been presented in [23], which optimizes the
cost function to calculate the optimal gains of the system.

In regard to the solution to reduce the number of needed sensors while still meeting the
requirement on the availability of system state variables for full-state feedback controller, many types
of observer have been studied to estimate the system state variables by using only the information
from the system input and output signals. In particular, the research works in [7,8,17,21] employ
the prediction-type full-state observer, while the study in [24] presents the reduced-order observer.
However, there are not many studies regarding the current full-state observer in the discrete-time
domain and its performance applied to three-phase LCL-filtered grid-connected inverters, even though
it is known to have the advantages that the estimated value is based on the current measurement in
comparison with the prediction-type observer and the impact of possible noise from the system output
signals can be avoided.

This paper presents a control design methodology for a grid-connected inverter with an LCL
filter in the discrete-time state-space, where the current control design is accomplished by a full-state
feedback control after incorporating the integral and resonant terms into control structure. In this
proposed scheme, the controller is implemented in the SRF in order that the integral control on the
DC quantities can ensure zero steady-state current error. Furthermore, four harmonic components in
phase currents at the 5th, 7th, 11th and 13th order can be effectively compensated at the same time
with only two resonant terms at 6th and 12th order. With an aim of reducing the total number of
sensors required for the control of LCL-filtered grid-connected inverters, a current full-state observer
is presented in the discrete-time domain with excellent estimation capability. The augmentation of the
resonant terms as well as the integral term into an inverter system model causes an increase in the
number of feedback gains to be selected. To choose the feedback gains in a systematic way, the optimal
linear quadratic control approach is adopted in this paper. By minimizing the cost function to satisfy
the stability and robustness requirements of the system, the overall system can be designed in an
effective and straightforward way. As a result, both the reference tracking and harmonic compensation
capability can be achieved in an LCL-filtered grid-connected inverter with an LQR approach by using
only the grid-side current sensor and grid voltage sensor. To demonstrate the effectiveness and validity
of the proposed control scheme, the PSIM software-based simulation (9.1, Powersim, Rockville, MD,
USA) and experiments have been carried out comprehensively by using a three-phase 2 kVA prototype
grid-connected inverter under adverse grid conditions.

2. State-Space Description of a Grid-Connected Inverter with LCL Filter

2.1. Modeling of a Grid-Connected Inverter with LCL Filter

In the SRF, three-phase variables “abc” are transformed into two orthogonal DC phasor quantities
“dq” by means of the Park’s transformation as follows: fq

fd
f0

 =
2
3

 cos(θ) cos(θ − 2π/3) cos(θ + 2π/3)

sin(θ) sin(θ − 2π/3) sin(θ + 2π/3)
1/2 1/2 1/2


 fa

fb
fc

 (1)
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where f denotes the variable being transformed and θ is the rotating phasor angle.
Figure 1 shows a configuration of a three-phase grid-connected inverter with an LCL filter,

in which VDC denotes the DC-link voltage, R1, R2, L1, and L2 are the filter resistances and filter
inductances, respectively, and C is the filter capacitance. In the SRF, the mathematical model of the
inverter system can be expressed as follows:

.
iq
2 = −R2

L2
iq
2 − ωid

2 +
1
L2

vq
c −

1
L2

eq (2)

.

id
2 = −R2

L2
id
2 + ωiq

2 +
1
L2

vd
c −

1
L2

ed (3)

.
iq
1 = −R1

L1
iq
1 − ωid

1 −
1
L1

vq
c +

1
L1

vq
i (4)

.

id
1 = −R1

L1
id
1 + ωiq

1 −
1
L1

vd
c +

1
L1

vd
i (5)

.
vq

c = −ωvd
c −

1
C

iq
2 +

1
C

iq
1 (6)

.

vd
c = ωvq

c −
1
C

id
2 +

1
C

id
1 (7)

where the superscript “q” and “d” denote the q-axis and d-axis variables, respectively, ω is the angular
frequency of the grid voltage, i1 is the inverter-side current, i2 is the grid-side current, vc is the capacitor
voltage, e is the grid voltage, and vi is the inverter output voltage.
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Figure 1. Configuration of a grid-connected inverter with inductive-capacitive-inductive (LCL) filter.

From Equations (2) to (7), the continuous-time representation of inverter system can be expressed
in the SRF as:

.
x(t) = Ax(t) + Bu(t) + De(t) (8)

y(t) = Cx(t) (9)

where x =
[
iq
2 id

2 iq
1 id

1 vq
c vd

c

]T
is the system state vector, u = [vq

i vd
i ]

T is the system input vector,

e = [eq ed]T is the grid voltage vector, and the system matrices A, B, C, and D are expressed as:

A =



−R2/L2 −ω 0 0 1/L2 0
ω −R2/L2 0 0 0 1/L2

0 0 −R1/L1 −ω −1/L1 0
0 0 ω −R1/L1 0 −1/L1

−1/C 0 1/C 0 0 −ω

0 −1/C 0 1/C ω 0


(10)
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B =



0
0

1/L1

0
0
0

0
0
0

1/L1

0
0


, D =



−1/L2

0
0

0
−1/L2

0
0
0
0

0
0
0


, C =

[
1 0 0
0 1 0

0 0 0
0 0 0

]
(11)

2.2. System Model Discretization

For a digital implementation, the discretized model of inverter system is obtained by using the
zero-order hold with the sampling time Ts as [25]:

x(k + 1) = Adx(k) + Bdu(k) + Dde(k) (12)

y(k) = Cdx(k) (13)

where the matrices Ad, Bd, Cd, and Dd can be calculated as follows:

Ad = eATs = I +
ATs

1!
+

A2T2
s

2!
+ . . . (14)

Bd = A−1(Ad − I)B, Cd = C (15)

Dd = A−1(Ad − I)D (16)

3. Proposed Control Scheme

Figure 2 represents the proposed control scheme for a three-phase inverter connected with the utility
grid through an LCL filter. The inverter is controlled by the proposed current controller through the
space vector pulse width modulation (PWM). Also, the phase-locked loop (PLL) scheme is implemented
to generate the phase angle of the grid voltage for the grid synchronization process. The proposed
control scheme is constructed by an integral-resonant state feedback controller and a current full-state
observer in the discrete-time domain with only the measurements of the grid-side currents and grid
voltages. Besides, the current full-state observer is also implemented by using LCL-filter inverter model
to estimate the system state variables x from the control input u and system outputs y. Those estimated
states are used for the full-state feedback controller to stabilize the whole system.
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3.1. Internal Model-Based Current Controller

To ensure asymptotic reference tracking as well as disturbance rejection for the harmonics in
the orders of 6th and 12th in the SRF, the integral-resonant state feedback control is constructed by
augmenting the integral and resonant terms in the discrete-time state-space based on the internal
model principle. An integral term in the state-space is expressed as [21,25]: .

xq
i (t).

xd
i (t)

 = APc

[
xq

i (t)
xd

i (t)

]
+ BPc

[
εq(t)
εd(t)

]
(17)

where ε = [εq εd]T = r − Cdx is the current error vector, r =
[
iq∗
2 id∗

2

]T
is the reference current vector,

and APc =

[
0 0
0 0

]
, BPc =

[
1 0
0 1

]
.

Similarly, resonant terms for the q-axis and d-axis in the state-space are expressed as [17,26]:
.
δ

q
1i(t).

δ
q
2i(t)

.
δ

d
1i(t)

.
δ

d
2i(t)

 = Arci


δ

q
1i(t)

δ
q
2i(t)

δd
1i(t)

δd
2i(t)

+ Brci

[
εq(t)
εd(t)

]
for i = 6, 12 (18)

where Arci =


0 1

−(iω)2 −2ξ(iω)

0 1
−(iω)2 −2ξ(iω)

, Brci =


0 0
1 0
0 0
0 1

, and ξ is a

damping factor.
As the damping ratio ξ is increased, it is well known that the magnitude of the frequency

response at the resonant frequency is reduced, and the frequency response is flattened. The purpose of
introducing the resonant terms is to effectively compensate the grid-side current harmonics caused by
distorted grid voltages with the high gain at selective frequencies. Moreover, the proposed scheme can
ensure the tracking performance of grid-side currents by adopting integral terms. Thus, damping ratio
ξ is selected as zero in this study, which ensures that the harmonics from distorted voltages can be
effectively compensated for by the high gain at selective frequencies.

The system states in Equations (17) and (18) are augmented as:

.
zc(t) = Aczc(t) + Bcε(t) (19)

where zc = [z0 z6 z12]
T is the entire state variables for integral and resonant terms with z0 =

[
xq

i xd
i

]
,

z6 =
[
δ

q
16 δ

q
26 δd

16 δd
26

]
, z12 =

[
δ

q
112 δ

q
212 δd

112 δd
212

]
:

Ac =

 APc

Arc6

Arc12

, and Bc =

 BPc

Brc6

Brc12


The discrete-time counterparts of Ac and Bc can be obtained as:

Acd = eAcTs = I +
AcTs

1!
+

A2
c T2

s
2!

+ . . . (20)

Bcd = A−1
c (Acd − I)Bc (21)
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Then, the entire control system can be augmented as follows:[
x(k + 1)
zc(k + 1)

]
=

[
Ad 0

−BcdCd Acd

][
x(k)
zc(k)

]
+

[
Bd
0

]
u(k) +

[
Dd
0

]
e(k) +

[
0

Bcd

]
r(k) (22)

y(k) =
[

Cd 0
][ x(k)

zc(k)

]
(23)

Considering the augmented system, the state feedback control is expressed as:

u(k) = −[KxKz]

[
x(k)
zc(k)

]
= ux(k) + uz(k) (24)

where ux(k) = −Kxx(k) and uz(k) = −Kzzc(k).
The augmented system in Equations (22)–(24) can be rewritten in a compact form as:

xe(k + 1) = Aexe(k) + Beu(k) + Dee(k) + Brer(k) (25)

y(k) = Cexe(k) (26)

u(k) = −Kxe(k) (27)

where K = [Kx Kz] is a set of feedback gains and Kz = [KPz K6z K12z]. The detailed block diagram of
the proposed current controller is depicted in Figure 3, where AP, Ar6, Ar12, BP, Br6, and Br12 denote
the discrete-time counterparts of APc, Arc6, Arc12, BPc, Brc6, and Brc12, respectively.
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+

Figure 3. Detailed control block diagram of the proposed current controller.
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3.2. Design of an Optimal Feedback Control Using Linear Quadratic Regulator (LQR) Approach

The state feedback control input u(k) will be an optimal control input to ensure the control
performance and system stability if the gain matrix K in system Equations (25)–(27) are evaluated
systematically by minimizing the discrete quadratic cost function as follows [27,28]:

J =
1
2

∞

∑
k=0

xe
T(k)Qxe(k) + uT(k)Ru(k) (28)

where Q is positive semi-definite matrix and R is positive definite matrix.
To obtain the optimal control input vector u(k) in closed loop form, an n × n real symmetric

matrix P with n being the number of state variables should be determined as the solution of the discrete
Riccati equation as follows:

P = Q + Ae
TPAe − Ae

TPBe

(
R + Be

TPBe

)−1
Be

TPAe. (29)

Then, the gain matrix K can be calculated in terms of P as follows:

K = R−1Be
T
(

Ae
T
)−1

(P − Q). (30)

The optimal control law is obtained by substituting Equations (30) to (27) as:

u(k) = −R−1Be
T
(

Ae
T
)−1

(P − Q)xe(k). (31)

Then, the whole control system can be re-modeled as:

xe(k + 1) =
{

Ae − Be

[
R−1Be

T
(

Ae
T
)−1

(P − Q)

]}
xe(k) + Dee(k) + Brer(k). (32)

The discrete Riccati Equation (29) can be solved by MATLAB (R2017b, The MathWorks, Inc,
Natick, MA, USA) functions “dare” and “dlqr”. It is obvious that all the elements in the feedback
gain matrix K rely on the choice of the symmetrical weighting matrices Q and R which determine
the relative importance of the state variable performance and expenditure of energy by control input
signals. The larger value of Q indicates that the system is stabilized with less change in the states,
while the smaller Q implies that the states would be in larger variation. Similarly, the emphasis on R
represents the behavior of the system states inputs. With the larger value of R, the system is stabilized
with less control input signals, whereas more energy is used to stabilize the whole system with smaller
value of R. In the proposed control scheme, the weighting matrices Q and R are selected as:

Q =

 10−2·I6×6 06×2 06×8

02×6 6.3 × 108·I2×2 02×8

08×6 08×2 6.3 × 108·I8×8

, R =

[
1 0
0 1

]
(33)

where In×m and 0n×m are the identity and zero matrices with appropriate dimensions, respectively.
To improve the transient responses as well as to achieve the control objectives, a large weighting value
of 6.3 × 108 is used for the state variables of the IM components zc, while a quite small value of 10−2 is
chosen for six system state variables. As a result, a fast reference tracking of state variables and a good
suppression capability for the distorted harmonics on grid voltages can be obtained. The simulation
and experimental results are presented in next section to demonstrate the performance of the optimal
control scheme.
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3.3. LQR-Based Current Full-State Observer in Discrete-Time

To realize a full-state feedback controller in the augmented system in Equations (25)–(27), all
the system state variables should be available for feedback purpose. However, in a three-phase
LCL-filtered grid-connected inverter, the additional sensing devices usually increase the total cost
and hardware complexity. Therefore, in the proposed control scheme, an LQR-based discrete-time
current full-state observer is employed to produce the estimated signals for the grid-side current î2,
the inverter-side current î1, and the capacitor voltages v̂c.

Regarding to the selection of observer type, there are three alternatives which are the
prediction-type observer, the current observer, and the reduced-order observer [20]. In the
prediction-type observer, the estimated states x̂(k) are determined based on the past measurement
of outputs at (k − 1)T. This means that the control signal ux(k) = −Kxx̂(k) does not utilize the most
current information on outputs y(k), which leads to the inaccuracy of estimated values and might
cause control performance degradation. On the other hand, the reduced-order observer can solve
the drawback of the prediction-type observer by using the measured states to estimate remaining
unmeasurable states at time kT. However, if the measurement variables are noisy, the imprecise
measured states may influence directly the feedback control inputs. For these reasons, the current
full-state observer is employed for the three-phase LCL-filtered grid-connected inverter in this paper,
which yields a precise estimation capability even under harmonically distorted grid voltage condition.

From the discretized model of the inverter system in Equations (12) and (13), a current full-state
observer is given as follows:

x(k + 1) = Adx̂(k) + Bdu(k) + Dde(k) (34)

x̂(k + 1) = x(k + 1) + Ke[y(k + 1)− Cdx(k + 1)] (35)

where the symbol “ˆ” denotes the estimated variables, Ke is the observer gain matrix, and x(k + 1) is
the first estimate of the state at time (k + 1)T. In this type of observer, x(k + 1) is first calculated from
the dynamics of system and input signal at kT, and then this estimation is added with the correction
term in Equation (35) when the output signals are measured at time (k + 1)T. Figure 4 presents a
discrete-time current full-state observer with a state-feedback controller, where the estimated state
variables are used to construct the state feedback control inputs.
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In order to determine the observer gain matrix Ke, the estimation error x̃ is defined as:

x̃(k) = x(k)− x̂(k) (36)

Then, the error dynamics of the observer can be obtained by subtracting Equation (35) from
Equation (12) as follows:

x̃(k + 1) = (Ad − KeCdAd)x̃(k) (37)

To ensure that the observer is stable and the estimated states well track the actual ones, the observer
gain matrix should be chosen in order that the matrix (Ad − KeCdAd) or (AT

d − (CdAd)
T)KT

e ) is stable.
By applying a LQR approach similar to the design of a state feedback control, the discrete Riccati
equation can be applied for observer design as:

Po = Qo + AdPoAd
T − AdPo(CdAd)

T(Ro + (CdAd)Po(CdAd)
T)−1(CdAd)PoAd

T (38)

where Po is the solution of Riccati equation (38), and Qo and Ro are weighting matrices. Hence, the
observer gain Ke can be calculated in terms of Po as follows:

Ke = Ro
−1CdAd(Ad)

−1(Po − Qo). (39)

In this paper, the optimal observer gains can be chosen by utilizing the MATLAB function “dlqr”.

4. Simulation Results

In order to verify the feasibility and validity of the proposed current control scheme, simulations
were carried out for an LCL-filtered three-phase grid-connected inverter based on the PSIM software.
The configuration of the inverter system and the proposed control scheme are depicted in Figure 2.
The system parameters are listed in Table 1.

Table 1. System parameters of a grid-connected inverter.

Parameters Value Units

DC-link voltage 420 V
Resistance (load bank) 24 Ω

Filter resistance 0.5 Ω
Filter capacitor 4.5 µF

Inverter-side filter inductance 1.7 mH
Grid-side filter inductance 0.9 mH

Grid voltage (line-to line rms) 220 V
Grid frequency 60 Hz

Figure 5 represents three-phase distorted grid voltages used for the simulations. The abnormal
grid voltages contain the harmonic components in the order of the 5th, 7th, 11th, and 13th with the
magnitude of 5% with respect to the nominal grid voltages, which yields the THD value of 9.99%.
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Figure 5. Distorted grid voltages. (a) Three-phase distorted grid voltages; (b) Fast Fourier transform
(FFT) result of a-phase voltage.

Figure 6 shows the simulation results of the proposed current control scheme at steady-state
under the distorted grid condition as in Figure 5. Figure 6a shows the grid-side current responses at
the SRF with the reference currents. As can be observed from Figure 6a, the grid-side currents track
the reference values well. Figure 6b,c represent the steady-state responses for the inverter-side current
and capacitor voltage, respectively.

To demonstrate the transient performance of the proposed current control scheme, Figure 7 shows
the simulation results under the same distorted grid condition when the q-axis reference current
has a step change from 4 to 7 A at 0.25 s. Similarly, Figure 7a through Figure 7c represents the
grid-side current responses, inverter-side current responses, and capacitor voltage responses at the
SRF, respectively. As is shown in Figure 7a, the grid-side currents reach the reference very rapidly,
which indicates a sufficiently fast transient response of the proposed control scheme. In addition, the
fast transient performance of the proposed control scheme can be also inferred from Figure 7b,c.
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Figure 6. Simulation results for steady-state responses under distorted grid voltage with the proposed
controller. (a) Grid-side current responses at the synchronous reference frame (SRF); (b) Inverter-side
current responses at the SRF; (c) Capacitor voltage responses at the SRF.
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Figure 7. Simulation results for transient responses under distorted grid voltage with the proposed
controller. (a) Current references and grid-side current responses at the synchronous reference frame
(SRF); (b) inverter-side current responses at the SRF; (c) capacitor voltage responses at the SRF.

Figure 8 shows the simulation results for the inverter states and estimated states using the
proposed integral-resonant state feedback control scheme with the discrete-time current full-state
observer at the SRF. The optimal observer gains are obtained by using the MATLAB “dlqr” function
with given inverter parameters. As can be clearly observed from Figure 8, the estimated states instantly
converge to the actual ones even during oscillating transient periods, which confirms a fast and stable
operation of the observer.
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Figure 8. Simulation results for the proposed control scheme with the discrete-time full-state observer
under step change in q-axis current reference; states and estimated states. (a) Waveforms of grid-side
currents and estimated states at the SRF; (b) waveforms of inverter-side currents and estimated states
at the SRF; (c) waveforms of capacitor voltages and estimated states at the SRF.

Figure 9 represents the simulation results for measured three-phase variables using the proposed
integral-resonant state feedback control scheme with the discrete-time current full-state observer when
the q-axis reference current has a step change. As can be seen from Figure 9a, three-phase grid-side
current waveforms remain relatively sinusoidal with a desired transient performance. In fact, the
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grid-side phase currents have the THD level of 3.57% in this case. Also, Figure 9b,c show actual
three-phase inverter-side current waveforms and three-phase capacitor voltage waveforms.
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Figure 9. Simulation results for measured three-phase variables with the proposed control scheme
under step change in q-axis current reference. (a) Three-phase grid-side current waveforms; (b)
three-phase inverter-side current waveforms; (c) three-phase capacitor voltage waveforms.

Figure 10 shows the simulation results for the estimated waveforms of three-phase grid-side
currents, inverter-side currents, and capacitor voltages under the same condition of Figure 9. In these
figures, the estimated three-phase variables are constructed in a DSP by using the estimated states at
the SRF to demonstrate the estimating performance of the discrete-time current full-state observer.
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Obviously, the estimated three-phase variables are compatible with the actual measured three-phase
waveforms in Figure 9.
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Figure 10. Simulation results for estimated three-phase variables with state observer under step change
in q-axis current reference. (a) Estimated three-phase grid-side currents; (b) estimated three-phase
inverter-side currents; (c) estimated three-phase capacitor voltages.

To verify the quality of injected grid currents for the proposed integral-resonant controller under a
distorted grid voltage, Figure 11 shows the FFT result for grid-side a-phase current with the harmonic
limits specified by the grid interconnection regulation IEEE Std. 1547 [29]. As can be seen clearly, the
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grid-side phase current yields only small 5th, 7th, 11th, and 13th harmonics components. The resultant
THD value is 3.569%, which meets the quality criteria of inverter injected current.
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Figure 11. FFT result for grid-side a-phase current of the proposed controller under distorted
grid voltages.

In order to verify the effectiveness of the proposed current control scheme, the performance of
the proposed LQR-based current control is compared to PR plus harmonic compensator (PR + HC)
structure presented in [3] under the same parameters as proposed in Table 1 and grid voltage condition
presented in Figure 5a. The transfer function of a PI + HC controller is given in the stationary frame as:

G = KP +
Kr1s

s2 + ω2 +
Kr5s

s2 + (5ω)2 +
Kr7s

s2 + (7ω)2 +
Kr11s

s2 + (11ω)2 +
Kr13s

s2 + (13ω)2 (40)

where KP is the proportional gain and Kri is the resonant gain with i = 1, 5, 7, 11, 13.
Figure 12 shows the simulation results for the control scheme in [3]. As can be observed from the

grid-side current responses in Figure 12a, the PR + HC current control still can compensate effectively
the harmonics caused by background voltages. However, the THD value of a-phase current is slightly
increased to 3.69% in comparison to that obtained from the LCL filter parameters in [3] because the
filter inductor values are reduced. Figure 12b presents the simulation results for the reference tracking
performance of grid-side currents in the stationary frame.
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Figure 12. Simulation results for the proportional-resonant plus harmonic compensator (PR + HC)
control scheme under step change. (a) Three-phase grid-side current waveforms; (b) current references
and grid-side current responses at the stationary frame.

In spite of the control performance of the study in [3], it is worth mentioning that the main
drawback of the work in [3] lies in the requirement for additional current sensing devices. As obviously
shown in the control structure, the method in [3] requires the measurement of currents in inverter-side
as well as in grid-side to obtain the capacitor current for active damping. Generally, since additional
sensing devices cause complexity in the hardware and a high implementation cost, the purpose of this
study is to implement a desired control performance by utilizing only the grid-side current sensors
and grid voltage sensors.

Furthermore, the control method in [3] requires 5 resonant controllers including the fundamental
component for the α-axis and additional 5 resonant controllers for the β-axis to compensate for the
harmonic components in the order of the 5th, 7th, 11th, and 13th. On the contrary, since the proposed
scheme is designed in the synchronous reference frame, the total of 4 resonant controllers are sufficient
for the q- and d- axes to compensate the 6th and 12th order harmonic components. From the viewpoint
of digital implementation burden, the proposed control scheme requires only an acceptable level of
computation and complexity.

5. Experimental Results

In order to verify the feasibility of the proposed control scheme, the control algorithm is
implemented on 32-bit floating-point DSP TMS320F28335 (Texas Instruments, Inc, Dallas, TX, USA)
to control a 2 kVA prototype grid-connected inverter [30]. The configuration of the entire system is
illustrated in Figure 13a. The sampling period is set to 100 µs, which results in the switching frequency
of 10 kHz. Figure 13b depicts the photograph of the experimental test setup. The experimental setup is
composed of a three-phase inverter connected to the grid through an LCL filter, a magnetic contactor
for grid connecting operations, an AC power source to emulate three-phase grid voltages in the ideal as
well as distorted grid conditions, and current and voltage sensors used to measure grid-side currents
and grid voltages, respectively.

Figure 14a shows three-phase distorted grid voltages used for the experimental evaluation. Similar
to Figure 5 in the simulation, these grid voltages contain the 5th, 7th, 11th, and 13th harmonics with
the magnitude of 5% of the fundamental component. Figure 14b presents the FFT results for a-phase
grid voltage, which shows each harmonic component similar to Figure 5b.
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Figure 13. Configuration of the experimental system. (a) Block diagram of the overall system;
(b) photograph of the experimental test setup.

Figure 15 shows the experimental results for the proposed control scheme under the step change
in q-axis current reference from 4 to 6 A. It can be observed from Figure 15a that the inverter
output currents can track their references well and instantly reach a new steady-state value, which
demonstrates a fast transient response of the proposed control scheme. Figure 15b shows three-phase
grid-side current responses. It is confirmed from this figure that the proposed control scheme provides
considerable sinusoidal grid-side phase currents, which coincides well with the simulation results in
Figure 9a, verifying a stable and reliable operation of the inverter system.
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Figure 14. Distorted three-phase grid voltages used in the experiments. (a) Three-phase distorted grid
voltages; (b) FFT result of a-phase grid voltage.
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Figure 15. Experimental results for the proposed control scheme under step change in q-axis current
reference. (a) Grid-side current responses at the SRF; (b) three-phase grid-side current responses.

Figure 16 presents the experimental results for the estimated grid-side currents, estimated
inverter-side currents, and estimated capacitor voltages by using the discrete-time current full-state
observer at the SRF under the step change in q-axis current reference. The estimated grid-side currents
at the SRF in Figure 16a show similar behavior with actual states in Figure 15a. Also, the experimental
estimated waveforms are very similar to the simulation results in Figure 8.
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Figure 16. Experimental results for the estimated states with the discrete-time full-state observer
under step change in q-axis current reference. (a) Responses of estimated grid-side currents at the
SRF; (b) responses of estimated inverter-side currents at the SRF; (c) responses of estimated capacitor
voltages at the SRF.

Figure 17a shows the experimental results for three-phase grid-side current waveforms at
steady-state with the proposed current control scheme under harmonically distorted grid conditions
as in Figure 14. Generally, the harmonic distortion on grid voltages directly influence on the grid-side
current control performance, reducing the power quality of distributed generation system. However,
the three-phase grid-side current waveform of the proposed scheme shows quite sinusoidal phase
currents in spite of such a severe harmonic distortion on grid voltages. As is shown in Figure 17b, the
FFT result for a-phase current shows negligibly small harmonic components in output current, which
successfully meets the requirements for the harmonic limits specified by IEEE Standard 519-1992.
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Figure 17. Experimental results for the proposed control scheme at steady-state. (a) Three-phase
grid-side current waveforms; (b) FFT result for a-phase current.

Figure 18 represents the experimental results for the estimating performance of the discrete-time
current full-state observer. To evaluate the estimating performance of the observer by comparison,
Figure 18a,b show the estimating performance for grid-side three-phase currents and the comparison
of these estimated signals with measured grid-side currents. In these figures, the estimated three-phase
variables îa

2, îb
2, and îc

2 are constructed in a DSP by using the estimated states îq
2 and îd

2 at the SRF.
The experimental results are well matched with the simulation results in Figure 10a and validate
the stability and reliability of the estimated states by the current full-state observer. Similarly,
Figure 18c,d show the estimating performance for inverter-side three-phase currents, and Figure 18e,f
for three-phase capacitor voltages, respectively. Also, the estimated three-phase variables îa

1, îb
1, and îc

1
are calculated in a DSP from the estimated currents îq

1 and îd
1 at the SRF, and v̂a

c , v̂b
c , and v̂c

c from the
estimated capacitor voltages v̂q

c and v̂d
c at the SRF, respectively. It can be confirmed from these figures

that all the estimated three-phase variables converge to actual measured three-phase variables well.
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Figure 18. Experimental results for the estimating performance with the discrete-time full-state observer.
(a) Estimating performance for grid-side three-phase currents; (b) comparison of the estimated grid-side
currents and measured grid-side currents; (c) estimating performance for inverter-side three-phase
currents; (d) comparison of the estimated inverter-side currents and measured inverter-side currents;
(e) estimating performance for three-phase capacitor voltages; (f) comparison of the estimated capacitor
voltage and measured capacitor voltage.
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6. Conclusions

This paper has presented an LQR-based current control design for an LCL-filtered grid-connected
inverter. The proposed control scheme has been constructed by using the IM principle in the SRF to
augment integral and resonant terms into a state feedback control. As a result, the control scheme
successfully achieves control objectives such as an asymptotic reference tracking and disturbance
rejection, which significantly reduces the impact of grid voltage distortion on the output current.
Moreover, since the proposed scheme is implemented in the SRF, both the negative and positive
sequence harmonics can be effectively compensated for by only one resonant term, which leads to
a decrease in the number of regulators. This feature is usually preferred because the required THD
performance can be met with further reduction in computation efforts. Furthermore, with the aim
of avoiding the increase of sensing devices in an LCL-filtered grid-connected inverter system in
comparison with L-filtered counterpart, a current full-state observer in the discrete-time domain has
been discussed in detail to estimate all the state variables. On account of the augmentation of the
resonant terms as well as the integral term into the inverter model, an increased number of feedback
gains should be selected. To deal with such a limitation, an optimal LQR approach is adopted as a
way of choosing the feedback gains systematically, in which the discrete cost function is minimized to
satisfy the stability and robustness requirements of the system. As a result, both the system feedback
and observer gains can be selected based on the LQR method in an effective and straightforward way.
In addition to that, the control objectives such as the reference tracking and harmonic compensation
capability can be effectively achieved without increasing the required number of sensing devices.

In order to evaluate the feasibility and validity of the proposed control scheme, the whole control
algorithm is implemented on 32-bit floating-point DSP TMS320F28335 to control 2 kVA prototype
grid-connected inverter. Comprehensive simulation and experimental results are presented under
distorted grid voltage conditions to demonstrate the usefulness of the proposed current control scheme.
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