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Abstract: A prospect of increasing penetration of uncoordinated electric vehicles (EVs) together
with intermittent renewable energy generation in microgrid systems has motivated us to explore an
effective strategy for safe and economic operation of such distributed generation systems. This paper
presents a robust economic dispatch strategy for grid-connected microgrids. Uncertainty from wind
power and EV charging loads is modeled as an uncertain set of interval predictions. Considering
the worst case scenario, the proposed strategy can help to regulate the EV charging behaviors,
and distributed generation in order to reduce operation cost under practical constraints. To address
the issue of over-conservatism of robust optimization, a dispatch interval coefficient is introduced to
adjust the level of robustness with probabilistic bounds on constraints, which gradually improves
the system's economic efficiency. In addition, in order to facilitate the decision-making strategies
from an economic perspective, this paper explores the relationship between the volatility of uncertain
parameters and the economy based on the theory of interval forecast. Numerical case studies
demonstrate the feasibility and robustness of the proposed dispatch strategy.

Keywords: microgrids; adjustable robust optimization; multi-dispatch; grouping dispatch; electric
vehicles; wind power; economic analysis

1. Introduction

Due to their environmental friendliness, electric vehicles (EVs) have drawn great attention during
recent decades in terms of power demand [1,2]. Many countries have accelerated constructing charging
facilities and issuing policies to promote the development of EVs [3]. According to the Chinese “Energy
saving and new energy vehicle industry development plan (2011–2020)”, there will be more than
60 million EVs by 2030. It was predicted that there will be 5 million EVs in China and more than
30 million EVs in the world within the coming decade [4]. The number of charging stations has
been increased dramatically within residential areas during the past few years. However, since the
EV charging time, locations, user behaviors and load profiles are highly dynamic, the large-scale
penetration of uncontrolled and uncoordinated EVs into power systems, especially distribution
networks, will lead to a high level of volatility and increase potential sources of power system
disturbances [5].
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In addition, clean and effective renewable energy has been widely exploited in response to
the energy self-sufficiency and air pollution emitted by conventional fossil-fuel power plants [6–9].
Due to the intermittency and fluctuation characteristics of the renewable energy, its development and
utilization must overcome the challenges from these obstacles [10]. The rapid development of a smart
grid provides a new choice for the efficient integration of EVs and renewable energy.

In the microgrid environment, the interactive technology with EVs can provide support for
on-site consumption and stable grid interconnection of renewable energy [11,12]; in the meantime,
renewable energy can be absorbed or incorporated into large grids in the form of microgrids [13].
The EVs can be employed as energy storage units for efficient connection of renewable energy sources,
distributed energy sources and power systems [14]. Mena et al. [15] proposed a multi-objective
optimization framework including renewable power supply and energy storage system in order to
solve the uncertainties caused by the wind, sun light and EVs, in which EVs have three states of charge,
discharge and unconnected, and obtained the optimal distributed generation integrated network
considering multiple sources of uncertain variables using NSGA-II. Rabiee et al. [16] discussed a
scheduling strategy of Vehicle-to-Grid (V2G) EVs with “source and load” characteristics in microgrid.
The study also considered the uncertainty of wind and solar power generation and reduced the network
operation cost and emission by establishing a two-stage model. From the perspective of distributed
energy costs, Cardoso et al. [17] analyzed the technical challenges and economic changes brought
by the access of large-scale V2G EVs to the microgrid and established an uncertainty optimization
model that considers the travel time of the EVs, the results of which indicate that large-scale EVs have
a positive impact on the microgrid operating economy.

With the rapid development of smart grid [18], grid-connected microgrid has become one of
the emerging subjects in the field of energy dispatching. Grid-connected microgrid is a cluster of
distributed generations (DGs) of renewable generations (RGs) or conventional generations (CGs),
flexible load (such as EVs) and local loads, which is usually managed by an energy management
system (EMS) to balance the connection of EVs and renewable energy [19]. Conventional microgrid
dispatch strategies simply look upon renewable energy as a certain factor representing a negative load.
However, the objective of microgrid is not only to satisfy the basic demand of power supply, but also to
improve efficiency in the economy and conservation in the environment [20]. References [21] and [22]
have built up multi-objective optimization models for microgrid with DGs and loads, which provide
an efficient integration of renewable energy and EVs, with simultaneous consideration of minimum
fuel costs, operation and maintenance (OM) costs and operation emissions. However, the models are
lacking in practical uncertainty considerations. Stochastic optimization (SO) provides an effective
way for solving optimization problems, in which the uncertain numerical data can be assumed to
follow a well-known probability distribution. For example, an SO was investigated for microgrid with
EVs and RGs in Reference [23] and the uncertainties of load demands and renewable generation was
incorporated with a probabilistically constrained approach in Reference [24].

In Reference [25], a unit commitment problem for EVs, RGs and CGs was proposed to reduce the
emission and the cost of a smart grid, and a firework algorithm was employed to solve the established
bi-objective problem. However, considering the complex operation details and various practical
constraints, it is difficult to identify accurate probability distributions for uncertainty factors of EVs and
RGs. A more reliable economic dispatch strategy is needed to help managing the microgrid schedule
by taking RGs and EVs into consideration simultaneously.

Robust optimization (RO) has good advantages in tolerating uncertainties in dispatch problems [26].
Tang et al. [27] have built a security economic dispatch of power system with an RO method, but the
proposed tool is over-conservative. Ben-Tal et al. [28] have presented an adjustable RO method,
which is effective to balance the conflict between the algorithm optimality and its robustness. Later,
Bertimas and Sim [29] proposed an adjustable RO with dispatch interval coefficient. The method
quantified the relationship between economic efficiency and robustness, and reduced the complexity
of previous robust model. Recently, many researchers have applied RO to decision-making problems
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on power systems, including EV charging scheduling [30,31], and incorporating PV power to the
power grid [32]. In References [33] and [34], the authors proposed adjustable RO models to incorporate
uncertain renewable generation in distribution system (DS), but failed to take the uncertain EV charging
behaviors into account.

The EV charging loads are influenced by their users’ travel habits, capacities of different EVs
and other related factors, and these characteristics make it difficult to predict accurate probability
distributions of EV charging loads. Therefore, uncertainty of EV charging loads should be taken into
consideration with the RO.

This paper proposes an adjustable robust optimization (RO) model to solve the multi-dispatch
problem for a residential microgrid, which is integrated with diesel engine (DE), micro turbine (MT),
wind turbine (WT) and a large number of EVs. The adjustable RO algorithm proposed in this paper
not only intends to guarantee the robustness of the system, but also tries to combine the volatility
of uncertain intervals with the energy economy, and thus systematically expound the application
of robust optimization in the energy economy. The contributions of this paper can be summarized
as following:

(1) The proposed RO model handles the uncertain sets of both EV charging loads and available wind
power by taking the worst scenario of uncertain variables into account. Comparison study is
taken between SO and RO applied in the microgrid system dispatch problem. According to the
numerical results, the RO dispatch strategy has outperformed on tolerating uncertainty, and its
robustness is stronger than conventional SO dispatch strategies, while SO dispatch strategy has
better economic performance than the RO dispatch strategy.

(2) The proposed RO model in the paper is a semi-infinite programming model, which has difficulty
in obtaining its analytical solution directly. The duality principle is explored to convert the
original RO model to a robust counterpart with linear constraint, which can be easily solved
with the Lagrange relaxation algorithm. In addition, in order to further reduce the computation
complexity, a grouping approach based on charging horizon is employed to handle the situation
when a large number of EVs access the microgrid system randomly at the same time.

(3) The RO dispatch strategy sacrifices economic efficiency to guarantee the robustness of the microgrid
system, which sometimes is over-protective or over-conservative. To avoid the over-conservatism
of RO, an improved dispatch interval coefficient is introduced to quantify the relationship between
economic efficiency and robustness of the RO model, which can provide a dispatch reference to
decision makers for robust dispatch of microgrid in advance.

The paper is organized as follows: The uncertainty sets for predicting wind power and EVs are
proposed in Section 2. Section 3 expands the multi-dispatch to propose an optimization model by
including wind power and EV charging. A robust optimization problem is formulated with a dispatch
interval coefficient to adjust the conservatism level in Section 4. A case study is presented in Section 5,
and conclusions are drawn in Section 6. The structure diagram of the scheduling system is shown in
Figure 1.
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2. Residential Microgrid with Wind Power and EV

2.1. Uncertainty Sets of Wind Turbines

Wind speed is modeled as a random variable with probability density function defined by,

fwind(V) =
V
η3 exp

(
− V2

2η2

)
(1)

which is known to be the Rayleigh distribution with V and η as the wind speed and distribution
parameter, respectively [34]. We consider the wind speed prediction as the mean value of Rayleigh
distribution, so the Rayleigh parameter is known as,

η = µ(V)

√
2
π

(2)

The wind speed has confidence interval P
{

θ ≤ θ ≤ θ
}
= 1− α The confidence interval represents

the range of uncertain data with a certain credibility.
By giving the wind speed, the output wind generator power is represented by,

W(V) =


0 V < Vin or Vout < V
aV + b Vin ≤ V ≤ Vr

Wr Vr ≤ V ≤ Vout

(3)
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According to the prediction interval theory, the uncertain set of wind generation can be
estimated with,

PWT =

{
PWTG

l,t =
___

PWTG
l,t +

∧
PWTG

l,t :
∧

PWTG
l,t ≤

∧
PWTG

l,t ≤
∧

PWTG
l,t

}
(4)

where variables with G in the superscripts are defined as predicted variables.

2.2. Uncertainty Sets of Electric Vehicles

The probability of an individual EV travelling a distance d can be represented by a logarithmic
normal distribution function [35],

h(d; µ, σ) =
1

d
√

2πσ2
e−

(ln d−µ)2

2σ2 (5)

According to parameter d, we can define the initial state of charge (SOC) of each EV by

SOC =

(
1− d

dr

)
× 100% (6)

According to Reference [36], Tn
start is formulated as a random variable with normal distribution,

the confidence interval of EV’s start charging time can be denoted by the upper and lower bounds as,

Tn
start =

[
Tn

start, Tn
start

]
(7)

The initial SOC of the n-th EV, can be denoted by its upper and lower bounds,

SOCn ∈
[
SOCn, SOCn

]
(8)

In order to determine the charging time period for all EVs, which is restricted by the random
SOC, we assume that all EVs have the same capacity and all the EV charging pile can provide the same
charging power. In summary, end-time of the i-th EV charging Tn

end can be calculated as,

Tn
end = Tn

start +
(1− SOC)× E

P
(9)

where P denotes the charging power of the n-th EV which can be considered as a constant.
The predicted EV charging load is summed up by the charging power of all EVs at one time.

The random behavior characteristics of EV charging can be described as the uncertainty set, which also
can be defined as the sum of the mean and the variance, with the respective lower and upper limits.

UEV =

{
PEVG

t =
___

PEVG
t +

∧
PEVG

t :
∧

PEVG
t ≤

∧
PEVG

t ≤
∧

PEVG
t

}
(10)

2.3. Grouping Dispatch Approach

The constraints of EVs are complicated due to the randomness of EV arrival times and their
initial SOCs. Therefore, simplifications of different extents are adopted to reduce computational
complexity [37].

We propose a grouping dispatch approach based on charging time to cut down the solution space.
Assume that all EV owners in the residential area connect their EVs to chargers when they arrive
at parking lots after work in the afternoon until they depart in the morning of next day. As shown
in Reference [26], the arrival time of EVs in a residential area occurs during 17:30–22:30, which can



Energies 2018, 11, 2050 6 of 22

be divided into ten periods, EVs arriving in each period is defined as one group. EVs that arrive
before 17:30 are combined into the same group as 17:30, and EVs that arrived after 22:30 are ignored in
the scheduling.

With the classification approach described above, EVs can be divided into K groups according
to their arrival times. Control center distributes the scheduled charge power PEVG

k,t of each group to
every EV in the group, and charging power of all EVs can be estimated as,

PEVG
t =

K

∑
k=1

PEVG
k,t (11)

3. Problem Formulation

A typical scheduling model of microgrid (MG) is defined as a multi-objective optimization
problem with respect to DE, MT, WT and EVs. The overall goal of the multi-operation management
problem in a typical MG is to simultaneously minimize the operating cost of the MG and the net
pollutants emission inside the grid while meeting the load demand. The mathematical model of
dispatch problem is formulated below.

3.1. Objective Functions

In this paper, we assume that RGs should be dispatched with a priority, and CGs are used to
supplement the RG capacity to meet the load demand. The mathematical model can be expressed as
following Reference [38].

3.1.1. Objective 1: Operating Cost Minimization

The total operating cost includes the fuel costs of DGs [22], operation and maintenance
cost, transmission cost between MG and the main power grid, and the battery degradation cost.
Such objective function can be formulated as below,

Min f1(x) = C1 =
T

∑
t=1

{
∑

i

[
C f (Pi,t) + COM(Pi,t) + Cbat(PEVt)

]
+ Cgrid,t

}
(12)

where Pi,t = [PDEg,t; PMTj,t; PWTl,t]; t = 1, 2, . . . , 24; Each cost functions in Equation (12) are
defined below:

C f (·) =
{

c1PDEg,t
2 + c2PDEg,t + c3

}
DE

+

{
y

PMTj,t

η
(

PMTj,t
)}

MT

COM(·) = kOMPi,t

Cbat(·) = anPEV2
k,t + bnPEVk,t + cn

The battery degradation model expresses the energy capacity loss per second (in Amp×Hour× Sec−1)
of a cell with respect to the charging current I and voltage V:

ϑcell(I, V) = β1 + β2 I + β3V + β4 I2 + β5V2 + β6 IV + β7V3 (13)

The parameters βi, i = 1, . . . , 7 are specified in Table 1 of Reference [39],

θcell(I, V) = Pcell∆TVcellϑcell(I, V) (14)

where the cell voltage Vcell of a lithium-ion battery changes with its state of charge (SOC).
More specifically, as the SOC of a cell varies from zero to a very low value socl > 0, Vcell rises
rapidly from zero to its nominal value Vnom.
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Assume that each cell will have a charging current of I = 103PEVn,t/MnVnom with current
coefficient Mn, the battery degradation cost of the n-th EV at time t can be expressed as,

Cbat = Mnθcell

(
103PEVk,t
MkVnom

, Vnom

)
= anPEV2

k,t + bnPEVk,t + cn

(15)

where
an = 106Pcell∆Tβ4/(MnVnom)

bn = 103Pcell∆T(β2 + β6Vnom)

cn = MnPcell∆TVnom

(
β1 + β3Vnom + β5V2

nom + β7V3
nom

)
.

The transmission power between the main power grid and MG can be formulated as below,

Cgrid,t =

{
P+

grid,t Msell,t P+
grid,t ≥ 0

P−grid,t Mbuy,t P−grid,t ≤ 0
(16)

3.1.2. Objective 2: Pollutants Emission Minimization

The environmental pollution problems will be caused in the process of power generation of CG
and transmission power. Three of the most important pollutants are involved in the objective function:
CO2 (carbon dioxide), SO2 (sulfur dioxide) and NOx (nitrogen oxides) [40]. Objective 2 on emission
can be described as follows:

min f2(x) = C2 =
N

∑
i=1

H

∑
h=1

(Chui,h)Pi +
H

∑
h=1

(
Chugrid,t

)
Pgrid (17)

3.1.3. The Total Cost Function of Dispatch Problem in Microgrid

The objective function of our dispatch model is to minimize the total cost (Ctotal), including the
operation cost and the environmental protection cost simultaneously, which can be defined as:

Ctotal = C1 + C2 (18)

3.2. Constraints

3.2.1. Conventional Economic Dispatch Constraints

Conventional constraints include power balance constraints, operating reserve constraints, output
constraints of generators and ramping constraints. The power balance constraints can be defined as,

∑
i

PDEi,t + ∑
j

PMTj,t + ∑
l

PWTl,t +
∣∣∣Pgrid,t

∣∣∣−∑
k

PEVk,t = Pload,t (19)

The output constraints of generators and ramping constraints (DE and MT) are defined as,

Pmin
i,t ≤ Pi,t ≤ Pmax

i,t (20)

−Pi,down ≤ Pi,t − Pi,t−1 ≤ Pi,up (21)

The operating reserve constraints in period t can be defined as,

∑
i

PDEi,t + ∑
l

PWTG
l,t + ∑

j
PMTj,t +

∣∣∣Pgrid,t

∣∣∣ ≥ (1 + Lt)

(
∑
k

PEVG
k,t + Pload,t

)
(22)
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3.2.2. Wind Power Constraints

The wind power output PWTt is constrained by the predicted power PWTG
t at time t,

0 ≤ PWTt ≤ PWTG
t (23)

3.2.3. Transmission Capacity Constraints

Microgrid connected with the main power grid needs to follow the power transmission protocol,
and the transmission power between the microgrid and the main power grid cannot exceed the limits,

Pmin
buy ≤ P+

grid,t ≤ Pmax
buy (24)

Pmin
sell ≤ P−grid,t ≤ Pmax

sell (25)

3.2.4. EV Charging Constraints

Too-high charging power will damage the battery. In order to prolong the service life of the
battery, the EV charging power needs to be restricted by its maximum limit for each EV,

0 ≤ PEVk,t ≤ PEVmax
k,t (26)

The charging constraint for each EV is defined, which is usually assumed to be a constant value.

Ek,t = Ek,t−1 + PEVk,tζ∆t (27)

During the charging period, the energy demand of EV fleet should satisfy,

Eend
k = Eini

k +
T
∑

t=1
PEVk,tξ∆t

Eend =
K
∑

k=1
Eend

k = Eini +
T
∑

t=1
PEVG

t ζ∆t
(28)

3.3. Robust Energy Management Model

In order to solve the above multi-objective optimization problems, this paper uses weighted
summation method to convert the objective functions to a single-objective function, based on
Formula (18), we introduce two weight coefficients (w1 and w2) to investigate the effect of different
values on the dispatch system, and the robust economic dispatch problem is reformulated as,

min
Pi,t ,PEVk,t

 sup
PWTG

l,t ,PEVG
k,t

w1C1 + w2C2

 (29)

s.t. (19)–(28)

where PWTG
l,t and PEVG

k,t are sets with infinite elements of uncertainty parameters, i.e., Constraints (19),
(22) and (27) can be divided into an infinite number of linear constraints. Consequently, the optimization
model (29) is called a semi-infinite programming (SIP), which is usually difficult to solve.

4. Adjustable Robust Optimization Algorithm

The robust economic dispatch problem is constrained by uncertain data sets. To avoid the
difficulty in handling this problem, the duality principle mentioned in Reference [29] is employed to
transform the SIP problem to an easier dual problem in Section 4.1. In addition, an adjustable interval
coefficient Γt is introduced in Section 4.2 to reflect the robustness and economy of the solution.
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4.1. Robust Equal Conversion

Based on the sets of uncertainties shown in Sections 2.1 and 2.2, the inequality constraints (22) can
be transformed to,

∑
i

PDEi,t + ∑
l

(
___

PWTG
l,t +

∧
PWTG

l,t

)
+ ∑

j
PMTj,t +

∣∣∣Pgrid,t

∣∣∣ ≥ (1 + Lt)

(
∑
k

(
___

PEVG
k,t +

∧
PEVG

k,t

)
+ Pload,t

)
(30)

Robust optimization deals with uncertain data under the worst scenario, which can be defined as,

F = max

{
∧

PWTG
l,t − (1 + Lt)

K

∑
k=1

∧
PEVG

k,t

}

s.t.

∧
PWTG

l,t ≤
∧

PWTG
l,t ≤

∧
PWTG

l,t
∧

PEVG
t ≤

∧
PEVG

t ≤
∧

PEVG
t

(31)

The dispatch objective function is monotonically increasing, strictly convex and differentiable.
According to the strong duality its dual problem is also feasible and bounded, and the objective values
coincide. Therefore, the dual problem becomes,

min

{
−

L

∑
l=1

∧
PWTG

l,tαt +
L

∑
l=1

∧
PWTG

l,tβt −
K

∑
k=1

∧
PEVG

k,tγt+
K

∑
k=1

∧
PEVG

k,tδt

}

s.t.
−αt + βt ≥ 1
−γt + δt ≥ −1− Lt

αt, βt, γt, δt ≥ 0
(32)

In summary, Constraint (30) can ultimately be transformed to,

PDE +
L
∑

l=1
PWTG

l,t +
∣∣∣Pgrid,t

∣∣∣+ PMTt − (1 + Lt)
K
∑

k=1
PEVG

k,t −
L
∑

l=1

∧
PWTG

l,tαt

+
L
∑

l=1
PWTG

l,tβt + (−1− Lt)

(
−

K
∑

k=1

∧
PEVG

k,tγt +
K
∑

k=1

∧
PEVG

k,tδ

)
t

≥ (1 + Lt)Pload,t

(33)

Then, the dispatch problem is equivalent to an optimization problem with linear constraints,

min
Pi,t ,PEVk,t

 sup
PG

WT,l,t ,PEVG
k,t

Ctotal

 (34)

s.t. (19)–(28), (31)–(33)

4.2. Adjustment Interval

Considering that the number of wind generators and EVs are L and K, respectively, we define a
set V = [0, L + K] to indicate the number of uncertainties. Each uncertain value at stage t is represented
as a symmetric and bounded random variable such as,

PEVG
k,t ∈

[ ___
PEVG

k,t + ηl,tPEVG
k,t,

___
PEVG

k,t + ηl,tPEVG
k,t

]
(35)

where ηl,t ∈ [0, 1] is the scheduling interval coefficient representing the size of interval (see Figure 2 for
details). Our goal is to protect the system stability by maintaining the operating reserve Γt with very
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high probability. So up to bΓtc, which is the round down symbol for Γt, all these random variables for
WT and EV are allowed to be changed by ηm,t = 1, except one variable, which needs to be changed by
ηm,t = Γt − bΓtc.
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For convenience, if there are total V variables allowed to be changed, we define Qv,t to be the
value of total power resulting from uncertain number l and k of WTs and EVs, respectively,

Qv,t = ∑
l∈[0,m]

∧
PWTG

l,t − (1 + Lt) ∑
k∈[0,m−l]

∧
PEVG

k,t (36)

We define S to be the collection of uncertain variables the scheduling coefficient of which is
ηm,t = 1, and s to be the s-th uncertain variable the scheduling coefficient of which is Γt − bΓtc. Then,
we can obtain the probability for violation of operating reserve constraint.

Pr

{
N
∑

i=1
Pmax

i +
M
∑

j=1

(
___

PG
WT,l,t +

∧
PG

WT,l,t

)
− (1 + Lt)

K
∑

k=1

(
___

PEVG
k,t +

∧
PEVG

k,t

)
+
∣∣∣Pgrid,t

∣∣∣ < (1 + Lt)Pload,t

}
≤ Pr

{
∑

m∈V
ηm,tωm,t ≥ Γt

}
(37)

where

ωm,t =

1 m ∈ S
Q∗m,t
Q∗g,t

m ∈ R/S
(38)

with Q∗g,t = min
{

Qg,t
}

, g ∈ S ∪ {s} and Pr{a ≥ b} denoting the probability.
In order to facilitate the decision-maker’s analysis, we derive an accurate bound defined as ‘Bound

1′, which has been introduced in Reference [29].

Pr

{
∑
r∈R

ωm,tηm,t ≥ Γt

}
≤ (1− µ)C(n, bυc) +

n

∑
l=bυc+1

C(n, l) (39)

C(n, l) =


1

2n i f l = 0 or n
1√
2π

√
n

(n−l)l exp
(

n log
(

n
2(n−l)

)
+ l log

(
n−l

l

))
otherwise

(40)

where n is the number of elements in the set V, and v = Γt+n
2 , µ = v− bvc.
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5. Case Study

5.1. Problem Description

A microgrid system includes DE, MT, WT and EVs. The system is running in grid-connected
mode. Figure 3 is the initial status of the microgrid system, where the EVs are assumed to be charged
in the periods of 18:30–21:30, when there is the highest residential load of the day [41]. The described
initial scenario including the EV charging up/lower bounds, the WT up/lower bounds and the resident
load are shown in Figure 3, which has been modeled in Sections 2.1 and 2.2. In this case, the high
load and low wind power lead to the increase of DE outputs, which leads to increasing operation
cost. On the other hand, during 23:00–2:00, when there is a lower basic load demand but with a high
wind power and thus energy is wasted. Therefore, it is crucial to optimize the energy in the MG for
uncertain WT output and EVs load.
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This paper constructs an optimal dispatch model of a microgrid. First, the parameter specification
is presented in Section 5.2. Second, the results of robust optimization versus stochastic optimization are
compared in Section 5.3.2. Third, in order to quantify the robustness and economy of the scheduling
model, the adjustable robust optimization results are analyzed in Sections 5.3.3 and 5.3.4. Finally,
analysis of the effect of weighting factors on multi-objective problems is presented in Section 5.3.5.

5.2. Parameter Specification

The microgrid system includes WT, DE, MT and EVs, of which the fuel costs of DE and MT are
referred to in Reference [42], and the battery degradation cost of EVs are introduced in Reference [43].
The capacity limits of DGs are shown in Table 1. The time-of-use (TOU) electricity price is shown in
Figure 4 (the blue bar represents the purchase price, and the orange bar represents the sale price). The
operation and maintenance (OM) coefficients of DGs are listed in Table 2, where the WT’s OM cost is
negligible. The environmental parameters of DGs and main power grid are listed in Table 3, where
treatment costs of SO2 and NOX are far greater than that of CO2, and MT has smaller emission of SO2

and NOX than that of DE and the main power grid. The pollutant values of the main power grid are
high in CO2, SO2, because the energy mix of the main power grid is mainly composed of coal.
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Table 1. Data of capacity limits.

Type Maximum Value

Diesel engine (kW) 1500
Micro turbine (kW) 250
Wind turbine (kW) 500

Battery capacity (kW) 60
SOC lower/upper limits (%) 10/100
Charging power limit (kWh) 6

P+
grid (kW) 300

P−grid (kW) 150

Table 2. Operation and maintenance coefficients of distributed generations (DGs).

Type DE MT WT

Kom (¥/kWh) * 0.04 0.08 0.00294

* ¥ is Yuan in Chinese monetary unit.

Table 3. Environmental parameters.

Type Treatment
Cost (¥/kg)

Pollutant Emission Coefficient (g/kW)

DE MT WT Main Grid

CO2 0.21 680 724 0 889
SO2 6 0.306 0.0036 0 1.8
NOx 8 10.09 0.2 0 1.6
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5.3. Simulation Scene

A typical microgrid in Reference [30] supplies energy to a residential area, with one DE, two
250 kW MT and four WTs. One hundred EVs are taken into consideration for scheduling, and operating
reserve Lt is set to 0.1 in dispatch periods for this microgrid system. The wind power is given by
Rayleigh distribution with 95% confidence interval. The EVs start charging times and power demands
are given by normal distribution with 95% confidence interval. A period from 16:00 to 04:00 is divided
into 24 thirty-minute intervals. A robust dispatch strategy model introduced in Section 4 is established
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and the duality theory is employed to transfer the model to a linear programming model. The Lagrange
relaxation algorithm, which is effective and easy to implement, is chosen to solve the transformed
dual problem.

5.3.1. Case 1: Stochastic Optimization Result

The purpose of this study is to minimize the operating cost and environmental protection cost
caused by DGs in the microgrid system. The SO dispatch strategy is used and shows good performance
in reducing peak load and fuel cost under a stable operation. As shown in Figure 5, EVs are charged
in the off-peak hours with high wind power outputs, DG and transmission power required to satisfy
the power demand. However, the uncertainty of predicted variables is not taken into consideration,
hence the dynamics and robustness of the system is not optimal.
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5.3.2. Case 2: Robust Optimization Result

For RO, the worst scenario means fewer available WT outputs and more EV charging loads.
Therefore, the DG increases its output so as to meet the load demands. Figure 6 shows RO under the
worst scenario (ROW), in which the WT is in full use, and the output of DE and MT are increased to
meet the remaining load requirements, but with no excess power provided to the main grid.Energies 2018, 11, x FOR PEER REVIEW  14 of 23 

 

 

Figure 6. Robust optimization under the worst scenarios. 

Compared with SO, RO meets more electric vehicle charging requirements in the case of less 

wind power generation. From Figures 5 and 6 we can observe that both results are charging between 

23:00–3:00, and renewable energy is fully utilized because SO does not consider volatility, its clean 

energy wind generates a higher amount of electricity, and electric vehicles charge less, so the total 

cost of the system is smaller—17,978.5—but the robustness of the system is not optimal. RO makes 

the scheduling system more robust, and the robustness index is measured by constraints violation 

probability (CVP). RO makes CVP reach 0.02% close to 0, but its total cost 21,843.8 which is high, 

while SO the CVP value is 62.73%, and the total cost is lower than RO. Therefore, we can conclude 

that RO has better robustness than SO, and the utilization rate of renewable energy is higher, but the 

economy costs are an extra 21.50% compared to SO. 

Next, we will introduce the application of adjustable robust optimization in the scheduling 

system to help decision makers find a compromise between robustness and economy, and control 

the robustness and economy of the system by adjusting the number of uncertain variables. 

Simultaneously, the robustness and economy of the system in each state and the power generation of 

each part are listed in Section 5.3.3 for comparison with SO. 

5.3.3. Case 3: Adjustable Robust Optimization Result 

To relax the conservatism of robust optimization, we can set the dispatch interval coefficient to 

balance the robustness and the economy of the system. In other words, when the adjustable robust 

optimization (ARO) parameter Γt = 0, the mean values of the predicted available wind power and 

EVs’ charging loads are considered in the dispatch strategy, which represents the conventional SO 

dispatch. Uncertainty of predicted variables is not taken into consideration; the dynamics and robust 

performance of the system is not optimal. While with the increase of ARO parameter Γt, the dispatch 

strategy should consider more uncertainties to improve its robust performance, for RO it means fewer 

available WT outputs and more EVs charging loads. Therefore, the diesel generator increases its 

output so as to meet the load demands. The changing situation of DGs caused by the ARO parameter 

Γ is shown in Figure 7. Additionally, Figure 8 shows that the system robustness is increasing 

gradually while the system economy is decreasing gradually at the same time. The typical scenarios 

data are shown in Table 4. 

Table 4. Multi-objective dispatch robust optimization (RO) result under the adjustable robust 

optimization (ARO) parameter Γ. 

Type DE MT WT 
+

gridP  gridP
 EV C1 C2 CVP 

Γ = 12 10,878.0 5262.7 12,625.5 4190.8 0 4706.0 17,342.2 4501.6 0.02% 

Γ = 11 10,835.9 5219.5 12,764.2 4116.9 0 4685.5 16,987.5 4446.8 0.18% 

Γ = 10 10,772.7 5094.9 12,971.1 4025.5 0 4613.2 16,749.7 4413.1 0.34% 

Γ = 8.75 10,613.8 4623.9 13,855.6 3729.7 0 4572.0 16,097.9 4286.2 1.39% 

Figure 6. Robust optimization under the worst scenarios.



Energies 2018, 11, 2050 14 of 22

Compared with SO, RO meets more electric vehicle charging requirements in the case of less
wind power generation. From Figures 5 and 6 we can observe that both results are charging between
23:00–3:00, and renewable energy is fully utilized because SO does not consider volatility, its clean
energy wind generates a higher amount of electricity, and electric vehicles charge less, so the total
cost of the system is smaller—17,978.5—but the robustness of the system is not optimal. RO makes
the scheduling system more robust, and the robustness index is measured by constraints violation
probability (CVP). RO makes CVP reach 0.02% close to 0, but its total cost 21,843.8 which is high, while
SO the CVP value is 62.73%, and the total cost is lower than RO. Therefore, we can conclude that RO
has better robustness than SO, and the utilization rate of renewable energy is higher, but the economy
costs are an extra 21.50% compared to SO.

Next, we will introduce the application of adjustable robust optimization in the scheduling
system to help decision makers find a compromise between robustness and economy, and control the
robustness and economy of the system by adjusting the number of uncertain variables. Simultaneously,
the robustness and economy of the system in each state and the power generation of each part are
listed in Section 5.3.3 for comparison with SO.

5.3.3. Case 3: Adjustable Robust Optimization Result

To relax the conservatism of robust optimization, we can set the dispatch interval coefficient to
balance the robustness and the economy of the system. In other words, when the adjustable robust
optimization (ARO) parameter Γt = 0, the mean values of the predicted available wind power and
EVs’ charging loads are considered in the dispatch strategy, which represents the conventional SO
dispatch. Uncertainty of predicted variables is not taken into consideration; the dynamics and robust
performance of the system is not optimal. While with the increase of ARO parameter Γt, the dispatch
strategy should consider more uncertainties to improve its robust performance, for RO it means fewer
available WT outputs and more EVs charging loads. Therefore, the diesel generator increases its output
so as to meet the load demands. The changing situation of DGs caused by the ARO parameter Γ is
shown in Figure 7. Additionally, Figure 8 shows that the system robustness is increasing gradually
while the system economy is decreasing gradually at the same time. The typical scenarios data are
shown in Table 4.

Table 4. Multi-objective dispatch robust optimization (RO) result under the adjustable robust optimization
(ARO) parameter Γ.

Type DE MT WT P+
grid P−grid EV C1 C2 CVP

Γ = 12 10,878.0 5262.7 12,625.5 4190.8 0 4706.0 17,342.2 4501.6 0.02%
Γ = 11 10,835.9 5219.5 12,764.2 4116.9 0 4685.5 16,987.5 4446.8 0.18%
Γ = 10 10,772.7 5094.9 12,971.1 4025.5 0 4613.2 16,749.7 4413.1 0.34%

Γ = 8.75 10,613.8 4623.9 13,855.6 3729.7 0 4572.0 16,097.9 4286.2 1.39%
Γ = 7.5 10,551.1 4525.5 14,192.0 3436.4 0 4454.0 15,784.0 4162.9 3.41%

Γ = 6.25 10,414.0 4317.1 14,480.7 3250.5 0 4211.3 15,462.8 4150.1 6.87%
Γ = 5 10,370.3 4233.1 14,439.5 3210.5 0 4002.4 14,975.3 4084.5 13.75%

Γ = 3.75 10,311.3 4152.7 14,657.5 3111.2 0 3981.7 15,124.4 4071.1 22.41%
Γ = 2.5 10,039.8 3982.6 15,220.1 2917.7 0 3909.2 14,449.6 3938.9 37.76%
Γ = 0 9763.0 3954.1 15,313.4 2798.2 −25.7 3552.0 14,135.4 3843.1 62.73%

As shown in Table 4, with the uncertainties (WTs and EVs) of the volatility decreases, the output
of DEs, MTs and transmission power are increasing, which brings about the increasing operating cost.

State Γt = 0 represents the optimization result without robustness, with the increasing ARO
parameter Γt, more uncertain factors are considered in the dispatch strategy, so that the robustness
of the system turns to be stronger, while more operating cost is required to maintain the system
robustness. Compared with the conventional SO dispatch (Γt = 0), the most conservative RO (Γt = 12)
can reduce uncertainties, but the outputs of CGs and transmission power are increasing.
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By numerical analysis, we can quantify the relationship and offer a reference curve to decision
makers in Figure 8. There are 12 uncertainties in the system. To accurately express robustness, here we
choose Bound 1 for analysis, which has been introduced in Section 4.2. For example, the requirement
of robustness of a power system is 100% which means the CVP is 0.024%, at which time the economy
of the system is at its worst. If constraints violation probability is set to be 0.34%, according to the
proposed method, the value of uncertainties will be 10 and the total cost will be 21,162.8, and will
reduce the operating cost by 3% from 21,843.8, which improves the system economy. Additionally, if the
decision-maker wants to get the best economy, the uncertainty parameter Γt = 0, and the constraint
violation is with the highest probability 62.73%.
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5.3.4. Case 4: Economic Analysis of Robust Invariant Set

The core aim of robust optimization is to find out the optimal cost under the condition of constraints
and considering the worst condition. In order to facilitate the decision-maker’s economic analysis,
this paper presents the economic law of the ARO parameter Γ to the best scenario shown in Figure 9.
Comparing the case Γt = 0 and the case Γt = 12, in order to obtain the best robust performance, the
dispatch system needs to provide additional 3865.3 (RMB), an increase of 21.5% in the total cost. On the
other hand, for the system showing the best economy under the case Γt = −12, the cost can be reduced
by 3126.5 (RMB), in contrast to the result of the SO result (Γt = 0).
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Figure 10 shows details on the comparison of influence of uncertainties in the whole range of
ARO parameters. As can be seen, with the Γ decreasing towards the best scenario the DG in the dispatch
model reduces the output accordingly and reduces the total cost.

5.3.5. Case 5: Impact of Weighting Factors on the System

Figure 11 shows the effect of weight coefficients in the optimization results, i.e., the operation
cost C1 and the emission cost C2. As the proportion of w1 gradually decreases, the cost of C2 led by
w2 gradually increases. Therefore, the decision-maker needs to appropriately choose weight factors
within the real application scenario.

Energies 2018, 11, x FOR PEER REVIEW  17 of 23 

 

(a) WARO variation of EV

(c) WARO variation of DE (d) WARO variation of MT

(b) WARO variation of WT

  

Figure 10. Comparison of DG performances for different ARO parameters. 

5.3.5. Case 5: Impact of Weighting Factors on the System 

Figure 11 shows the effect of weight coefficients in the optimization results, i.e., the operation 

cost C1 and the emission cost C2. As the proportion of w1 gradually decreases, the cost of C2 led by w2 

gradually increases. Therefore, the decision-maker needs to appropriately choose weight factors 

within the real application scenario. 

 

Figure 11. The effect of weight coefficients on operation cost and emission cost. 

6. Conclusions 

Optimal load dispatch of microgrid is of great significance to reduce energy consumption, 

environmental pollution and electricity cost. In this paper, a multi-objective optimal dispatch 

problem for microgrid is considered. The DGs in the microgrid system include PV, WT, DE, MT and 

EVs, where the battery of an EV is treated as a mobile distributed energy storage device in the 

Figure 11. The effect of weight coefficients on operation cost and emission cost.

6. Conclusions

Optimal load dispatch of microgrid is of great significance to reduce energy consumption,
environmental pollution and electricity cost. In this paper, a multi-objective optimal dispatch problem
for microgrid is considered. The DGs in the microgrid system include PV, WT, DE, MT and EVs,
where the battery of an EV is treated as a mobile distributed energy storage device in the microgrid
system. An adjustable robust optimization technique is employed to address the multi-objective
optimal dispatch problem in a residential microgrid with wind power and EVs.

The main contributions of the proposed method lies in three aspects:
Firstly, compared to conventional dispatch strategy, the proposed method simultaneously

takes the uncertainties of WT and EVs into consideration, and a robust optimization technique is
also proposed to solve the dispatch problem under the worst scenario; with the dispatch strategy
considering more uncertainties, the robustness of the microgrid is enhanced.

Secondly, the method considers both economic efficiency and robustness of the microgrid, in
which a dispatch interval coefficient is introduced to reduce the operating cost under a certain premise
of the system robustness. Therefore, the economic efficiency of the microgrid is improved.

Thirdly, using the concept of robust optimization, this paper systematically analyzes the solution
in the range of uncertainties, combing the positive and negative impact of uncertain factors on
system economy.

The proposed method provides an analytical tool for decision makers to quantify the economic
operation of microgrid systems.
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Nomenclature

A. Nouns, Numbers, and Sets
MG Microgrid
CG Conventional generation
OM Operation and maintenance
SO Stochastic optimization
RO Robust optimization
ARO Adjustable robust optimization
WARO The whole range of ARO
DE Diesel engine
MT Micro turbine
WT Wind turbine
EV Electric vehicle
SOC State of charge
i The number of distributed energy types, including DE, MT, and WT
Pi,t The Output of distributed energy sources, including DE, MT, and WT
g Number of diesel engines
l Number of wind turbines
k Number of Electric vehicle dispatch groups obtained according to the grouping

dispatch approach
j Number of Micro turbines
PEVG

t The total predicted EVs charging power for k groups at time t
H The total number of the pollutant emissions
Pi,down The lower regulation speed limit of i-the type DGs including DE and MT
Pi,up The upper regulation speed limit of i-the type DGs including DE and MT
Pmin

i,t The minimum output power of i-th type DGs including DE and MT at time t
Pmax

i,t The maximum output power of i-th type DGs including DE and MT at time t
B. Uncertain parts
L The number of uncertainties for wind turbines
K The number of uncertainties for electric vehicles
V The wind speed
η The distribution parameter of Rayleigh distribution
α Confidence level
Vin, Vr, Vout Cut-in, rated and cut-out wind speeds
Wr Rated wind power
a, b The wind turbine parameters
PWT Uncertain sets of wind turbines
PWTG

l,t The predicted output of l-th wind turbine at time t
____

PWTG
l,t,

∧
PWTG

l,t The mean and variance of PWTG
l,t

∧
PWTG

l,t,
∧

PWTG
l,t The upper and lower bound of

∧
PWTG

l,t
d, dr The distance of individual EV travelling and the maximum travel distance of the EV
µ, σ The mean and standard deviation of logarithmic normal distribution function
Tn

start Set of n-th EV predicted charging start time
Tn

start, Tn
start The upper and lower bound of Tn

start
SOCn Set of n-th EVs predicted SOC
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SOCn, SOCn The upper and lower bound of SOCn

E The battery capacity of an EV
P the charging power of the n-th EV
UEV Uncertain sets of electric vehicles
PEVG

t The charging power of all EVs at time t
____

PEVG
t ,

∧
PEVG

t The mean and variance PEVG
t

∧
PEVG

t ,
∧

PEVG
t The upper and lower bound of

∧
PEVG

t
ηl,t Adjustable coefficient, which is used to adjust the uncertainty set of each uncertain

variable, the range of ηl,t is 0 to 1
Γt The number of uncertainties at time t, which is not necessarily an integer
bΓtc The integral part of uncertainties at time t
S The collection of uncertain variables whose scheduling coefficient is integer
s The collection of decimal part of uncertain variables whose scheduling coefficient

is decimal
C. Variables
PDEg,t The output of g-th DE at time t
PMTj,t The output of j-th MT at time t
PWTl,t The output of l-th WT at time t
Pgrid,t The transmission power between the main grid and microgrid
P+

grid The microgrid purchasing electricity from the main power grid

P−grid The microgrid selling electricity to the main power grid

PEVk,t The charging power of k-th EV group at time t
Ek,t The status of the k-th group EV at time t
Ek,t−1 The status of the k-th group EV at last time t
Eend

k The energy demand of k-th group EV
Eini The initial status of total EVs
Eend The total EV charging demand
ui,h The pollutant discharge coefficients of the i-type DGs including DE, MT and WT
ugrid,h The pollutant discharge coefficients of the main power grid
αt, βt, γt, δt The dual coefficients
D. Constants
∆t A time period
C1, C2, C3 The cost parameter of diesel engine
an, bn, cn The battery degradation cost parameters
Msell,t, Mbuy,t The coefficients for transmission between Main Grid to MG at time t
Pcell The price of battery cell capacity
KOM The OM cost parameter
Mn Current coefficient
Ch The treatment cost of the h-th pollutant emission
Vnom Cell voltage
Pmin

buy , Pmax
buy The minimum and maximum price of the transmission power when purchasing

electricity from the main power grid
Pmin

sell , Pmax
sell The minimum and maximum price of the transmission power when selling electricity

from the main power grid
PEVmax

k,t The maximum charging power of k-th group EVs at time t
w1, w2 The weight coefficient of multi-objective function
ξ The charging efficiency of EVs
Lt Operating reserve
Pload,t The power load of residential area at time t
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F. Function
C f (·) The fuel cost of CGs, including diesel engine
COM(·) The operation and maintenance cost
Cgrid(·) The transmission cost between microgrid and the main power grid
Cbat(·) The degradation cost of EV
η(PMTt) The working efficiency of MT

Min f1(·)
Operating cost Minimization including the fuel cost and the operation and
maintenance cost

Min f2(·) Pollutants emission Minimization including CO2, SO2, NOx

Ctotal The total cost function of dispatch problem
Qv,t The total power resulting from uncertainties including EVs and WTs
Pr{a ≥ b} Constraints violation probability
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